
www.allitebooks.com

http://www.allitebooks.org

Windows PowerShell in Action, Third
Edition
Bruce Payette Richard Siddaway

www.allitebooks.com

http://www.allitebooks.org

Copyright
For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity. For
more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Development editor: Jennifer Stout

Technical development editor: Tobias Weltner

Project editors: Kevin Sullivan, Janet Vail

Copyeditors: Linda Recktenwald, Jodie Allen

Proofreader: Elizabeth Martin

Technical proofreader: James Berkenbile

Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781633430297

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 -- EBM -- 22 21 20 19 18 17

www.allitebooks.com

http://www.manning.com
http://www.allitebooks.org

Dedication

For my father.

Bruce

To Ann for everything. I couldn’t have done this without your help and support.

Richard

www.allitebooks.com

http://www.allitebooks.org

Brief Table of Contents
Copyright

Brief Table of Contents

Table of Contents

Praise for the Second Edition

Praise for the First Edition

Preface

Acknowledgments

About this Book

About the Cover Illustration

Chapter 1. Welcome to PowerShell

Chapter 2. Working with types

Chapter 3. Operators and expressions

Chapter 4. Advanced operators and variables

Chapter 5. Flow control in scripts

Chapter 6. PowerShell functions

Chapter 7. Advanced functions and scripts

Chapter 8. Using and authoring modules

Chapter 9. Module manifests and metadata

Chapter 10. Metaprogramming with scriptblocks and dynamic code

Chapter 11. PowerShell remoting

Chapter 12. PowerShell workflows

Chapter 13. PowerShell Jobs

Chapter 14. Errors and exceptions

Chapter 15. Debugging

Chapter 16. Working with providers, files, and CIM

www.allitebooks.com

http://www.allitebooks.org

Chapter 17. Working with .NET and events

Chapter 18. Desired State Configuration Chapter

19. Classes in PowerShell

Chapter 20. The PowerShell and runspace APIs

PowerShell 6.0 for Windows, Linux, and macOS

Index

List of Figures

List of Tables

List of Listings

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Copyright

Brief Table of Contents

Table of Contents

Praise for the Second Edition

Praise for the First Edition Preface

Acknowledgments

About this Book

About the Cover Illustration

Chapter 1. Welcome to PowerShell

1.1. What is PowerShell?

1.1.1. Shells, command lines, and scripting languages

1.2. PowerShell example code

1.2.1. Navigation and basic operations

1.2.2. Basic expressions and variables

1.2.3. Processing data

1.2.4. Flow-control statements 1.2.5.

Scripts and functions

1.2.6. Remote administration

1.3. Core concepts

1.3.1. Command concepts and terminology

1.3.2. Commands and cmdlets

1.3.3. Command categories

1.3.4. Aliases and elastic syntax

1.4. Parsing the PowerShell language

www.allitebooks.com

http://www.allitebooks.org

1.4.1. How PowerShell parses

1.4.2. Quoting

1.4.3. Expression-mode and command-mode parsing

1.4.4. Statement termination

1.4.5. Comment syntax in PowerShell

1.5. How the pipeline works

1.5.1. Pipelines and streaming behavior

1.5.2. Parameters and parameter binding

1.6. Formatting and output

1.6.1. Formatting cmdlets

1.6.2. Outputter cmdlets

1.7. Summary

Chapter 2. Working with types

2.1. Type management in the wild, wild West

2.1.1. Types and classes

2.1.2. PowerShell: A type-promiscuous language

2.1.3. Type system and type adaptation

2.1.4. Finding the available types

2.2. Basic types and literals

2.2.1. String literals

2.2.2. Numbers and numeric literals

2.3. Collections: dictionaries and hashtables

2.3.1. Creating and inspecting hashtables

2.3.2. Ordered hashtables

2.3.3. Modifying and manipulating hashtables

2.3.4. Hashtables as reference types

2.4. Collections: arrays and sequences

www.allitebooks.com

http://www.allitebooks.org

2.4.1. Collecting pipeline output as an array

2.4.2. Array indexing

2.4.3. Polymorphism in arrays

2.4.4. Arrays as reference types

2.4.5. Singleton arrays and empty arrays

2.5. Type literals

2.5.1. Type name aliases

2.5.2. Generic type literals

2.5.3. Accessing static members with type literals

2.6. Type conversions

2.6.1. How type conversion works

2.6.2. PowerShell’s type-conversion algorithm

2.6.3. Special type conversions in parameter binding

2.7. Summary

Chapter 3. Operators and expressions

3.1. Arithmetic operators

3.1.1. Addition operator

3.1.2. Multiplication operator

3.1.3. Subtraction, division, and the modulus operators

3.2. Assignment operators

3.2.1. Multiple assignments

3.2.2. Multiple assignments with type qualifiers

3.2.3. Assignment operations as value expressions

3.3. Comparison operators

3.3.1. Scalar comparisons

3.3.2. Comparisons and case sensitivity

3.3.3. Using comparison operators with collections

www.allitebooks.com

http://www.allitebooks.org

3.4. Pattern matching and text manipulation

3.4.1. Wildcard patterns and the -like operator

3.4.2. Regular expressions

3.4.3. The -match operator

3.4.4. The -replace operator

3.4.5. The -join operator

3.4.6. The -split operator

3.5. Logical and bitwise operators

3.6. Where() and ForEach() methods

3.6.1. Where() method

3.6.2. ForEach() method

3.7. Summary

Chapter 4. Advanced operators and variables

4.1. Operators for working with types

4.2. Unary operators

4.3. Grouping and subexpressions

4.3.1. Subexpressions $(...)

4.3.2. Array subexpressions @(...)

4.4. Array operators

4.4.1. Comma operator

4.4.2. Range operator

4.4.3. Array indexing and slicing

4.4.4. Using the range operator with arrays

4.4.5. Working with multidimensional arrays

4.5. Property and method operators

4.5.1. Dot operator

4.5.2. Static methods and the double-colon operator

www.allitebooks.com

http://www.allitebooks.org

4.5.3. Indirect method invocation 4.6.

Format operator

4.7. Redirection and redirection operators

4.8. Working with variables

4.8.1. Creating variables

4.8.2. Variable name syntax

4.8.3. Working with variable cmdlets

4.8.4. Splatting a variable

4.9. Summary

Chapter 5. Flow control in scripts

5.1. Conditional statement

5.2. Looping statements

5.2.1. while loop

5.2.2. do-while loop

5.2.3. for loop 5.2.4.

foreach loop

5.3. Labels, break, and continue

5.4. switch statement

5.4.1. Basic use of the switch statement

5.4.2. Using wildcard patterns with the switch statement

5.4.3. Using regular expressions with the switch statement 5.4.4.

Processing files with the switch statement

5.4.5. Using the $switch loop enumerator in the switch statement

5.5. Flow control using cmdlets

5.5.1. ForEach-Object cmdlet

5.5.2. Where-Object cmdlet

5.6. Statements as values

5.7. A word about performance

5.8. Summary

Chapter 6. PowerShell functions

6.1. Fundamentals of PowerShell functions

6.1.1. Passing arguments using $args

6.1.2. Example functions: ql and qs

6.2. Declaring formal parameters for a function

6.2.1. Mixing named and positional parameters

6.2.2. Adding type constraints to parameters

6.2.3. Handling variable numbers of arguments

6.2.4. Initializing function parameters with default values

6.2.5. Using switch parameters to define command switches

6.2.6. Switch parameters vs. Boolean parameters

6.3. Returning values from functions

6.3.1. Debugging problems in function output

6.3.2. The return statement

6.4. Using simple functions in a pipeline

6.4.1. Functions with begin, process, and end blocks

6.5. Managing function definitions in a session

6.6. Variable scoping in functions

6.6.1. Declaring variables

6.6.2. Using variable scope modifiers

6.7. Summary

Chapter 7. Advanced functions and scripts

7.1. PowerShell scripts

7.1.1. Script execution policy

7.1.2. Passing arguments to scripts

7.1.3. Exiting scripts and the exit statement

7.1.4. Scopes and scripts

7.1.5. Managing your scripts

7.1.6. Running PowerShell scripts from other applications

7.2. Writing advanced functions and scripts

7.2.1. Specifying script and function attributes

7.2.2. The CmdletBinding attribute

7.2.3. The OutputType attribute

7.2.4. Specifying parameter attributes

7.2.5. Creating parameter aliases with the Alias attribute

7.2.6. Parameter validation attributes

7.3. Dynamic parameters and dynamicParam

7.3.1. Steps for adding a dynamic parameter

7.3.2. When should dynamic parameters be

used?7.4. Cmdlet default parameter values

7.4.1. Creating default values

7.4.2. Modifying default values

7.4.3. Using scriptblocks to determine default value

7.5. Documenting functions and scripts

7.5.1. Automatically generated help fields

7.5.2. Creating manual help content

7.5.3. Comment-based help

7.5.4. Tags used in documentation comments

7.6. Summary

Chapter 8. Using and authoring modules

8.1. The role of a module system

8.1.1. Module roles in PowerShell

8.1.2. Module mashups: composing an application

8.2. Module basics

8.2.1. Module terminology

8.2.2. Modules are single-instance objects

8.3. Working with modules

8.3.1. Finding modules on the system

8.3.2. Loading a module

8.3.3. Removing a loaded module

8.4. Writing script modules

8.4.1. A quick review of scripts

8.4.2. Turning a script into a module

8.4.3. Controlling member visibility with Export-ModuleMember

8.4.4. Installing a module

8.4.5. How scopes work in script modules

8.4.6. Nested modules

8.5. Binary modules

8.5.1. Creating a binary module

8.5.2. Nesting binary modules in script modules

8.6. Summary

Chapter 9. Module manifests and metadata

9.1. Module folder structure 9.2.

Module manifest structure 9.3.

Production manifest elements

9.3.1. Module identity

9.3.2. Runtime dependencies

9.4. Construction manifest elements

9.4.1. The loader manifest elements

9.4.2. Module component load order

9.5. Content manifest elements

9.6. Advanced module operations

9.6.1. The PSModuleInfo object

9.6.2. Using the PSModuleInfo methods

9.6.3. The defining module vs. the calling module

9.6.4. Setting module properties from inside a script module

9.6.5. Controlling when modules can be unloaded

9.6.6. Running an action when a module is removed

9.7. Publishing a module to a PowerShell Gallery

9.7.1. A module to publish

9.7.2. PSData Packaging elements

9.7.3. Publishing a module 9.7.4.

Publishing module updates

9.8. Summary

Chapter 10. Metaprogramming with scriptblocks and dynamic code

10.1. Scriptblock basics

10.1.1. Invoking commands

10.1.2. Getting CommandInfo objects

10.1.3. The scriptblock literal 10.1.4.

Defining functions at runtime

10.2. Building and manipulating objects

10.2.1. Looking at members

10.2.2. Defining synthetic members

10.2.3. Using Add-Member to extend objects

10.2.4. Adding note properties with New-Object

10.3. Using the Select-Object cmdlet

10.4. Dynamic modules

10.4.1. Dynamic script modules

10.4.2. Closures in PowerShell

10.4.3. Creating custom objects from modules

10.5. Steppable pipelines

10.5.1. How steppable pipelines work

10.5.2. Creating a proxy command with steppable pipelines

10.6. A closer look at the type-system plumbing

10.6.1. Adding a property

10.6.2. Shadowing an existing property

10.7. Extending the PowerShell language

10.7.1. Little languages

10.7.2. Type extension

10.8. Building script code at runtime

10.8.1. The Invoke-Expression cmdlet

10.8.2. The ExecutionContext variable

10.8.3. The ExpandString() method

10.8.4. The InvokeScript() method

10.8.5. Mechanisms for creating scriptblocks

10.8.6. Creating functions using the function: drive

10.9. Compiling code with Add-Type

10.9.1. Defining a new .NET class: C#

10.9.2. Defining a new enum at runtime

10.9.3. Dynamic binary modules

10.10. Summary

Chapter 11. PowerShell remoting

11.1. PowerShell remoting overview

11.1.1. Commands with built-in remoting

11.1.2. The PowerShell remoting subsystem

11.1.3. Enabling remoting

11.1.4. Additional setup steps for workgroup environments

11.1.5. Authenticating the connecting user

11.1.6. Enabling remoting in the enterprise

11.2. Applying PowerShell remoting

11.2.1. Basic remoting examples

11.2.2. Adding concurrency to the examples

11.2.3. Solving a real problem: multi-machine monitoring

11.3. PowerShell remoting sessions and persistent connections

11.3.1. Additional session attributes

11.3.2. Using the New-PSSession cmdlet

11.3.3. Interactive sessions

11.3.4. Managing PowerShell sessions

11.3.5. Copying files across a PowerShell remoting session

11.4. Implicit remoting

11.4.1. Using implicit remoting

11.4.2. How implicit remoting works

11.5. Considerations when running commands remotely

11.5.1. Remote session startup directory 11.5.2.

Profiles and remoting

11.5.3. Issues running executables remotely

11.5.4. Using files and scripts

11.5.5. Using local variables in remote sessions

11.5.6. Reading and writing to the console

11.5.7. Remote output vs. local output

11.5.8. Processor architecture issues

11.6. Building custom remoting services

11.6.1. Working with custom configurations

11.6.2. Creating a custom configuration

11.6.3. Access controls and endpoints

11.6.4. Constraining a PowerShell session

11.7. PowerShell Direct

11.8. Summary

Chapter 12. PowerShell workflows

12.1. Workflow overview

12.1.1. Why use workflows

12.1.2. Workflow architecture

12.1.3. Your first workflow

12.1.4. Running a workflow

12.1.5. Cmdlets vs. activities

12.1.6. Workflow restrictions

12.2. Workflow keywords

12.2.1. Parallel 12.2.2.

Sequence 12.2.3.

InlineScript 12.2.4.

Foreach -parallel

12.3. Using workflows effectively

12.3.1. Workflow parameters

12.3.2. Variables in workflows

12.3.3. Nested workflows

12.4. Workflow cmdlets

12.4.1. Workflow execution options

12.4.2. Workflow sessions

12.4.3. Invoking as workflow

12.5. Summary

Chapter 13. PowerShell Jobs

13.1. Background jobs in PowerShell

13.1.1. The job commands

13.1.2. Working with the job cmdlets

13.1.3. Working with multiple jobs

13.1.4. Starting jobs on remote computers

13.1.5. Running jobs in existing sessions

13.1.6. Job types

13.2. Workflows as jobs

13.2.1. Checkpoints

13.2.2. Suspending workflows

13.2.3. Workflows and reboots

13.3. Scheduled jobs

13.3.1. Creating scheduled jobs

13.3.2. Modifying a scheduled job

13.3.3. Managing scheduled jobs

13.4. Summary

Chapter 14. Errors and exceptions

14.1. Error handling

14.1.1. ErrorRecords and the error stream

14.1.2. The $error variable and –ErrorVariable parameter

14.1.3. Determining whether a command had an error

14.1.4. Controlling the actions taken on an error

14.2. Dealing with errors that terminate execution

14.2.1. The try/catch/finally statement

14.2.2. The throw statement 14.3.

PowerShell and the event log

14.3.1. The EventLog cmdlets

14.3.2. Examining the PowerShell event log

14.3.3. Get-WinEvent

14.4. Summary

Chapter 15. Debugging

15.1. Script instrumentation

15.1.1. The Write* cmdlets

15.1.2. Writing events to the event Log

15.1.3. Catching errors with strict mode

15.1.4. Static analysis of scripts

15.2. Capturing session output

15.2.1. Starting the transcript

15.2.2. What gets captured in the transcript

15.3. PowerShell script debugging features

15.3.1. The Set-PSDebug cmdlet

15.3.2. Nested prompts and the Suspend operation

15.4. Command-line debugging

15.4.1. Working with breakpoint objects

15.4.2. Setting breakpoints on commands 15.4.3.

Setting breakpoints on variable assignment 15.4.4.

Debugger limitations and issues

15.5. Beyond scripts

15.5.1. Debugging PowerShell jobs

15.5.2. Debugging remote scripts

15.5.3. Debugging PowerShell runspaces

15.6. Summary

Chapter 16. Working with providers, files, and CIM

16.1. PowerShell providers

16.1.1. PowerShell core cmdlets

16.1.2. Working with PSDrives

16.1.3. Working with paths

16.1.4. The Registry provider

16.2. Files, text, and XML

16.2.1. File processing

16.2.2. Unstructured text

16.2.3. XML structured text processing

16.2.4. Converting text output to objects

16.3. Accessing COM objects

Creating COM objects

Identifying and locating COM classes

Automating Windows with COM Using

Microsoft Word for spell checking Issues

with COM

16.4. Using CIM

16.4.1. The CIM cmdlets

16.4.2. CIM sessions

16.5. Summary

Chapter 17. Working with .NET and events

17.1. .NET and PowerShell

17.1.1. Using .NET from PowerShell

17.1.2. PowerShell and GUIs

17.2. Real-time events

17.2.1. Foundations of event handling

17.2.2. Synchronous events

17.2.3. Asynchronous events

17.2.4. Working with asynchronous .NET events

17.2.5. Asynchronous event handling with scriptblocks

17.2.6. Automatic variables in the event handler 17.2.7.

Dynamic modules and event handler state 17.2.8.

Queued events and the Wait-Event cmdlet 17.2.9.

Working with CIM events

17.2.10. Class-based CIM event registration

17.2.11. Engine events

17.2.12. Generating events in functions and scripts

17.2.13. Remoting and event forwarding

17.2.14. How eventing works

17.3. Summary

Chapter 18. Desired State Configuration

18.1. DSC model and architecture

18.1.1. The need for configuration management

18.1.2. Desired State Configuration model

18.1.3. DSC architecture

18.2. Push mode to a single node

18.2.1. Create configuration

18.2.2. MOF file contents

18.2.3. Applying the configuration

18.2.4. Testing the configuration application

18.2.5. Viewing the current configuration

18.2.6. Removing a configuration

18.3. Pushing to multiple nodes

18.3.1. Parameterizing the computer name

18.3.2. Using configuration data

18.3.3. Configuration data and roles

18.3.4. Issues with push mode

18.4. DSC in pull mode

18.4.1. Pull server architecture

18.4.2. Creating a pull server

18.4.3. Publishing a MOF file

18.5. Configuring the Local Configuration Manager

18.5.1. LCM settings

18.5.2. Configuring LCM to use a pull server

18.6. Partial configurations

18.6.1. Partial configurations: yes or no

18.6.2. Pushing partial configurations

18.6.3. Pulling partial configurations

18.7. Summary

Chapter 19. Classes in PowerShell

19.1. Writing classes in PowerShell

19.1.1. Using properties in a PowerShell class

19.1.2. Class member attributes

19.1.3. PowerShell enumerations

19.2. Methods in PowerShell classes

19.2.1. Method basics

19.2.2. Static methods

19.2.3. Instance methods

19.2.4. Method overloads

19.2.5. Hidden methods

19.2.6. Constructors in PowerShell classes

19.3. Extending existing classes

19.3.1. Creating a derived class

19.3.2. Overriding members on the base class

19.3.3. Extending .NET classes

19.4. Classes, modules, using, and namespaces

The using assembly pattern

The using namespace pattern

The using module pattern

Using modules and namespaces

19.5. Writing class-based DSC resources

19.6. Summary

Chapter 20. The PowerShell and runspace APIs

20.1. PowerShell API basics

20.1.1. Multi-command pipelines

20.1.2. Building pipelines incrementally

20.1.3. Handling execution errors

20.1.4. Adding scripts and statements

20.2. Runspaces and the PowerShell API

20.2.1. Existing runspaces and isolated execution

20.2.2. Creating runspaces

20.2.3. Using runspaces for concurrency

20.3. Runspace pools

20.4. Out-of-process runspaces

20.5. Remote runspaces

20.5.1. Sessions and runspaces

20.5.2. Creating remote runspaces

20.6. Managing runspaces

20.7. Summary

PowerShell 6.0 for Windows, Linux, and macOS

The PowerShell open source project

Terminology

.NET Core Installing

on Windows

PowerShell on Linux and macOS

Known issues

Installation

Using PowerShell v6 on Linux

PowerShell remoting and Linux

DSC and Linux

Installing DSC for Linux

Using DSC for Linux

Summary

Index

List of Figures

List of Tables

List of Listings

Praise for the Second Edition
First he wrote the language, then he wrote the book.

Jeffrey Snover, Microsoft

Really understanding a scripting language means getting inside the heads of the designers
and developers. Windows PowerShell in Action makes that possible in one really
informative and entertaining book.

Jason Zions, Microsoft

Unleashes the power in PowerShell.

Sam Abraham, SISCO

Who better than the lead language designer to provide the definitive reference on the
PowerShell language!

Keith Hill, Agilent Technologies

If you like to learn by example, there is no better example of examples than Payette’s
incredible book.

Oisin Grehan, .NET Solution Architect & Microsoft PowerShell MVP

Praise for the First Edition
The book on PowerShell. It has all the secrets.

James Truher, PowerShell Program Manager, Microsoft

If all it had going for it was the authoritative pedigree of the writer, it might be worth it, but
it’s also well-written, well-organized, and thorough, which I think makes it invaluable as
both a learning tool and a reference.

Slashdot.org

...an encyclopedic tome of PowerShell scripting bringing the reader through the basics with
simple shell scripts through powerful and flexible scripts any Windows systems
administrator will find immediately useful.

ArsGeek.com

[It gives you] inside information, excellent examples, and a colorful writing style.

Marc van Orsouw (MOW), PowerShell MVP

Preface
The second edition of this book was based on PowerShell v2. Since then we’ve seen a number of
PowerShell releases—the current one is v5.1 with v6 in beta as we write. PowerShell use has
grown astronomically to the extent that the PowerShell community is large enough to support
independent conferences in North America, Europe, and Asia. User groups are available in all
parts of the world.

PowerShell v2 was a big release bringing modules, remoting, and jobs. Subsequent releases have
been as big in terms of their impact—PowerShell v3 brought PowerShell workflows and the
CIM cmdlets; PowerShell v4 brought Desired State Configuration; and PowerShell v5 brought
the ability to write classes in PowerShell. Those are only the headline items—under the covers
there are a host of other changes that extend and improve PowerShell. All of this change
demands a new edition of the book.

One big difference to the previous editions is that this book requires two authors. Between us we
bring you the experience and knowledge of creating and developing PowerShell coupled with
extensive practical experience using PowerShell to solve real-world problems. Even with two
authors creating the third edition has been a mammoth task. We had to drastically prune the
material in the second edition to make room for the new material we had to cover. At one point,
we even discussed the book spanning two volumes! We settled on a single volume and even
though we’ve had to put some topics as being out of scope we’ve covered all of the new
functionality.

So why write the book? The answer is the same now as it was then—we wanted the PowerShell
community to have a way to see “inside the box” and have a more intimate insight into the goals
and motivations behind PowerShell. Although PowerShell draws heavily from existing
technologies, it combines them in novel ways. This leads to misunderstandings which then turn
into urban myths, like PowerShell does X because its designers were kitten-eating aliens. (Trust
us—they’re not.) We’ve also added material covering the practical use of PowerShell to solve
your problems.

Speaking at conferences, and answering questions on forums, shows that there were a number of
questions that were being asked repeatedly. These questions would arise as a result of prior
language experience that the user had or a lack of understanding of a new feature in PowerShell.
Typically, a simple explanation was all it took to clear up the confusion. Unfortunately, we
couldn’t keep answering these questions over and over on a one-to-one basis. That couldn’t
scale. There needed to be a way to gather this information in one place. This third edition of
Windows Powershell in Action is our attempt to continue to address that problem.

It’s amazing how much power comes out of the synergy of all the technologies underlying
PowerShell. We see this in the internal uses of PowerShell at Microsoft, the talks at conferences
describing what people are doing in their organizations, and what the community has done with
it. And so, a continuing goal of this edition was to try to foster that creativity by conveying just
how capable PowerShell is.

A final word from Bruce: This is the book I wanted to read. I love programming languages and
the best books are the ones that explain not only what but also why. Look at the books that
continue to sell year after year: Kernighan and Ritchie’s The C Programming Language,

Stroustrup’s book on C++, and Ousterhout’s book on TCL. The TCL book in particular, which
describes a very early version of the TCL language, has never been updated, and yet it continues
to sell. Why? Because these books give the reader something more than technical detail. They
convey a sense of the overall design and some element of the intent of the designer.

Let us know if we succeeded in meeting our goals, okay?

Acknowledgments
There wouldn’t be a PowerShell book without a PowerShell product in the first place and
PowerShell wouldn’t exist without the vision of its chief architect Jeffrey Snover. His guidance
and comments over the years have been invaluable.

Thanks also to the PowerShell team for making Jeffrey’s vision into a reality and helping build
the thriving community that exists today.

To all the MEAP readers and reviewers, many thanks for your feedback. We’ve incorporated as
much of it as possible. In particular, we’d like to thank the following who reviewed the
manuscript at various stages: Benoît Benedetti, Braj Panda, Chris Frank, Craig Forrester, Edgar
Knapp, Jan Vinterberg, Lincoln Bovee’, Michel Klomp, Mike Taylor, Nick Selpa, Zalán
Somogyváry, Stephen Byrne, Thomas Burl, and Wayne Boaz. Thanks to all of you for your
patience. This book took way, way too long to complete.

Finally, special thanks to everyone at Manning who did their usual wonderful job to make this
happen: Michael Stephens, Jenny Stout, Linda Recktenwald, Jodie Allen, Elizabeth Martin,
Kevin Sullivan, Corbin Collins, Janet Vail, and all the others who worked behind the scenes. All
we can say is thank you—this book wouldn’t have happened without you.

And more super-special thanks to Tobias Weltner, our technical development editor, who started
some very interesting conversations and our technical proofreader James Berkenbile who
checked our code.

From Bruce: Thanks to Richard for putting up with me and making this book a reality. It
wouldn’t have been possible without him. I’d also like to thank Jason Shirk, Sergei Vorobev, and
Jim Truher for their feedback and suggestions for the material on classes (chapter 19). Finally I’d
like to thank my wife Tina for putting up with this madness called writing a book.

From Richard: I’d also like to thank Bruce for the opportunity to work on this book. It’s been an
interesting experience (eight time zones between authors makes for some odd communications)
and an honor. I’ve learned a lot while working with Bruce and hope we’ve managed to bring that
out in the book.

www.allitebooks.com

http://www.allitebooks.org

About this Book
Windows PowerShell is the next-generation scripting environment created by Microsoft. It’s
designed to provide a unified solution for Windows scripting and automation, able to access the
wide range of technologies such as .NET, COM, and WMI through a single tool. Since its release
in 2006, PowerShell has become the central component of any Windows management solution.
In addition, due to PowerShell’s comprehensive support for .NET, it has broad application
potential outside of the system administration space. PowerShell can be used for text processing,
general scripting, build management, creating test frameworks, and so on. With PowerShell v6
being available on Linux and macOS as well as Windows, the benefits of PowerShell now
extend cross-platform bringing a unified approach to system management.

The authors have extensive experience with PowerShell. Bruce was one of the principal creators
of PowerShell. Richard has been using PowerShell since it first became available to apply
automation techniques to many organizations. Using many examples, both small and large, this
book illustrates the features of the language and environment and shows how to compose those
features into solutions, quickly and effectively.

Note that, because of the broad scope of the PowerShell product, this book has a commensurately
broad focus. It was not designed as a cookbook of pre-constructed management examples, like
how to deal with Active Directory or how to script Exchange. Instead it provides information
about the core of the PowerShell runtime and how to use it to compose solutions the “PowerShell
Way.” After reading this book, the PowerShell user should be able to take any example written
in other languages like C# or Visual Basic and leverage those examples to build solutions in
PowerShell.

Who should read this book?

This book is designed for anyone who wants to learn PowerShell and use it well. Rather than
simply being a book of recipes to read and apply, this book tries to give the reader a deep
knowledge about how PowerShell works and how to apply it. All users of PowerShell should
read this book.

So, if you’re a Windows sysadmin, this book is for you. If you’re a developer and you need to
get things done in a hurry, if you’re interested in .NET, or just if you like to experiment with
computers, PowerShell is for you and this book is for you.

Roadmap

The book is divided into 20 chapters and an appendix. Our aim is to provide a comprehensive
tour of the PowerShell language and runtime. The goal is to introduce new PowerShell users to
the language as well as to provide experienced users with a deep insight into how and why things
are the way they are.

We look at all aspects of the PowerShell language including the syntax and the type system.
Along the way, we present examples showing how each feature works. Because the goal of the
book is to focus on the individual features of the environment, most examples are quite small and
are intended to be entered in an interactive session. We do include some larger examples that
bring the individual features together to build larger applications.

Chapter 1 begins with the history and the rationale for why PowerShell was created. We then
examine PowerShell’s elastic type system, including aliases, and how PowerShell parses
commands. The way that PowerShell uses the pipeline is unique among scripting languages. We
examine the pipeline in depth and explain how to get the most from it. The chapter closes with a
review of the closely linked topics of formatting and output.

Chapter 2 introduces the PowerShell type system and discusses its relationship to .NET. This
chapter also presents the syntax for each of the PowerShell literal data types. PowerShell’s
methods for working with collections are examined and show how type conversions can be
handled.

The discussion of operators and expressions (PowerShell has lots of these) begins in chapter 3
which covers the basic arithmetic, comparison, and assignment operators. It also covers the
wildcard and regular expression pattern matching operators. The logical and bitwise operators
close the chapter. Chapter 4 continues the discussion of operators with the advanced operations
for working with types, arrays (indexing, slicing) and objects (properties and methods). It also
covers output redirection and the formatting operator, and introduces PowerShell variables.

Chapter 5 covers the PowerShell language constructs like if statements and loops.

Chapter 6 introduces programming in PowerShell and covers basic functions, variable scoping,
and other programming-related topics. Chapter 7 builds on the material in chapter 6, covering
advanced function metadata, scripting, and how to create in-line documentation for scripts and
functions.

Chapter 8 covers the basics of how to use PowerShell modules and how to create your own basic
modules. The PowerShell gallery, an online repository of community written modules is
examined and we show how to discover and download modules. Chapter 9 looks at more
advanced module features covering module manifests and how to use them to add information
like a version number, dependences, and nested modules. We also examine publishing modules
to a repository such as the PowerShell gallery.

Chapter 10 builds on the material in chapters 7–9, introducing advanced programming
techniques like object construction and extensions. It also covers first-class functions
(scriptblocks) and shows how to extend the PowerShell language itself using these features.

Chapter 11 introduces PowerShell remoting, starting with basic configuration and setup. It then

covers the forms of remoting (interactive and non-interactive) and how to apply these techniques.
Creation of custom remoting endpoints, including constrained endpoints, is included as well.

Chapter 12 covers the PowerShell workflows—introduced with PowerShell v3. This coverage
includes workflow overview and concepts—when to use them and when they aren’t appropriate.
The workflow keywords are all explained with examples and we show how to parameterize your
workflows as well as explaining the common workflow parameters. There’re a number of
cmdlets available for working with workflows that we explain.

PowerShell jobs were introduced with PowerShell v2 and their reach has been extended with
each subsequent release. In chapter 13 we explain the issues with synchronous processing and
show how PowerShell jobs enable you to work asynchronously. The way jobs work, and the
various job types, is explained as we review the PowerShell cmdlets for managing jobs.
PowerShell workflows can make extensive use of jobs especially when suspending a workflow
because the machine on which the workflow is operating has been rebooted. The chapter closes
with an examination of how PowerShell jobs can work with the Windows task scheduler through
scheduled jobs.

Chapter 14 introduces you to error handling concepts in PowerShell such as how to deal with
terminating and non-terminating errors. We also examine how you can use event logs to record
information as your script executes.

Chapter 15 covers the features in PowerShell for debugging scripts. We start with script
instrumentation and capturing session output. We then examine the PowerShell debugger
including debugging workflows, jobs, and remote runspaces.

In chapter 16 we shift focus slightly by looking at how PowerShell can be used to attack the kind
of text processing tasks that have traditionally been the domain of languages like Perl. This
chapter begins with basic string processing, then introduces file processing (including handling
binary files), and finishes up with a section on working with XML documents. We look at how
to work with COM objects. This includes using the application automation models to script
applications like Microsoft Word with PowerShell. We close by looking at how to use CIM
(WMI) from the command line and in scripts to inspect, update, and manage a Windows system.

In chapter 17, we look at how we can explore and apply the vast capabilities of the .NET
framework. We cover locating, exploring, and instantiating types in the .NET framework,
including generic types. Then we look at numerous applications using these types, including
network programming and graphical programming with WinForms and WPF. Chapter 17 also
looks at the asynchronous eventing subsystem in PowerShell. Eventing allows PowerShell
scripts to respond to external events in real time—an important characteristic in systems
automation.

Desired State Configuration (DSC) is a mechanism for managing the configuration of your
servers in a declarative manner. Chapter 18 opens by reviewing the need for DSC and then
covers the DSC theory and architecture. We introduce the DSC modes push and pull. We show
how to create configurations and push them to a target server. Creating a pull server from which
a machine can pull its configuration information is explained and we show how to prepare
configurations to be pulled. We also examine the role of partial configurations and how to create
and apply them.

Chapter 19 discusses PowerShell classes. We examine how to create classes and enums in
PowerShell and explain the differences from creating a class in C#. A detailed discussion of

properties and methods in PowerShell classes is followed by a review of class initialization and
construction. We close by explaining how to create DSC resources using PowerShell classes.

Chapter 20, our final chapter, covers the PowerShell and runspace APIs. We discuss the
PowerShell API and how to perform isolated and concurrent operations. Runspaces, runspace
pools, and remote runspaces are covered, followed by runspace management techniques.

The appendix introduces PowerShell v6 starting with the PowerShell open source project. We
discuss .NET core and its implications for PowerShell. Installing PowerShell v6 on Windows
and Linux is covered followed by an examination of the techniques required for PowerShell
remoting between Windows and Linux machines. We close by showing how to manage the
configuration of your Linux machines using DSC.

Code conventions

Because PowerShell is an interactive environment, we show a lot of example commands as the
user would type them, followed by the responses the system generates. Before the command text
there is a prompt string that looks like this: PS>. Following the prompt, the actual command is
displayed. PowerShell’s responses follow on the next few lines. Because PowerShell doesn’t
display anything in front of the output lines, you can distinguish output from commands by
looking for the prompt string. These conventions are illustrated as follows:

PS> Get-Date

12 July 2017 10:40:55

Sometimes commands will span multiple lines. When you type or paste the code into PowerShell
you’ll see >> on the second and subsequent lines. We’ve not shown the >> for ease of copying
from the ebook. In the text of the book, we show:

PS> 1..3 |

foreach {"+" * $_}

+

++

+++

Whereas in the interactivePowerShell session you’ll see:

PS> 1..3 |

>> foreach {"+" * $_}

>>

+

++

+++

If we think there may be confusion between the code and output we’ve left a blank line to
separate them. Note that the actual prompt sequence you see in your PowerShell session will be
somewhat different than what is shown in the book. The prompt display is user-controllable by
redefining the “prompt” function—for more information about prompts see:

PS> Get-Help about_Prompts

Code annotations accompany many of the listings, highlighting important concepts. In some
cases, numbered bullets link to explanations that follow the listing.

Source code downloads

Source code for all working examples in this book is available for download from the publisher’s
website at www.manning.com/books/windows-powershell-in-action-third-edition.

http://www.manning.com/books/windows-powershell-in-action-third-edition

Book forum

Purchase of Windows PowerShell in Action, Third Edition includes free access to a private web
forum run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the author and from other users. To access the forum,
go to https://forums.manning.com/forums/windows-powershell-in-action-third-edition. You can
also learn more about Manning’s forums and the rules of conduct at
https://forums.manning.com/forums/about.

Manning’s commitment to our readers is to provide a venue where a meaningful dialogue
between individual readers and between readers and the authors can take place. It is not a
commitment to any specific amount of participation on the part of the authors, whose
contribution to the forum remains voluntary (and unpaid). We suggest you try asking challenging
questions lest the authors’ interests stray! The forum and the archives of previous discussions
will be accessible from the publisher’s website as long as the book is in print.

https://forums.manning.com/forums/windows-powershell-in-action-third-edition
https://forums.manning.com/forums/about

About the authors

BRUCE PAYETTE is one of the founding members of the Windows PowerShell team. He is co-
designer of the PowerShell language along with Jim Truher and the principal author of the
language implementation. He joined Microsoft in 2001 working on Interix, the POSIX
subsystem for Windows. Shortly after that, he moved to help found the PowerShell project. Prior
to joining Microsoft, he worked at various companies including Softway (the creators of Interix)
and MKS (producers of the MKS Toolkit) building UNIX tools for Windows. He lives in
Bellevue, Washington, with his wife, many computers, and two extremely over-bonded
codependent cats.

RICHARD SIDDAWAY has been using PowerShell since the early beta versions of PowerShell
v1. He has introduced PowerShell to many organizations while producing automation-based
solutions to their problems. He has written, and co-authored, a number of PowerShell books for
Manning including PowerShell in Practice, PowerShell and WMI, and PowerShell in Depth. His
books on Hyper-V and Active Directory contain many practical PowerShell examples. An active
blogger and speaker, Richard has also received Microsoft’s PowerShell MVP award for 10 years.

About the title

By combining introductions, overviews, and how-to examples, the In Action books are designed
to help learning and remembering. According to research in cognitive science, the things people
remember are things they discover during self-motivated exploration.

Although no one at Manning is a cognitive scientist, we are convinced that for learning to
become permanent it must pass through stages of exploration, play, and, interestingly, retelling
of what is being learned. People understand and remember new things, which is to say they
master them, only after actively exploring them. Humans learn in action. An essential part of an
In Action book is that it is example-driven. It encourages the reader to try things out, to play with
new code, and explore new ideas.

There is another, more mundane, reason for the title of this book: Our readers are busy. They use
books to do a job or solve a problem. They need books that allow them to jump in and jump out
easily and learn just what they want just when they want it. They need books that aid them in
action. The books in this series are designed for such readers.

About the Cover Illustration
The figure on the cover of Windows PowerShell in Action, Third Edition is a “Mufti,” the chief
of religion or the chief scholar who interpreted the religious law and whose pronouncements on
matters both large and small were binding to the faithful. The illustration is taken from a
collection of costumes of the Ottoman Empire published on Jan. 1, 1802, by William Miller of
Old Bond Street, London. The title page is missing from the collection and we have been unable
to track it down to date. The book’s table of contents identifies the figures in both English and
French, and each illustration bears the names of two artists who worked on it, both of whom
would no doubt be surprised to find their art gracing the front cover of a computer programming
book ... two hundred years later.

The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage”
on West 26th Street in Manhattan. The seller was an American based in Ankara, Turkey, and the
transaction took place just as he was packing up his stand for the day. The Manning editor did
not have on his person the substantial amount of cash that was required for the purchase and a
credit card and check were both politely turned down. With the seller flying back to Ankara that
evening the situation was getting hopeless. What was the solution? It turned out to be nothing
more than an old-fashioned verbal agreement sealed with a handshake. The seller simply
proposed that the money be transferred to him by wire and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless to say, we
transferred the funds the next day, and we remain grateful and impressed by this unknown
person’s trust in one of us. It recalls something that might have happened a long time ago.

The pictures from the Ottoman collection, like the other illustrations that appear on our covers,
bring to life the richness and variety of dress customs of two centuries ago. They recall the sense
of isolation and distance of that period—and of every other historic period except our own
hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich at the time, has faded
away. It is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to
view it optimistically, we have traded a cultural and visual diversity for a more varied personal
life. Or a more varied and interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer
business with book covers based on the rich diversity of regional life of two centuries ago—
brought back to life by the pictures from this collection.

Chapter 1. Welcome to PowerShell
This chapter covers

Core concepts
Aliases and elastic systems
Parsing and PowerShell
Pipelines
Formatting and output

Vizzini: Inconceivable!

Inigo: You keep on using that word. I do not think it means what you think it means.

William Goldman, The Princess Bride

It may seem strange to start by welcoming you to PowerShell when PowerShell is ten years old
(at the time of writing), is on its fifth version, and you’re reading the third edition of this book.

Note

PowerShell v6 is under development as we write this. The appendix covers the changes that this
new version will introduce.

In reality the adoption of PowerShell is only now achieving significant momentum, meaning that
to many users PowerShell is a new technology and the three versions of PowerShell subsequent
to this book’s second edition contain many new features. Welcome to PowerShell.

Note

This book is written using PowerShell v5. It’ll be noted in the text where earlier versions are
different, or work in a different manner. We’ll also document when various features were
introduced to PowerShell or significantly modified between versions. We treat v5 and v5.1
together as v5 as the differences are relatively minor.

Windows PowerShell is the command and scripting language from Microsoft built into all
versions of Windows since Windows Server 2008. Although PowerShell is new and different (or
has new features you haven’t yet explored), it’s been designed to make use of what you already
know, making it easy to learn. It’s also designed to allow you to learn a bit at a time.

Running PowerShell commands

You have two choices for running the examples provided in this book. First is to use the

(1)

PowerShell console. This provides a command-line interface. It’s the tool of choice for
interactive work.

The second choice is the PowerShell Integrated Scripting Environment (ISE). The ISE supplies
an editing pane plus a combined output and interactive pane. The ISE is the tool of choice when
developing scripts, functions, and other advanced functionality.

The examples in the book will be written in a way that allows pasting directly into either tool.

Third-party tools exist, such as those supplied by Sapien, but we’ll only consider the native tools
in this book.

Starting at the beginning, here’s the traditional “Hello world” program in PowerShell:

'Hello world.'

But “Hello world” itself isn’t interesting. Here’s something a bit more complicated:

Get-ChildItem -Path $env:windir*.log |

Select-String -List error |

Format-Table Path,LineNumber –AutoSize

Although this is more complex, you can probably still figure out what it does. It searches all the
log files in the Windows directory, looking for the string “error”, and then prints the full name of
the matching file and the matching line number. “Useful, but not special,” you might think,
because you can easily do this using cmd.exe on Windows or bash on UNIX. What about the “big,
really big” thing? Well, how about this example:

([xml] [System.Net.WebClient]::new().

 DownloadString('http://blogs.msdn.com/powershell/rss.aspx')).

 RSS.Channel.Item |

 Format-Table title,link

Now we’re getting somewhere. This script downloads the RSS feed from the PowerShell team
blog and then displays the title and a link for each blog entry. By the way, you weren’t expected
to figure out this example yet. If you did, you can move to the head of the class!

One last example:

using assembly System.Windows.Forms

using namespace System.Windows.Forms

$form = [Form] @{

 Text = 'My First Form'

}

$button = [Button] @{

 Text = 'Push Me!'

 Dock = 'Fill'

}

$button.add_Click{

 $form.Close()

}

$form.Controls.Add($button)

$form.ShowDialog()

This script uses the Windows Forms library (WinForms) to build a GUI that has a single button
displaying the text “Push Me!” Figure 1.1 shows the window this script creates.

Figure 1.1. When you run the code from the example, this window will be displayed.

(2)

When you click the button, it closes the form and exits the script. With this you go from "Hello
world" to a GUI application in less than two pages.

Let’s come back down to Earth for a minute. The intent of chapter 1 is to set the stage for
understanding PowerShell—what it is, what it isn’t, and, almost as important, why the
PowerShell team made the decisions they made in designing the PowerShell language. Chapter 1
covers the goals of the project, along with some of the major issues the team faced in trying to
achieve those goals. First, a philosophical digression: while under development, from 2002 until
the first public release in 2006, the codename for this project was Monad. The name Monad
comes from The Monadology by Gottfried Wilhelm Leibniz, one of the inventors of calculus.
Here’s how Leibniz defined the Monad:

The Monad, of which we shall here speak, is nothing but a simple substance, which enters
into compounds. By “simple” is meant “without parts.”

Gottfried Wilhelm Leibniz, The Monadology (translated by Robert Latta)

In The Monadology, Leibniz describes a world of irreducible components from which all things
could be composed. This captures the spirit of the project: to create a toolkit of simple pieces you
compose to create complex solutions.

(3)

1.1. What is PowerShell?

What is PowerShell, and what can you do with it? Ask a group of PowerShell users and you’ll
get different answers:

PowerShell is a command-line shell.
PowerShell is a scripting environment.
PowerShell is an automation engine.

These are all part of the answer. We prefer to say PowerShell is a tool you can use to manage
your Microsoft-based machines and applications that programs consistency into your
management process. The tool is attractive to administrators and developers in that it can span
the range of command line, simple and advanced scripts, to real programs.

Note

If you take this to mean PowerShell is the ideal DevOps tool for the Microsoft platform, then
congratulations—you’ve got it in one.

PowerShell draws heavily from existing command-line shell and scripting languages, but the
language, runtime, and subsequent additions, such as PowerShell Workflows and Desired State
Configuration, were designed from scratch to be an optimal environment for the modern
Windows operating system.

Most people are introduced to PowerShell through its interactive aspects. Let’s refine our
definitions of shell and scripting.

1.1.1. Shells, command lines, and scripting languages

In the previous section we called PowerShell a command-line shell. You may be asking, what’s a
shell? And how’s it different from a command interpreter? What about scripting languages? If
you can script in a shell language, doesn’t that make it a scripting language? In answering these
questions, let’s start with shells.

Defining a shell can be tricky because pretty much everything at Microsoft has something called
a shell. Windows Explorer is a shell. Visual Studio has a component called a shell. Heck, even
the Xbox has something called a shell.

Historically, the term shell describes the piece of software that sits over an operating system’s
core functionality. This core functionality is known as the operating system kernel (shell ...
kernel ... get it?). A shell is the piece of software that lets you access the functionality provided
by the operating system. For our purposes, we’re more interested in the traditional text-based
environment where the user types a command and receives a response. Put another way, a shell
is a command-line interpreter. The two terms can be used for the most part interchangeably.

Scripting languages vs. shells

(4)

If this is the case, what’s scripting and why are scripting languages not shells? To some extent,
there’s no difference. Many scripting languages have a mode in which they take commands from
the user and then execute those commands to return results. This mode of operation is called a
read-evaluate-print loop, or REPL. In what way is a scripting language with a REPL not a shell?
The difference is mainly in the user experience. A proper command-line shell is also a proper UI.
As such, a command line has to provide a number of features to make the user’s experience
pleasant and customizable, including aliases (shortcuts for hard-to-type commands), wildcard
matching to avoid having to type out full names, and the ability to start other programs easily.
Finally, commandline shells provide mechanisms for examining, editing, and re-executing
previously typed commands. These mechanisms are called command history.

If scripting languages can be shells, can shells be scripting languages? The answer is,
emphatically, yes. With each generation, the UNIX shell languages have grown increasingly
powerful. It’s possible to write substantial applications in a modern shell language, such as Bash
or Zsh. Scripting languages characteristically have an advantage over shell languages in that they
provide mechanisms to help you develop larger scripts by letting you break a script into
components, or modules. Scripting languages typically provide more sophisticated features for
debugging your scripts. Next, scripting language runtimes are implemented in a way that makes
their code execution more efficient, and scripts written in these languages execute more quickly
than they would in the corresponding shell script runtime. Finally, scripting language syntax is
oriented more toward writing an application than toward interactively issuing commands.

In the end, there’s no hard-and-fast distinction between a shell language and a scripting
language. Because PowerShell’s goal is to be both a good scripting language and a good
interactive shell, balancing the trade-offs between user experience and script authoring was one
of the major language design challenges.

Managing Windows through objects

Another factor that drove the need for a new shell model is, as Windows acquired more and more
subsystems and features, the number of issues users had to think about when managing a system
increased dramatically. To help users deal with this increase in complexity, the manageable
elements were factored into structured data objects. This collection of management objects is
known internally at Microsoft as the Windows Management Surface.

Note

Microsoft wasn’t the only company running into issues caused by increased complexity. Most
people in the industry were having this problem. This led to the Distributed Management Task
Force (dmtf.org), an industry organization, creating a standard for management objects called the
Common Information Model (CIM). Microsoft’s original implementation of this standard is
called Windows Management Instrumentation (WMI).

Although this factoring addressed overall complexity and worked well for GUIs, it made it much
harder to work with using a traditional text-based shell environment.

Windows is an API-driven operating system, compared to UNIX and its derivatives, which are
document (or text) driven. You can administer UNIX by changing configuration files. In

(5)

Windows, you need to use the API, which means accessing properties and using methods on the
appropriate object.

Finally, as the power of the PC increased, Windows began to move off the desktop and into the
corporate datacenter. In the corporate datacenter, there were a large number of servers to
manage, and the graphical point-and-click management approach didn’t scale. All these elements
combined to make it clear Microsoft could no longer ignore the command line.

Now that you grasp the environmental forces that led to the creation of PowerShell—the need for
command-line automation in a distributed object-based operating environment—let’s look at the
form the solution took.

(6)

1.2. PowerShell example code

We’ve said PowerShell is for solving problems that involve writing code. By now you’re
probably asking “Dude! Where’s my code?” Enough talk, let’s see some example code! First,
we’ll revisit the Get-ChildItem example. This time, instead of displaying the directory listing,
you’ll save it into a file using output redirection like in other shell environments. In the following
example, you’ll use Get-ChildItem to get information about a file named somefile.txt in the root
of the C: drive. Using redirection, you’ll direct the output into a new file, c:\foo.txt, and then use
the type command to display what was saved. Here’s what this looks like:

PS> Get-ChildItem -Path C:\somefile.txt

 Directory: C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 29/05/2017 13:58 25424 somefile.txt

Note

PowerShell has aliases for many cmdlets so dir C:\somefile.txt and ls C:\somefile.txt would
both work. It is best practice to reserve aliases for interactive usage and not use them in scripts.
We’ll usually use the full cmdlet name but may occasionally use aliases to save space.

Next, instead of displaying the directory listing, you’ll save it into a file using output redirection
as in other shell environments. In the following example, you’ll get information about a file
named somefile.txt in the root of the C: drive. Using redirection, you direct the output into a new
file, c:\foo.txt, and then use the Get-Content (you can use the alias of cat or type if you prefer)
command to display what was saved. Here’s what this looks like:

PS> Get-ChildItem -Path C:\somefile.txt > c:\foo.txt

PS> Get-Content -Path C:\foo.txt

 Directory: C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 29/05/2017 13:58 25424 somefile.txt

As you can see, commands work more or less as you’d expect. Let’s go over other things that
should be familiar to you.

Note

On your system choose any file that exists and the example will work fine, though obviously, the
output will be different.

1.2.1. Navigation and basic operations

(7)

The PowerShell commands for working with the file system should be pretty familiar to most
users. You navigate around the file system with the cd (alias for Set-Location) command. Files
are copied with the copy or cp (aliases for Copy-Item) commands, moved with the move and mv
(aliases for Move-Item) commands, and removed with the del or rm (aliases for Remove-Item)
commands. Why two of each command? One set of names is familiar to cmd.exe/DOS users and
the other is familiar to UNIX users. In practice, they’re aliases for the same command, designed
to make it easy for people to get going with PowerShell.

Note

In PowerShell v6 Core on Linux or macOS these common aliases have been removed to prevent
conflict with native commands on Linux and macOS. The aliases are present in the Windows
versions of PowerShell v6 Core.

Keep in mind that, although the commands are similar, they’re not exactly the same as either of
the other two systems. You can use the Get-Help command to get help about these commands.
Here’s the output of Get-Help for the dir command:

PS> Get-Help dir

NAME

 Get-ChildItem

SYNOPSIS

 Gets the items and child items in one or more specified locations.

SYNTAX

 Get-ChildItem [[-Filter] <String>] [-Attributes {ReadOnly |

 Hidden | System | Directory | Archive | Device | Normal |

 Temporary | SparseFile | ReparsePoint | Compressed | Offline | NotContentIndexed | Encrypted

|IntegrityStream | NoScrubData}]

[-Depth <UInt32>] [-Directory] [-Exclude <String[]>] [-File]

[-Force] [-Hidden][-Include <String[]>] -LiteralPath <String[]>

[-Name] [-ReadOnly] [-Recurse] [-System] [-UseTransaction] [<CommonParameters>]

 Get-ChildItem [[-Path] <String[]>] [[-Filter] <String>]

[-Attributes {ReadOnly | Hidden | System | Directory |

Archive | Device | Normal | Temporary | SparseFile |

ReparsePoint | Compressed | Offline | NotContentIndexed |

Encrypted | IntegrityStream | NoScrubData}] [-Depth <UInt32>]

[-Directory] [-Exclude <String[]>] [-File] [-Force]

[-Hidden] [-Include <String[]>] [-Name] [-ReadOnly] [-Recurse]

[-System] [-UseTransaction] [<CommonParameters>]

DESCRIPTION

 The Get-ChildItem cmdlet gets the items in one or more specified

 locations. If the item is a container, it gets the items inside the

 container, known as child items. You can use the Recurse parameter to get

 items in all child containers.

 A location can be a file system location, such as a directory, or a

 location exposed by a different Windows PowerShell provider, such as a

 registry hive or a certificate store.

RELATED LINKS

 Online Version: http://go.microsoft.com/fwlink/?LinkId=821580

 Get-Item

 Get-Location

 Get-Process

 Get-PSProvider

REMARKS

(8)

 To see the examples, type: "get-help Get-ChildItem -examples".

 For more information, type: "get-help Get-ChildItem -detailed".

 For technical information, type: "get-help Get-ChildItem -full".

For online help, type "get-help Get-ChildItem -online"PowerShell help system

PowerShell help system

The PowerShell help subsystem contains information about all the commands provided with the
system and is a great way to explore what’s available.

In PowerShell v3 and later, help files aren’t installed by default. Help has become updatable and
you need to install the latest versions yourself. See Get-Help about_Updatable_Help.

You can even use wildcard characters to search through the help topics (v2 and later). This is the
simple text output. The PowerShell ISE also includes help in the richer Windows format and will
let you choose an item and then press F1 to view the help for the item. By using the –Online
option to Get-Help, you can view the help text for a command or topic using a web browser.

PS> Get-Help Get-ChildItem

displays the information in the help file stored locally.

PS> Get-Help Get-ChildItem -Online

displays the online version of the help file.

Using the -Online option is the best way to get help because the online documentation is
constantly being updated and corrected, whereas the local copies aren’t.

1.2.2. Basic expressions and variables

In addition to running commands, PowerShell can evaluate expressions. In effect, it operates as a
kind of calculator. Let’s evaluate a simple expression:

PS> 2+2

4

Notice as soon as you typed the expression, the result was calculated and displayed. It wasn’t
necessary to use any kind of print statement to display the result. It’s important to remember
whenever an expression is evaluated, the result of the expression is output, not discarded.
PowerShell supports most of the basic arithmetic operations you’d expect, including floating
point.

You can save the output of an expression to a file by using the redirection operator:

PS> (2+2)*3/7 > c:\foo.txt

PS> Get-Content c:\foo.txt

1.71428571428571

Saving expressions into files is useful; saving them in variables is more useful:

PS> $n = (2+2)*3

PS> $n

12

PS> $n / 7

(9)

www.allitebooks.com

http://www.allitebooks.org

1.71428571428571

Variables can also be used to store the output of commands:

PS> $files = Get-ChildItem

PS> $files[1]

 Directory: C:\Users\Richard\Documents

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 16/02/2017 18:36 Custom Office Templates

In this example, you extracted the second element of the collection of file information objects
returned by the Get-ChildItem command. You were able to do this because you saved the output
of the Get-ChildItem command as an array of objects in the $files variable.

Note

Collections in PowerShell start at 0, not 1. This is a characteristic we’ve inherited from .NET.
This is why $files[1] extracts the second element, not the first.

Given PowerShell is all about objects, the basic operators need to work on more than numbers.
Chapters 3 and 4 cover these features in detail.

1.2.3. Processing data

As you’ve seen, you can run commands to get information, perform some basic operations on
this information using the PowerShell operators, and then store the results in files and variables.
Let’s look at additional ways you can process this data. First, you’ll see how to sort objects and
how to extract properties from those objects. Then we’ll look at using the PowerShell flow-
control statements to write scripts that use conditionals and loops to do more sophisticated
processing.

Sorting objects

First, sort the list of file information objects returned by Get-ChildItem. Because you’re sorting
objects, the command you’ll use is Sort-Object. For convenience, you’ll use the shorter alias sort
in these examples. Start by looking at the default output, which shows the files sorted by
filename:

PS> cd c:\files

PS> Get-ChildItem

 Directory: C:\files

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 21/01/2015 18:10 9 File 1.txt

-a--- 11/07/2015 15:14 15986 File 2.txt

-a--- 21/01/2015 18:10 9 File 3.txt

-a--- 21/01/2015 18:10 9 File 4.txt

The output shows the basic properties on the file system objects, sorted by filename. Now sort by

(10)

filename in descending order:

PS> Get-ChildItem | sort -Descending

 Directory: C:\files

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 21/01/2015 18:10 9 File 4.txt

-a--- 21/01/2015 18:10 9 File 3.txt

-a--- 11/07/2015 15:14 15986 File 2.txt

-a--- 21/01/2015 18:10 9 File 1.txt

There you have it—files sorted by filename in reverse order. Now you’ll sort by something other
than the filename: file length.

Note

Many examples in this book use aliases (shortcuts) rather than the full cmdlet name. This is for
brevity and to ensure the code fits neatly in the page.

In PowerShell, when you use the Sort-Object cmdlet (alias sort), you don’t have to tell it to sort
numerically—it already knows the type of the field, and you can specify the sort key by property
name instead of a numeric field offset. The result looks like this:

PS> Get-ChildItem | sort -Property length

 Directory: C:\files

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 21/01/2015 18:10 9 File 3.txt

-a--- 21/01/2015 18:10 9 File 4.txt

-a--- 21/01/2015 18:10 9 File 1.txt

-a--- 11/07/2015 15:14 15986 File 2.txt

This illustrates what working with pipelines of objects gives you:

You have the ability to access data elements by name instead of using substring indexes or
field numbers.
By having the original type of the element preserved, operations execute correctly without
you having to provide additional information.

Now let’s look at other things you can do with objects.

Selecting properties from an object

In this section we’ll introduce another cmdlet for working with objects: Select-Object. This
cmdlet allows you to select a subrange of the objects piped into it and specify a subset of the
properties on those objects.

Say you want to get the largest file in a directory and put it into a variable:

PS> $a = Get-ChildItem | sort -Property length -Descending |

Select-Object -First 1

PS> $a

(11)

 Directory: C:\files

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 11/07/2015 15:14 15986 File 2.txt

Note

You’ll notice the secondary prompt >> when you copy the previous example into a PowerShell
console. The first line of the command ended in a pipe symbol. The PowerShell interpreter
noticed this, saw the command was incomplete, and prompted for additional text to complete the
command. Once the command is complete, you type a second blank line to send the command to
the interpreter. If you want to cancel the command, you can press Ctrl-C at any time to return to
the normal prompt. The code examples in the book won’t include the >> to make copying from
the electronic version simpler for the reader.

Now say you want only the name of the directory containing the file and not all the other
properties of the object. You can also do this with Select-Object (alias select). As with the Sort-
Object cmdlet, Select-Object takes a -Property parameter (you’ll see this frequently in the
PowerShell environment—commands are consistent in their use of parameters):

PS> $a = Get-ChildItem| sort -Property length -Descending |

Select-Object -First 1 -Property Directory

PS> $a

Directory

C:\files

You now have an object with a single property.

Processing with the ForEach-Object cmdlet

The final simplification is to get the value itself. We’ll introduce a new cmdlet that lets you do
arbitrary processing on each object in a pipeline. The ForEach-Object cmdlet executes a block of
statements for each object in the pipeline. You can get an arbitrary property out of an object and
then do arbitrary processing on that information using the ForEach-Object command. Here’s an
example that adds up the lengths of all the objects in a directory:

PS> $total = 0

PS> Get-ChildItem | ForEach-Object {$total += $_.length }

PS> $total

16013

In this example you initialize the variable $total to 0, then add to it the length of each file
returned by the Get-ChildItem command, and display the total (you’ll get a different total on your
system).

Processing other kinds of data

One of the great strengths of the PowerShell approach is once you learn a pattern for solving a
problem, you can use this same pattern over and over again. Say you want to find the largest
three files in a directory. The command line might look like this:

(12)

PS> Get-ChildItem | sort -Descending length | select -First 3

Here, the Get-ChildItem command retrieved the list of file information objects, PowerShell then
sorted them in descending order by length, and then selected the first three results to get the three
largest files.

Now let’s tackle a different problem. You want to find the three processes on the system with the
largest working set size. Here’s what this command line looks like:

PS> Get-Process | sort -Descending ws | select -First 3

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 1337 1916 235360 287852 1048 63.23 2440 WWAHost

 962 55 94460 176008 692 340.25 6632 WINWORD

 635 40 136040 140088 783 6.42 2564 powershell

This time you run Get-Process to get data about the processes on this computer, and sort on the
working set instead of the file size. Otherwise, the pattern is identical to the previous example.
This command pattern can be applied over and over.

Note

Because of the ability to apply a command pattern repeatedly, most of the examples in this book
are deliberately generic. The intent is to highlight the pattern of the solution rather than show a
specific example. Once you understand the basic patterns, you can effectively adapt them to
solve a multitude of other problems.

1.2.4. Flow-control statements

Pipelines are great, but sometimes you need more control over the flow of your script.
PowerShell has the usual flow-control statements found in most programming languages. These
include the basic if statements, a powerful switch statement, and loops like while, for and
foreach, and so on. Here’s an example showing the while and if statements:

PS> $i=0

PS> while ($i++ -lt 10) { if ($i % 2) {"$i is odd"}}

1 is odd

3 is odd

5 is odd

7 is odd

9 is odd

This example uses the while loop to count through a range of numbers, printing only the odd
numbers. In the body of the while loop is an if statement that tests to see whether the current
number is odd, and then writes a message if it is. You can do the same thing using the foreach
statement and the range operator (..), but much more succinctly:

PS> foreach ($i in 1..10) { if ($i % 2) {"$i is odd"}}

The foreach statement iterates over a collection of objects, and the range operator is a way to
generate a sequence of numbers. The two combine to make looping over a sequence of numbers
a very clean operation.

(13)

Because the range operator generates a sequence of numbers, and numbers are objects like
everything else in PowerShell, you can implement this using pipelines and the ForEach-Object
(alias foreach) cmdlet:

PS> 1..10 | foreach { if ($_ % 2) {"$_ is odd"}}

These examples only scratch the surface of what you can do with the PowerShell flow-control
statements. (Wait until you see the switch statement!) The complete set of control structures is
covered in detail in chapter 5 with lots of examples.

1.2.5. Scripts and functions

What good is a scripting language if you can’t package commands into scripts? PowerShell lets
you do this by putting your commands into a text file with a .ps1 extension and then running that
command. You can even have parameters in your scripts. Put the following text into a file called
hello.ps1:

param($name = 'bub')

"Hello $name, how are you?"

Notice the param keyword is used to define a parameter called $name. The parameter is given a
default value of 'bub'. Now you can run this script from the PowerShell prompt by typing the
name as .\hello. You need the .\ to tell PowerShell to get the command from the current
directory.

Note

Before you can run scripts on a machine in the default configuration, you’ll have to change the
PowerShell execution policy to allow scripts to run. Use Get-Help about_execution_policies to
view detailed instructions on execution policies. The default settings change between Windows
versions, so be careful to check the execution policy setting.

The first time you run this script, you won’t specify any arguments:

PS> .\hello

Hello bub, how are you?

You see the default value was used in the response. Run it again, but this time specify an
argument:

PS> .\hello Bruce

Hello Bruce, how are you?

Now the argument is in the output instead of the default value. Sometimes you want to have
subroutines in your code. PowerShell addresses this need through functions. Let’s turn the hello
script into a function. Here’s what it looks like:

function hello {

param($name = "bub")

"Hello $name, how are you"

}

(14)

The body of the function is exactly the same as the script. The only thing added is the function
keyword, the name of the function, and braces around the body of the function. Now run it, first
with no arguments as you did with the script

PS> hello

Hello bub, how are you

and then with an argument:

PS> hello Bruce

Hello Bruce, how are you

Obviously, the function operates in the same way as the script, except PowerShell didn’t have to
load it from a disk file, making it a bit faster to call. Scripts and functions are covered in detail in
chapter 6.

1.2.6. Remote administration

In the previous sections, you’ve seen the kinds of things you can do with PowerShell on a single
computer, but the computing industry has long since moved beyond a one-computer world.
Being able to manage groups of computers, without having to physically visit each one, is critical
in the modern cloud-orientated IT world where your server may easily be on another continent.
To address this, PowerShell has built-in remote execution capabilities (remoting) and an
execution model that ensures if a command works locally it should also work remotely.

Note

Remoting was introduced in PowerShell v2. It isn’t available in PowerShell v1.

The core of PowerShell remoting is Invoke-Command (aliased to icm). This command allows you to
invoke a block of PowerShell script on the current computer, on a remote computer, or on a
thousand remote computers. Let’s see some of this in action. Microsoft releases patches for
Windows on a regular basis. Some of those patches are critical, in that they resolve security-
related issues, and as an administrator you need to be able to test if the patch has been applied to
the machines for which you’re responsible. Checking a single machine is relatively easy—you
can use the Windows update option in the control panel and view the installed updates as shown
in figure 1.2.

Figure 1.2. Viewing the installed updates on the local (Windows Server 2012 R2) machine

(15)

Alternatively, you can use the Get-HotFix cmdlet:

PS> Get-HotFix -Id KB3213986

Source Description HotFixID InstalledBy InstalledOn

------ ----------- -------- ----------- -----------

W510W16 Security Update KB3213986 NT AUTHORITY\SYSTEM 12/01/2017 00:00:00

This shows you the hotfix is installed on the local machine.

Note

Updates for Windows 10 and Windows Server 2016 tend to be cumulative so your machine may
not have KB3213986 installed.

But what about all your other machines? Connecting to each one individually and using the
control panel or running the Get-HotFix cmdlet is tedious. You need a method of running the
cmdlet on remote machines and having the results returned to your local machine.

Invoke-Command is used to wrap the previous command:

PS> Invoke-Command -ScriptBlock {Get-HotFix -Id KB3213986} `

-ComputerName W16DSC01

Description : Security Update

HotFixID : KB3213986

InstalledBy : NT AUTHORITY\SYSTEM

InstalledOn : 11/01/2017 00:00:00

PSComputerName : W16DSC01

Note

Get-HotFix has a –ComputerName parameter, and, like many cmdlets, is capable of working directly
with remote machines. Cmdlet-based remoting often uses protocols other than WS-MAN. Using
Invoke-Command, as in a PowerShell remoting session, is more efficient, as you’ll see in chapter 11.

(16)

You have many machines that need testing. Typing in the computer names one at a time is still
too tedious. You can create a list of computers, either from a text file or in your code, and test
them all:

PS> $computers = 'W16DSC01', 'W16DSC02'

PS> Invoke-Command -ScriptBlock {Get-HotFix -Id KB3213986} `

-ComputerName $computers |

Format-Table HotFixId, InstalledOn, PSComputerName -AutoSize

HotFixID InstalledOn PSComputerName

-------- ----------- --------------

KB3213986 11/01/2017 00:00:00 W16DSC02

KB3213986 11/01/2017 00:00:00 W16DSC01

An error is generated on a computer that doesn’t have the patch installed, and results appear on
the computers that do.

Note

In a production script you’d put error handling in place to catch the error and report that the
patch wasn’t installed. This will be covered in chapter 14.

Invoke-Command is the way to programmatically execute PowerShell commands on a remote
machine. When you want to connect to a machine to interact with it on a one-to-one basis, you
use the Enter-PSSession command. This command allows you to start an interactive one-to-one
session with a remote computer. Running Enter-PSSession looks like this:

PS> Enter-PSSession -ComputerName W16DSC01

[W16DSC01]: PS C:\Users\Richard\Documents> Get-HotFix -Id KB3213986 | Format-Table -AutoSize

Source Description HotFixID InstalledBy InstalledOn

------ ----------- -------- ----------- -----------

W16DSC01 Security Update KB3213986 NT AUTHORITY\SYSTEM 11/01/2017 00:00:00

[W16DSC01]: PS C:\Users\Richard\Documents> Get-Date

05 March 2017 15:35:07

[W16DSC01]: PS C:\Users\Richard\Documents> Exit-PSSession

PS>

When you connect to the remote computer, your prompt changes to indicate you’re working
remotely. Once connected, you can interact with the remote computer the same way you would a
local machine. When you’re done, exit the remote session with the Exit-PSSession command,
which returns you to the local session. This brief introduction covers some powerful techniques,
but we’ve only begun to cover all the things remoting lets you do.

At this point, we’ll end our “cook’s tour” of PowerShell. We’ve only breezed over the features
and capabilities of the environment. In upcoming chapters, we’ll explore each of the elements
discussed here in detail and a whole lot more.

(17)

1.3. Core concepts

The core PowerShell language is based on the mature IEEE standard POSIX 1003.2 grammar for
the Korn shell, which has a long history as a successful basis for modern shells like Bash and
Zsh. The language design team (Jim Truher and Bruce Payette) deviated from this standard
where necessary to address the specific needs of an object-based shell and to make it easier to
write sophisticated scripts.

PowerShell syntax is aligned with C#. The major value this brings is PowerShell code can be
migrated to C# when necessary for performance improvements, and, more importantly, C#
examples can be easily converted to PowerShell—the more examples you have in a language, the
better off you are.

1.3.1. Command concepts and terminology

Much of the terminology used in PowerShell will be familiar if you’ve used other shells in the
Linux or Windows world. Because PowerShell is a new kind of shell, there are a number of
terms that are different and a few new terms to learn. In this section, we’ll go over the
PowerShell-specific concepts and terminology for command types and command syntax.

1.3.2. Commands and cmdlets

Commands are the fundamental part of any shell language; they’re what you type to get things
done. A simple command looks like this:

command –parameter1 –parameter2 argument1 argument2

A more detailed illustration of the anatomy of this command is shown in figure 1.3. This figure
calls out all the individual elements of the command.

Figure 1.3. The anatomy of a basic command. It begins with the name of the command, followed by parameters.
These may be switch parameters that take no arguments, regular parameters that take arguments, or positional
parameters where the matching parameter is inferred by the argument’s position on the command line.

All commands are broken down into the command name, the parameters specified to the
command, and the arguments to those parameters. You can think of a parameter as the receiver
of a piece of information and the argument as the information itself.

(18)

Note

The distinction between parameter and argument may seem a bit strange from a programmer’s
perspective. If you’re used to languages such as Python and Visual Basic, which allow for
keyword parameters, PowerShell parameters correspond to the keywords, and arguments
correspond to the values.

The first element in the command is the name of the command to be executed. The PowerShell
interpreter looks at this name and determines which command to run, and which kind of
command to run. In PowerShell there are a number of categories of commands: cmdlets, shell
function commands, script commands, workflow commands, and native Windows commands.
Following the command name come zero or more parameters and/or arguments. A parameter
starts with a dash followed by the name of the parameter. An argument, conversely, is the value
that will be associated with, or bound to, a specific parameter. Let’s look at an example:

PS> Write-Output -InputObject Hello

Hello

Here, the command is Write-Output, the parameter is -InputObject, and the argument is Hello.

What about the positional parameters? When a PowerShell command is created, the author of
that command specifies information that allows PowerShell to determine which parameter to
bind an argument to, even if the parameter name itself is missing. For example, the Write-Output
command has been defined such that the first parameter is -InputObject. This lets you write:

PS> Write-Output Hello

Hello

The piece of the PowerShell interpreter that figures all this out is called the parameter binder.
The parameter binder is smart—it doesn’t require you to specify the full name of a parameter as
long as you specify enough for it to uniquely distinguish what you mean.

Note

PowerShell isn’t case-sensitive but we use the correct casing on commands and parameters to aid
reading. It’s also a good practice when scripting, as it’s easier to understand the code when you
revisit it many months later.

What else does the parameter binder do? It’s in charge of determining how to match the types of
arguments to the types of parameters. Remember PowerShell is an object-based shell. Everything
in PowerShell has a type. PowerShell uses a fairly complex type-conversion system to correctly
put things together. When you type a command at the command line, you’re typing strings. What
happens if the command requires a different type of object? The parameter binder uses the type
converter to try to convert that string into the correct type for the parameter. If you use a value
that can’t be converted to the correct type you get an error message explaining the type
conversion failed. We discuss this in more detail in chapter 2 when we talk about types.

(19)

What happens if the argument you want to pass to the command starts with a dash? This is where
the quotes come in. Let’s use Write-Output to print out the string “-InputObject”:

PS> Write-Output -InputObject "-InputObject"

-InputObject

And it works as desired. Alternatively, you could type this:

PS> Write-Output "-InputObject"

-InputObject

The quotes keep the parameter binder from treating the quoted string as a parameter.

Another, less frequently used way of doing this is by using the special “end-of-parameters”
parameter, which is two hyphens back to back (--). Everything after this sequence will be treated
as an argument, even if it looks like a parameter. For example, using -- you can also write out
the string “-InputObject” without using quotes:

PS> Write-Output -- -InputObject

-InputObject

This is a convention standardized in the POSIX Shell and Utilities specification.

The final element of the basic command pattern is the switch parameter. These are parameters
that don’t require an argument. They’re usually either present or absent (obviously they can’t be
positional). A good example is the -Recurse parameter on the Get-ChildItem command. This
switch tells the Get-ChildItem command to display files from a specified directory as well as all
its subdirectories:

PS> Get-ChildItem -Recurse -Filter c*d.exe C:\Windows

 Directory: C:\Windows\System32

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 11/11/2016 09:56 187520 CloudStorageWizard.exe

-a---- 16/07/2016 12:42 232960 cmd.exe

As you can see, the -Recurse switch takes no arguments. We’ve only shown the first folder’s
worth of results for brevity.

Note

Although it’s almost always the case that switch parameters don’t take arguments, it’s possible to
specify arguments to them. We’ll save our discussion of when and why you might do this for
chapter 7, which focuses on scripts (shell functions and scripts are the only time you need this
particular feature, and we’ll keep you in suspense for the time being).

Now that we’ve covered the basic anatomy of the command line, let’s go over the types of
commands that PowerShell supports.

1.3.3. Command categories

(20)

As we mentioned earlier, there are four categories of commands in PowerShell: cmdlets,
functions, scripts, and native Win32 executables. PowerShell v4, and later, also has
configurations (see chapter 18).

Cmdlets

The first category of command is a cmdlet (pronounced “command-let”). Cmdlet is a term that’s
specific to the PowerShell environment. A cmdlet is implemented by a .NET class that derives
from the Cmdlet base class in the PowerShell Software Developers Kit (SDK).

Note

Building cmdlets is a developer task and requires the PowerShell SDK. This SDK is freely
available for download from Microsoft and includes extensive documentation along with many
code samples. Our goal is to coach you to effectively use and script in the PowerShell
environment, so we’re not going to do much more than mention the SDK in this book.

This category of command is compiled into a dynamic link library (DLL) and then loaded into
the PowerShell process, usually when the shell starts up. Because the compiled code is loaded
into the process, it’s the most efficient category of command to execute.

Cmdlets always have names of the form Verb-Noun, where the verb specifies the action and the
noun specifies the object on which to operate. In traditional shells, cmdlets correspond most
closely to what’s usually called a built-in command. In PowerShell, though, anybody can add a
cmdlet to the runtime, and there isn’t any special class of built-in commands.

Functions

The next type of command is a function. This is a named piece of PowerShell script code that
lives in memory as the interpreter is running, and is discarded on exit. Functions consist of user-
defined code that’s parsed when defined. This parsed representation is preserved so it doesn’t
have to be reparsed every time it’s used.

Functions in PowerShell v1 could have named parameters like cmdlets but were otherwise fairly
limited. In v2 and later, this was fixed, and scripts and functions now have the full parameter
specification capabilities of cmdlets. The same basic structure is followed for both types of
commands. Functions and cmdlets have the same streaming behavior.

PowerShell workflows were introduced in PowerShell v3. Their syntax is similar to that of a
function. When the workflow is first loaded in memory a PowerShell function is created that can
be viewed through the function: PowerShell drive. Workflows are covered in chapter 12.

Scripts

A script command is a piece of PowerShell code that lives in a text file with a .ps1 extension.
These script files are loaded and parsed every time they’re run, making them somewhat slower
than functions to start (although once started, they run at the same speed). In terms of parameter

(21)

capabilities, shell function commands and script commands are identical.

Native commands (applications)

The last type of command is called a native command. These are external programs (typically
executables) that can be executed by the operating system. Because running a native command
involves creating a whole new process for the command, native commands are the slowest of the
command types. Also, native commands do their own parameter processing and don’t
necessarily match the syntax of the other types of commands.

Native commands cover anything that can be run on a Windows computer, so you get a wide
variety of behaviors. One of the biggest issues is when PowerShell waits for a command to finish
but it keeps on going. Say you’re opening a text document at the command line:

PS> .\foo.txt

You get the prompt back more or less immediately, and your default text editor will pop up
(probably notepad.exe because that’s the default). The program to launch is determined by the file
associations that are defined as part of the Windows environment.

Note

In PowerShell, unlike in cmd.exe, you have to prefix a command with ./ or .\ if you want to run
it out of the current directory. This is part of PowerShell’s “Secure by Design” philosophy. This
particular security feature was adopted to prevent Trojan horse attacks where the user is lured
into a directory and then told to run an innocuous command such as notepad.exe. Instead of
running the system notepad.exe, they end up running a hostile program that the attacker has
placed in that directory and named notepad.exe.

What if you specify the editor explicitly?

PS> notepad foo.txt

The same thing happens—the command returns immediately. What if you run the command in
the middle of a pipeline?

PS> notepad foo.txt | sort-object

<exit notepad>

This time PowerShell waits for the command to exit before giving you the prompt. This can be
handy when you want to insert something such as a graphical form editor in the middle of a
script to do processing. This is also the easiest way to make PowerShell wait for a process to exit
(you can also use Wait-Process). As you can see, the behavior of native commands depends on
the type of native command, as well as where it appears in the pipeline.

A useful thing to remember is the PowerShell interpreter itself is a native command:
powershell.exe. This means you can call PowerShell from within PowerShell. When you do this,
a second PowerShell process is created. In practice, there’s nothing unusual about this—that’s
how all shells work. PowerShell doesn’t have to do it often, making it much faster than
conventional shell languages.

(22)

The ability to run a child PowerShell process is particularly useful if you want to have isolation
in portions of your script. A separate process means the child script can’t impact the caller’s
environment. This feature is useful enough that PowerShell has special handling for this case,
allowing you to embed the script to run inline. If you want to run a fragment of script in a child
process, you can by passing the block of script to the child process delimited by braces. Here’s
an example:

PS> powershell { Get-Process *ss } | Format-Table name, handles

Name Handles

---- -------

csrss 386

csrss 385

lsass 1778

smss 51

Two things should be noted in this example: the script code in the braces can be any PowerShell
code, and it will be passed through to the new PowerShell process. The special handling takes
care of encoding the script in such a way that it’s passed properly to the child process. The other
thing to note is, when PowerShell is executed this way, the output of the process is serialized
objects—the basic structure of the output is preserved—and can be passed into other commands.
We’ll look at this serialization in detail when we cover remoting—the ability to run PowerShell
scripts on a remote computer—in chapter 11.

Desired State Configuration

Desired State Configuration (DSC) is a configuration management platform in Windows
PowerShell. It enables the deployment and management of configuration data for software
services and the environment on which these services run. A configuration is created using
PowerShell-like syntax. The configuration is used to create a Managed Object Format (MOF)
file that’s passed to the remote machine on which the configuration will be applied. DSC is
covered in chapter 18.

Now that we’ve covered the PowerShell command types, let’s get back to looking at the
PowerShell syntax. Notice that a lot of what we’ve examined this far is a bit verbose. This makes
it easy to read, which is great for script maintenance, but it looks like it would be a pain to type
on the command line. PowerShell addresses these two conflicting goals—readability and
writeability—with the concept of elastic syntax. Elastic syntax allows you to expand and
collapse how much you need to type to suit your purpose. We’ll cover how this works in the next
section.

1.3.4. Aliases and elastic syntax

We haven’t talked about aliases yet or how they’re used to achieve an elastic syntax in
PowerShell. Because this concept is important in the PowerShell environment, we need to spend
some time on it.

The cmdlet Verb-Noun syntax, although regular, is, as we noted, also verbose. You may have
noticed that in some of the examples we’re using commands like dir and type. The trick behind
all this is aliases. The dir command is an alias for Get-ChildItem, and the type command is an
alias for Get-Content. You can see this by using Get-Command:

PS> Get-Command dir

(23)

CommandType Name

----------- ----

Alias dir -> Get-ChildItem

This tells you the command is an alias for Get-ChildItem. To get information about the Get-
ChildItem command, you then do this:

PS> Get-Command Get-ChildItem

CommandType Name Version Source

----------- ---- ------- ------

Cmdlet Get-ChildItem 3.1.0.0 Microsoft.PowerShell.Management

To see all the information, pipe the output of Get-Command into fl. This shows you the full detailed
information about this cmdlet. But wait—what’s the fl command? Again, you can use Get-
Command to find out:

PS> Get-Command fl

CommandType Name

----------- ----

Alias fl -> Format-List

PowerShell comes with a large set of predefined aliases. Two basic categories of aliases exist:
transitional and convenience. By transitional aliases, we mean a set of aliases that map
PowerShell commands to commands that people are accustomed to using in other shells,
specifically cmd.exe and the UNIX shells. For the cmd.exe user, PowerShell defines dir, type, copy,
and so on. For the UNIX user, PowerShell defines ls, cat, cp, and so forth. These aliases allow a
basic level of functionality for new users right away.

Note

PowerShell v6 for Linux and macOS removes these aliases to avoid confusion with native
commands.

Convenience aliases are derived from the names of the cmdlets they map to. Get-Command becomes
gcm, Get-ChildItem becomes gci, Invoke-Item becomes ii, and so on. For a list of the defined
aliases, type Get-Alias at the command line. You can use the Set-Alias command (the alias of
which is sal, by the way) to define your own aliases—many experienced PowerShell users create
a set of one-letter aliases to cover the cmdlets they most often use at the command prompt.

Note

Aliases in PowerShell are limited to aliasing the command name only. Unlike in other systems
such as Ksh, Bash, and Zsh, PowerShell aliases can’t include parameters. If you need to do
something more sophisticated than simple command-name translations, you’ll have to use shell
functions or scripts.

This is all well and good, but what does it have to do with elastics? Glad you asked! The idea is
PowerShell can be terse when needed and descriptive when appropriate. The syntax is concise

(24)

for simple cases and can be stretched like an elastic band for larger problems. This is important
in a language that’s both a command-line tool and a scripting language. Many scripts that you’ll
write in PowerShell will be no more than a few lines long. They will be a string of commands
that you’ll type on the command line and then never use again. To be effective in this
environment, the syntax needs to be concise. This is where aliases like fl come in—they allow
you to write concise command lines. When you’re scripting, though, it’s best to use the long
name of the command. Sooner or later, you’ll have to read the script you wrote (or worse,
someone else will). Would you rather read something that looks like this?

gcm|?{$_.parametersets.Count -gt 3}|fl name

or this?

Get-Command |

 Where-Object {$_.parametersets.count -gt 3} |

 Format-List name

We’d certainly rather read the latter. (As always, we’ll cover the details of these examples later
in the book.)

There’s a second type of alias used in PowerShell: parameter. Unlike command aliases, which
can be created by end users, parameter aliases are created by the author of a cmdlet, script, or
function. (You’ll see how to do this when we look at advanced function creation in chapter 7.)

A parameter alias is a shorter name for a parameter. Wait a second, earlier we said you needed
enough of the parameter name to distinguish it from other command parameters. Isn’t this
enough for convenience and elasticity? Why do you need parameter aliases? The reason you
need these aliases has to do with script versioning. The easiest way to understand versioning is to
look at an example.

Say you have a script that calls a cmdlet Process-Message. This cmdlet has a parameter -Reply.
You write your script specifying

Process-Message -Re

Run the script, and it works fine. A few months later, you install an enhanced version of the
Process-Message command. This new version introduces a new parameter: -Receive. Only
specifying -Re is no longer sufficient. If you run the old script with the new cmdlet, it will fail
with an ambiguous parameter message; the script is broken.

How do you fix this with parameter aliases? The first thing to know is PowerShell always picks
the parameter that exactly matches a parameter name or alias over a partial match. By providing
parameter aliases, you can achieve pithiness without also making scripts subject to versioning
issues. We recommend always using the full parameter name for production scripts or scripts you
want to share. Readability is always more important in that scenario.

Now that we’ve covered the core concepts of how commands are processed, let’s step back and
look at PowerShell language processing overall. PowerShell has a small number of important
syntactic rules you should learn. When you understand these rules, your ability to read, write,
and debug PowerShell scripts will increase tremendously.

(25)

1.4. Parsing the PowerShell language

In this section we’ll cover the details of how PowerShell scripts are parsed. Before the
PowerShell interpreter can execute the commands you type, it first has to parse the command
text and turn it into something the computer can execute, as shown in figure 1.4.

Figure 1.4. Flow of processing in the PowerShell interpreter, where an expression is transformed and then
executed to produce a result

More formally, parsing is the process of turning human-readable source code into a form the
computer understands. A piece of script text is broken up into tokens by the tokenizer (or lexical
analyzer, if you want to be more technical). A token is a particular type of symbol in the
programming language, such as a number, a keyword, or a variable. Once the raw text has been
broken into a stream of tokens, these tokens are processed into structures in the language through
syntactic analysis.

In syntactic analysis, the stream of tokens is processed according to the grammatical rules of the
language. In normal programming languages, this process is straightforward—a token always has
the same meaning. A sequence of digits is always a number; an expression is always an
expression, and so on. For example, the sequence

3 + 2

would always be an addition expression, and “Hello world” would always be a constant string.
Unfortunately, this isn’t the case in shell languages. Sometimes you can’t tell what a token is
except through its context. In the next section, we go into more detail on why this is, and how the
PowerShell interpreter parses a script.

Note

(26)

More information on this and the inner workings of PowerShell is available in the PowerShell
language specification at www.microsoft.com/en-us/download/details.aspx?id=36389. The
specification is currently only available up to PowerShell v3.

1.4.1. How PowerShell parses

For PowerShell to be successful as a shell, it can’t require that everything be quoted. PowerShell
would fail if it required people to continually type

cd ".."

or

copy "foo.txt" "bar.txt"

On the other hand, people have a strong idea of how expressions should work:

2

This is the number 2, not a string “2”. Consequently, PowerShell has some rather complicated
parsing rules, covered in the next three sections. We’ll discuss how quoting is handled, the two
major parsing modes, and the special rules for newlines and statement termination.

1.4.2. Quoting

Quoting is the mechanism used to turn a token that has special meaning to the PowerShell
interpreter into a simple string value. For example, the Write-Output cmdlet has a parameter -
InputObject. But what if you want to use the string “-InputObject” as an argument? To do this,
you have to quote it by surrounding it with single or double quotes:

PS> Write-Output '-InputObject'

-inputobject

If you hadn’t put the argument in quotes an error message would be produced indicating an
argument to the parameter -InputObject is required.

PowerShell supports several forms of quoting, each with somewhat different meanings (or
semantics). Putting single quotes around an entire sequence of characters causes them to be
treated like a single string. This is how you deal with file paths that have spaces in them, for
example. If you want to change to a directory the path of which contains spaces, you type this:

PS> Set-Location 'c:\program files'

PS> Get-Location

Path

C:\Program Files

When you don’t use the quotes, you receive an error complaining about an unexpected parameter
in the command because c:\program and files are treated as two separate tokens.

Note

(27)

http://www.microsoft.com/en-us/download/details.aspx?id=36389

Notice the error message reports the name of the cmdlet, not the alias used. This way you know
what’s being executed. The position message shows you the text that was entered so you can see
an alias was used.

One problem with using matching quotes as shown in the previous examples is you have to
remember to start the token with an opening quote. This raises an issue when you want to quote a
single character. You can use the backquote (`) character to do this (the backquote is usually the
upper-leftmost key, below Esc):

PS> Set-Location c:\program` files

PS> Get-Location

Path

C:\Program Files

The backquote, or backtick, as it tends to be called, has other uses that we’ll explore later in this
section. Now let’s look at the other form of matching quote: double quotes. You’d think it works
pretty much like the example with single quotes; what’s the difference? In double quotes,
variables are expanded. If the string contains a variable reference starting with a $, it will be
replaced by the string representation of the value stored in the variable. Let’s look at an example.
First assign the string “files” to the variable $v:

PS> $v = 'files'

Now reference that variable in a string with double quotes:

PS> Set-Location "c:\program $v"

PS> Get-Location

Path

C:\Program Files

The directory change succeeded and the current directory was set as you expected.

Note

Variable expansion only occurs with double quotes. A common beginner error is to use single
quotes and expect variable expansion to work.

What if you want to show the value of $v? To do this, you need to have expansion in one place
but not in the other. This is one of those other uses we had for the backtick. It can be used to
quote or escape the dollar sign in a double-quoted string to suppress expansion. Let’s try it:

PS> Write-Output "`$v is $v"

$v is files

Here’s one final tweak to this example—if $v contained spaces, you’d want to make clear what
part of the output was the value. Because single quotes can contain double quotes and double
quotes can contain single quotes, this is straightforward:

PS> Write-Output "`$v is '$v'"

$v is 'files'

(28)

Now, suppose you want to display the value of $v on another line instead of in quotes. Here’s
another situation where you can use the backtick as an escape character. The sequence `n in a
double-quoted string will be replaced by a newline character. You can write the example with the
value of $v on a separate line:

PS> "The value of `$v is:`n$v"

The value of $v is:

files

The list of special characters that can be generated using backtick (also called escape) sequences
can be found using Get-Help about_Escape_Characters. Note that escape sequence processing, like
variable expansion, is only done in double-quoted strings. In single-quoted strings, what you see
is what you get. This is particularly important when writing a string to pass to a subsystem that
does additional levels of quote processing.

1.4.3. Expression-mode and command-mode parsing

As mentioned earlier, because PowerShell is a shell, it has to deal with some parsing issues not
found in other languages. PowerShell simplifies parsing considerably, trimming the number of
modes down to two: expression and command.

In expression mode, the parsing is conventional: strings must be quoted, numbers are always
numbers, and so on. In command mode, numbers are treated as numbers, but all other arguments
are treated as strings unless they start with $, @, ', ", or (. When an argument begins with one of
these special characters, the rest of the argument is parsed as a value expression. (There’s also
special treatment for leading variable references in a string, which we’ll discuss later.) Table 1.1
shows examples that illustrate how items are parsed in each mode.

Table 1.1. Parsing mode examples

Example command line Parsing mode and explanation

2+2 Expression mode; results in 4.
Write-Output 2+2 Command mode; results in 2+2.
$a=2+2 Expression mode; the variable $a is assigned the value 4.

Write-Output (2+2)
Expression mode; because of the parentheses, 2+2 is evaluated
as an expression producing 4. This result is then passed as an
argument to the Write-Output cmdlet.

Write-Output $a

Expression mode; produces 4. This is ambiguous—evaluating it
in either mode produces the same result. The next example
shows why the default is expression mode if the argument starts
with a variable.

Write-Output $a.Equals(4)

Expression mode; $a.Equals(4) evaluates to true and Write-
Output writes the Boolean value True. This is why a variable is
evaluated in expression mode by default. You want simple
method and property expressions to work without parentheses.

Write-Output $a/foo.txt

Command mode; $a/foo.txt expands to 4/foo.txt. This is the
opposite of the previous example. Here you want it to be
evaluated as a string in command mode. The interpreter first
parses in expression mode and sees it’s not a valid property

(29)

expression, so it backs up and rescans the argument in command
mode. As a result, it’s treated as an expandable string.

Notice in the Write-Output (2+2) case, the opening parenthesis causes the interpreter to enter a
new level of interpretation where the parsing mode is once again established by the first token.
This means the sequence 2+2 is parsed in expression mode, not command mode, and the result of
the expression (4) is emitted. Also, the last example in the table illustrates the exception
mentioned previously for a leading variable reference in a string. A variable itself is treated as an
expression, but a variable followed by arbitrary text is treated as though the whole thing were in
double quotes. This allows you to write

PS> cd $HOME/scripts

instead of

PS> cd "$HOME/scripts"

As mentioned earlier, quoted and unquoted strings are recognized as different tokens by the
parser. This is why

PS> Invoke-MyCmdlet -Parm arg

treats -Parm as a parameter and

PS> Invoke-MyCmdlet "-Parm" arg

treats "-Parm" as an argument. There’s an additional wrinkle in the parameter binding. If an
unquoted parameter like -NotAparameter isn’t a parameter on Invoke-MyCmdlet, it will be treated as
an argument. This lets you say

PS> Write-Host -this -is -a parameter

without requiring quoting.

This finishes our coverage of the basics of parsing modes, quoting, and commands. Commands
can take arbitrary lists of arguments, so knowing when the statement ends is important. We’ll
cover this in the next section.

1.4.4. Statement termination

In PowerShell, there are two statement terminator characters: the semicolon (;) and (sometimes)
the newline. Why is a newline a statement separator only sometimes? The rule is that if the
previous text is a syntactically complete statement, a newline is considered to be a statement
termination. If it isn’t complete, the newline is treated like any other whitespace. This is how the
interpreter can determine when a command or expression crosses multiple lines. For example, in
the following

PS> 2 +

>> 2

>>

4

the sequence 2 + is incomplete, so the interpreter prompts you to enter more text. (This is
indicated by the nest prompt characters, >>.) But in the next sequence

(30)

PS> 2

2

PS> + 2

2

the number 2 by itself is a complete expression, so the interpreter goes ahead and evaluates it.
Likewise, + 2 is a complete expression and is also evaluated (+ in this case is treated as the unary
plus operator). From this, you can see that if the newline comes after the + operator, the
interpreter will treat the two lines as a single expression. If the newline comes before the +
operator, it will treat the two lines as two individual expressions.

Most of the time, this mechanism works the way you expect, but sometimes you can receive
some unanticipated results. Take a look at the following example:

PS> $b = (2

>> + 2)

>>

At line:1 char:9

+ $b = (2

+ ~

Missing closing ')' in expression.

 + CategoryInfo : ParserError: (:) [], ParentContainsErrorRecordException

 + FullyQualifiedErrorId : MissingEndParenthesisInExpression

Note

The example code applies to the PowerShell console. If you use ISE you’ll get the error
immediately after pressing the Enter key after typing the first line.

This behavior was questioned by one of the PowerShell v1 beta testers who was surprised by this
result and thought there was something wrong with the interpreter, but in fact, this isn’t a bug.
Here’s what’s happening.

Consider this text:

PS> $b = (2 +

>> 2)

It’s parsed as $b = (2 + 2) because a trailing + operator is only valid as part of a binary operator
expression. The sequence $b = (2 + can’t be a syntactically complete statement, and the newline
is treated as whitespace. On the other hand, consider this text:

PS> $b = (2

>> + 2)

In this case, 2 is a syntactically complete statement, so the newline is now treated as a line
terminator. In effect, the sequence is parsed like $b = (2 ; + 2)—two complete statements.
Because the syntax for a parenthetical expression is

(<expr>)

you get a syntax error—the interpreter is looking for a closing parenthesis as soon as it has a
complete expression. Contrast this with using a subexpression instead of the parentheses alone:

PS> $b = $(

>> 2

(31)

>> +2

>>)

PS> $b

2

2

Here the expression is valid because the syntax for subexpressions is

$(<statementList>)

How do you extend a line that isn’t extensible by itself? This is another situation where you can
use the backtick escape character. If the last character in the line is a backtick, then the newline
will be treated as a simple breaking space instead of a newline:

PS> Write-Output `

>> -InputObject `

>> "Hello world"

>>

Hello world

Finally, one thing that surprises some people is strings aren’t terminated by a newline character.
Strings can carry over multiple lines until a matching, closing quote is encountered:

PS> Write-Output "Hello

>> there

>> how are

>> you?"

>>

Hello

there

how are

you?

In this example, you see a string that extended across multiple lines. When that string was
displayed, the newlines were preserved in the string.

The handling of end-of-line characters in PowerShell is another of the trade-offs that keeps
PowerShell useful as a shell. Although the handling of end-of-line characters is a bit strange
compared to non-shell languages, the overall result is easy for most people to get used to.

1.4.5. Comment syntax in PowerShell

Every computer language has some mechanism for annotating code with expository comments.
Like many other shells and scripting languages, PowerShell comments begin with a number sign
(#) and continue to the end of the line. The # character must be at the beginning of a token for it
to start a comment. Here’s an example that illustrates what this means (echo is an alias of Write-
Output):

PS> echo hi#there

hi#there

In this example, the number sign is in the middle of the token hi#there and isn’t treated as the
starting of a comment. In the next example, there’s a space before the number sign:

PS> echo hi #there

hi

Now # is treated as starting a comment and the following text isn’t displayed. It can be preceded
by characters other than a space and still start a comment. It can be preceded by any statement-
terminating or expression-terminating character like a bracket, brace, or semicolon, as shown in

(32)

the next couple of examples:

PS> (echo hi)#there

Hi

PS> echo hi;#there

hi

In both examples, the # symbol indicates the start of a comment.

Finally, you need to take into account whether you’re in expression mode or command mode. In
command mode, as shown in the next example, the + symbol is included in the token hi+#there:

PS> echo hi+#there

hi+#there

In expression mode, it’s parsed as its own token. Now # indicates the start of a comment, and the
overall expression results in an error:

PS> "hi"+#there

>>

At line:1 char:6

+ "hi"+#there

+ ~

You must provide a value expression following the '+' operator.

 + CategoryInfo : ParserError: (:) [], ParentContainsErrorRecordException

 + FullyQualifiedErrorId : ExpectedValueExpression

The # symbol is also allowed in function names:

PS> function hi#there { "Hi there" }

PS> hi#there

Hi there

The reason for allowing # in the middle of tokens was to make it easy to accommodate path
providers that used # as part of their path names. People conventionally include a space before
the beginning of a comment, and this doesn’t appear to cause any difficulties.

Multiline Comments

In PowerShell v2, multiline comments were introduced, primarily to allow you to embed inline
help text in scripts and functions. A multiline comment begins with <# and ends with #>. Here’s
an example:

<#

 This is a comment

 that spans

 multiple lines

#>

This type of comment need not span multiple lines; you can use this notation to add a comment
preceding some code:

PS> <# a comment #> "Some code"

Some code

In this example, the line is parsed, the comment is read and ignored, and the code after the
comment is executed.

One of the things this type of comment allows you to do is easily embed chunks of preformatted

(33)

text in functions and scripts. The PowerShell help system takes advantage of this feature to allow
functions and scripts to contain inline documentation in the form of special comments. These
comments are automatically extracted by the help system to generate documentation for the
function or script. You’ll learn how the comments are used by the help subsystem in chapter 7.

Now that you have a good understanding of the basic PowerShell syntax, let’s look at how
commands are executed by the PowerShell execution engine. We’ll start with the pipeline.

(34)

1.5. How the pipeline works

A pipeline is a series of commands separated by the pipe operator (|), as shown in figure 1.5. In
some ways, the term production line better describes pipelines in PowerShell. Each command in
the pipeline receives an object from the previous command, performs some operation on it, and
then passes it along to the next command in the pipeline.

Figure 1.5. Anatomy of a pipeline

Note

This, by the way, is the great PowerShell heresy. All previous shells passed strings only through
the pipeline. Many people had difficulty with the notion of doing anything else. Like the
character in The Princess Bride, they’d cry, “Inconceivable!” And we’d respond, “I do not think
that word means what you think it means.”

All the command categories take parameters and arguments. In

Get-ChildItem -Filter *.dll -Path c:\windows -Recurse

-Filter is a parameter that takes one argument, *.dll. The string “c:\windows” is the argument to
the positional parameter -Path.

Next, we’ll discuss the signature characteristic of pipelines: streaming behavior.

1.5.1. Pipelines and streaming behavior

Streaming behavior occurs when objects are processed one at a time in a pipeline. This is one of
the characteristic behaviors of shell languages. In stream processing, objects are output from the
pipeline as soon as they become available. In more traditional programming environments the
results are returned only when the entire result set has been generated—the first and last results
are returned at the same time. In a pipelined shell, the first result is returned as soon as it’s
available and subsequent results return as they also become available. This flow is illustrated in
figure 1.6.

(35)

Figure 1.6. How objects flow through a pipeline one at a time. A common parser constructs each of the
command objects and then starts the pipeline processor, stepping each object through all stages of the pipeline.

At the top of figure 1.6 you see a PowerShell command pipeline containing four commands. This
command pipeline is passed to the PowerShell parser, which figures out what the commands are,
what the arguments and parameters are, and how they should be bound for each command. When
the parsing is complete, the pipeline processor begins to sequence the commands. First it runs the
begin clause of each of the commands once, in sequence from first to last. After all the begin
clauses have been run, it runs the process clause in the first command. If the command generates
one or more objects, the pipeline processor passes these objects one at a time to the second
command. If the second command also emits an object, this object is passed to the third
command, and so on.

When processing reaches the end of the pipeline, any objects emitted are passed back to the
PowerShell host. The host is then responsible for any further processing.

This aspect of streaming is important in an interactive shell environment, because you want to
see objects as soon as they’re available. The next example shows a simple pipeline that traverses
through C:\Windows looking for all the DLLs with names that start with the word “system”:

PS> Get-ChildItem -Path C:\Windows\ -recurse -filter *.dll |

where Name -match "system.*dll"

 Directory:

C:\Windows\assembly\GAC_MSIL\System.Management.Automation\1.0.0.0__31bf3856ad364e35

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 16/07/2016 12:43 3010560 System.Management.Automation.dll

 Directory:

C:\Windows\assembly\GAC_MSIL\System.Management.Automation.Resources\1.0.0.0_en_31bf3856ad364e35

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 16/07/2016 23:51 253952 System.Management.Automation.Resources.dll

 Directory:

C:\Windows\assembly\NativeImages_v4.0.30319_32\System\08da6b6698b412866e6910ae9b84f363

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 16/07/2016 12:44 10281640 System.ni.dll

With streaming behavior, as soon as the first file is found, it’s displayed. Without streaming,

(36)

you’d have to wait until the entire directory structure has been searched before you’d see any
results.

In most shell environments streaming is accomplished by using separate processes for each
element in the pipeline. In PowerShell, which only uses a single process (and a single thread as
well by default), streaming is accomplished by splitting cmdlets into three clauses:
BeginProcessing, ProcessRecord, and EndProcessing. In a pipeline, the BeginProcessing clause is run
for all cmdlets in the pipeline. Then the ProcessRecord clause is run for the first cmdlet. If this
clause produces an object, that object is passed to the ProcessRecord clause of the next cmdlet in
the pipeline, and so on. Finally, the EndProcessing clauses are all run. (We cover this sequencing
again in more detail in chapter 5, which is about scripts and functions, because they can also
have these clauses.)

1.5.2. Parameters and parameter binding

Now let’s talk about more of the details involved in binding parameters for commands.
Parameter binding is the process in which values are bound to the parameters on a command.
These values can come from either the command line or the pipeline. Here’s an example of a
parameter argument being bound from the command line:

PS> Write-Output 123

123

And here’s the same example where the parameter is taken from the input object stream:

PS> 123 | Write-Output

123

The binding process is controlled by declaration information on the command itself. Parameters
can have the following characteristics: they’re either mandatory or optional, they have a type to
which the formal argument must be convertible, and they can have attributes that allow the
parameters to be bound from the pipeline. Table 1.2 describes the steps in the binding process.

Table 1.2. Steps in the parameter binding process

Binding step Description

1. Bind all named parameters.

Find all unquoted tokens on the command line that start with a
dash. If the token ends with a colon, an argument is required. If
there’s no colon, look at the type of the parameter and see if an
argument is required. Convert the type of argument to the type
required by the parameter, and bind the parameter.

2. Bind all positional
parameters.

If there are any arguments on the command line that haven’t
been used, look for unbound parameters that take positional
parameters and try to bind them.

3. Bind from the pipeline by
value with exact match.

If the command isn’t the first command in the pipeline and there
are still unbound parameters that take pipeline input, try to bind
to a parameter that matches the type exactly.

4. If not bound, then bind from
the pipe by value with
conversion.

If the previous step failed, try to bind using a type conversion.

(37)

5. If not bound, then bind from
the pipeline by name with exact
match.

If the previous step failed, look for a property on the input
object that matches the name of the parameter. If the types
exactly match, bind the parameter.

6. If not bound, then bind from
the pipeline by name with
conversion.

If the input object has a property with a name that matches the
name of a parameter, and the type of the property is convertible
to the type of the parameter, bind the parameter.

As you can see, this binding process is quite involved. In practice, the parameter binder almost
always does what you want—that’s why a sophisticated algorithm is used. Sometimes you’ll
need to understand the binding algorithm to get a particular behavior. PowerShell has built-in
facilities for debugging the parameter-binding process that can be accessed through the Trace-
Command cmdlet. Here’s an example showing how to use this cmdlet:

PS> Trace-Command -Name ParameterBinding -Option All `

-Expression { 123 | Write-Output } -PSHost

In this example, you’re tracing the expression in the braces—that’s the expression:

123 | Write-Output

This expression pipes the number 123 to the cmdlet Write-Output. The Write-Output cmdlet takes
a single mandatory parameter, -InputObject, which allows pipeline input by value. The tracing
output is long but fairly self-explanatory, so we haven’t included it here. This is something you
should experiment with to see how it can help you figure out what’s going on in the parameter-
binding process.

And now for the final topic in this chapter: formatting and output. The formatting and output
subsystem provides the magic that lets PowerShell figure out how to display the output of the
commands you type.

(38)

1.6. Formatting and output

One of the issues people new to PowerShell face is the formatting system. As a general rule, we
run commands and depend on the system to figure out how to display the results. We’ll use
commands such as Format-Table and Format-List to give general guidance on the shape of the
display, but no specific details. Let’s dig in now and see how this all works.

PowerShell is a type-based system. Types are used to determine how things are displayed, but
normal objects don’t usually know how to display themselves. PowerShell deals with this by
including formatting information for various types of objects as part of the extended type system.
This extended type system allows PowerShell to add new behaviors to existing .NET objects or
extend the formatting system to cope with new types you’ve created. The default formatting
database is stored in the PowerShell install directory, which you can get to by using the $PSHOME
shell variable. Here’s a list of the files that were included as of this writing:

PS> Get-ChildItem $PSHOME/*format* | Format-Table name

Name

Certificate.format.ps1xml

Diagnostics.Format.ps1xml

DotNetTypes.format.ps1xml

Event.Format.ps1xml

FileSystem.format.ps1xml

Help.format.ps1xml

HelpV3.format.ps1xml

PowerShellCore.format.ps1xml

PowerShellTrace.format.ps1xml

Registry.format.ps1xml

WSMan.Format.ps1xml

The naming convention helps users figure out the purpose of files. (The others should become
clear after reading the rest of this book.) These files are XML documents that contain
descriptions of how each type of object should be displayed.

Tip

These files are digitally signed by Microsoft. Do not alter them under any circumstances. You’ll
break things if you do.

These descriptions are fairly complex and somewhat difficult to write. It’s possible for end users
to add their own type descriptions, but that’s beyond the scope of this chapter. The important
thing to understand is how the formatting and outputting commands work together.

1.6.1. Formatting cmdlets

Display of information is controlled by the type of the objects being displayed, but the user can
choose the “shape” of the display by using the Format-* commands:

PS> Get-Command Format-* | Format-Table name

Name

(39)

Format-Hex

Format-Volume

Format-Custom

Format-List

Format-SecureBootUEFI

Format-Table

Format-Wide

By shape, we mean things such as a table or a list.

Note

Format-Hex is a PowerShell v5 cmdlet that is used to create displays in hexadecimal. The Format-
SecureBootUEFI cmdlet receives certificates or hashes as input and formats the input into a content
object that is returned. The Set-SecureBootUEFI cmdlet uses this object to update the variable.
These two cmdlets are outside the scope of this section.

Here’s how they work. The Format-Table cmdlet formats output as a series of columns displayed
across your screen:

PS> Get-Item c:\ | Format-Table

 Directory:

Mode LastWriteTime Length Name

---- ------------- ------ ----

d--hs- 06/06/2017 09:06 C:\

PowerShell v5 automatically derives the on–screen positioning from the first few objects through
the pipeline—effectively an automatic –Autosize parameter. This change was introduced because
–Autosize is a blocking parameter that caused huge amounts of data to be stored in memory until
all objects were available.

Format-Table -Autosize parameter

In PowerShell v1 through v4 Format-Table tries to use the maximum width of the display and
guesses at how wide a particular field should be. This allows you to start seeing data as quickly
as possible (streaming behavior) but doesn’t always produce optimal results. You can achieve a
better display by using the -AutoSize switch, but this requires the formatter to process every
element before displaying any of them, and this prevents streaming. PowerShell has to do this to
figure out the best width to use for each field. The result in this example looks like this:

PS> Get-Item c:\ | Format-Table -AutoSize

 Directory:

Mode LastWriteTime Length Name

---- ------------- ------ ----

d--hs- 06/06/2017 09:06 C:\

In practice, the default layout when streaming is good and you don’t need to use -Autosize, but
sometimes it can help make things more readable.

(40)

The Format-List command displays the elements of the objects as a list, one after the other:

PS> Get-Item c:\ | Format-List

 Directory:

Name : C:\

CreationTime : 22/08/2013 14:31:02

LastWriteTime : 06/06/2017 09:06:56

LastAccessTime : 06/06/2017 09:06:56

If there’s more than one object to display, they’ll appear as a series of lists. This is usually the
best way to display a large collection of fields that won’t fit well across the screen.

The Format-Wide cmdlet is used when you want to display a single object property in a concise
way. It will treat the screen as a series of columns for displaying the same information:

PS> Get-Process –Name s* | Format-Wide -Column 8 id

1372 640 516 1328 400 532 560 828

876 984 1060 1124 4

In this example, you want to display the process IDs of all processes with names that start with
“s” in eight columns. This formatter allows for a dense display of information.

The final formatter is Format-Custom, which displays objects while preserving the basic structure
of the object. Because most objects have a structure that contains other objects, which in turn
contain other objects, this can produce extremely verbose output. Here’s a small part of the
output from the Get-Item cmdlet, displayed using Format-Custom:

PS> Get-Item c:\ | Format-Custom -Depth 1

class DirectoryInfo

{

 PSPath = Microsoft.PowerShell.Core\FileSystem::C:\

 PSParentPath =

 PSChildName = C:\

 PSDrive =

 class PSDriveInfo

 {

 CurrentLocation =

 Name = C

 Provider = Microsoft.PowerShell.Core\FileSystem

 Root = C:\

 Description = C_Drive

 Credential = System.Management.Automation.PSCredential

 }

The full output is considerably longer, and notice we’ve told it to stop walking the object
structure at a depth of 1. You can imagine how verbose this output can be! Why have this
cmdlet? Mostly because it’s a useful debugging tool, either when you’re creating your own
objects or for exploring the existing objects in the .NET class libraries.

1.6.2. Outputter cmdlets

Now that you know how to format something, how do you output it? You don’t have to worry
because, by default, things are automatically sent to (can you guess?) Out-Default.

Note the following three examples do exactly the same thing:

dir | Out-Default

(41)

dir | Format-Table

dir | Format-Table | Out-Default

This is because the formatter knows how to get the default outputter, the default outputter knows
how to find the default formatter, and the system in general knows how to find the defaults for
both. The Möbius strip of subsystems!

As with the formatters, there are several outputter cmdlets available in PowerShell out of the
box. You can use the Get-Command command to find them:

PS> Get-Command Out-* | Format-Wide -Column 3

Out-Default Out-File Out-GridView

Out-Host Out-Null Out-Printer

Out-String

Here there’s a somewhat broader range of choices. We’ve already talked about Out-Default. The
next one we’ll talk about is Out-Null. This is a simple outputter; anything sent to Out-Null is
discarded. This is useful when you don’t care about the output for a command; you want the side
effect of running the command.

Note

Piping to Out-Null is the equivalent to redirecting to $null but invokes the pipeline and can be up
to forty times slower than redirecting to $null.

Next, we have Out-File. Instead of sending the output to the screen, this command sends it to a
file. (This command is also used by I/O redirection when doing output to a file.) In addition to
writing the formatted output, Out-File has several flags that control how the output is written.
The flags include the ability to append to a file instead of replacing it, to force writing to read-
only files, and to choose the output encodings for the file. This last item is the trickiest. You can
choose from a number of text encodings supported by Windows. Here’s a trick—enter the
command with an encoding you know doesn’t exist:

PS> Out-File -encoding blah

Out-File : Cannot validate argument on parameter 'Encoding'. The argument

"blah" does not belong to the set "unknown,string,unicode,bigendianunicode,ut

f8,utf7,utf32,ascii,default,oem" specified by the ValidateSet attribute.

Supply an argument that is in the set and then try the command again.

At line:1 char:20

+ Out-File -encoding blah

+ ~~~~

 + CategoryInfo : InvalidData: (:) [Out-File], ParameterBindingValidationException

 + FullyQualifiedErrorId :

ParameterArgumentValidationError,Microsoft.PowerShell.Commands.OutFileCommand

You can see in the error message that all the valid encoding names are displayed.

Note

Tab completion can be used to cycle through the valid encodings. Type Out-File -Encoding and
then keep pressing the tab key to view the options. Tab completion works with cmdlet names,
parameters, and values where there’s a predefined set of acceptable values.

(42)

If you don’t understand what these encodings are, don’t worry about it, and let the system use its
default value.

Note

Where you’re likely to run into problems with output encoding (or input encoding for that
matter) is when you’re creating files that are going to be read by another program. These
programs may have limitations on what encodings they can handle, particularly older programs.
To find out more about file encodings, search for “file encodings” on http://msdn.microsoft.com.
Microsoft Developer’s Network (MSDN) contains a wealth of information on this topic. Chapter
5 also contains additional information about working with file encodings in PowerShell.

The Out-Printer cmdlet doesn’t need much additional explanation; it routes its text-only output to
the default printer instead of to a file or to the screen.

The Out-Host cmdlet is a bit more interesting—it sends its output back to the host. This has to do
with the separation in PowerShell between the interpreter or engine, and the application that
hosts that engine. The host application has to implement a special set of interfaces to allow Out-
Host to render its output properly. (We see this used in PowerShell v2 to v5, which include two
hosts: the console host and the Integrated Scripting Environment (ISE).)

Note

Out-Default delegates the work of outputting to the screen to Out-Host.

The last output cmdlet to discuss is Out-String. This one’s a bit different. All the other cmdlets
terminate the pipeline. The Out-String cmdlet formats its input and sends it as a string to the next
cmdlet in the pipeline. Note we said string, not strings. By default, it sends the entire output as a
single string. This isn’t always the most desirable behavior—a collection of lines is usually more
useful—but at least once you have the string, you can manipulate it into the form you want. If
you do want the output as a series of strings, use the -Stream switch parameter. When you specify
this parameter, the output will be broken into lines and streamed one at a time.

Note this cmdlet runs somewhat counter to the philosophy of PowerShell; once you’ve rendered
the object to a string, you’ve lost its structure. The main reason for including this cmdlet is for
interoperation with existing APIs and external commands that expect to deal with strings. If you
find yourself using Out-String a lot in your scripts, stop and think if it’s the best way to attack the
problem.

PowerShell v2 introduced one additional output command: Out-GridView. As you might guess
from the name, this command displays the output in a grid, but rather than rendering the output
in the current console window, a new window is opened with the output displayed using a
sophisticated grid control (see figure 1.7).

(43)

http://msdn.microsoft.com

Figure 1.7. Displaying output with Out-GridView

The underlying grid control used by Out-GridView has all the features you’d expect from a modern
Windows interface: columns can be reordered by dragging and dropping them, and the output
can be sorted by clicking a column head. This control also introduces sophisticated filtering
capabilities. This filtering allows you to drill into a dataset without having to rerun the command.

That’s it for the basics: commands, parameters, pipelines, parsing, and presentation. You should
now have a sufficient foundation to start moving on to more advanced topics in PowerShell.

(44)

1.7. Summary

PowerShell is Microsoft’s command-line/scripting environment that’s at the center of
Microsoft server and application management technologies. Microsoft’s most important
server products, including Exchange, Active Directory, and SQL Server, now use
PowerShell as their management layer.
PowerShell incorporates object-oriented concepts into a command-line shell using the
.NET object model as the base for its type system, but can also access other object types
like WMI.
Shell operations like navigation and file manipulation in PowerShell are similar to what
you’re used to in other shells.
Use the Get-Help command to get help when working with PowerShell.
PowerShell has a full range of calculation, scripting, and text-processing capabilities.
PowerShell supports a comprehensive set of remoting features to allow you to do scripted
automation of large collections of computers.
PowerShell has a number of command types, including cmdlets, functions, script
commands, and native commands, each with slightly different characteristics.
PowerShell supports an elastic syntax—concise on the command line and complete in
scripts. Aliases are used to facilitate elastic syntax.
PowerShell parses scripts in two modes—expression mode and command mode—which is
a critical point to appreciate when using PowerShell.
The PowerShell escape character is a backtick (`), not a backslash.
PowerShell supports both double quotes and single quotes; variable and expression
expansion is done in double quotes, not in single quotes.
Line termination is handled specially in PowerShell because it’s a command language.
PowerShell has two types of comments: line comments that begin with # and block
comments that start with <# and end with #>. The block comment notation was introduced
in PowerShell v2 with the intent of supporting inline documentation for scripts and
functions.
PowerShell uses a sophisticated formatting and outputting system to determine how to
render objects without requiring detailed input from the user.

Now that you have the basics, we’ll start digging into the details starting in the next chapter with
how PowerShell works with types.

(45)

Chapter 2. Working with types
This chapter covers

Type management
Types and literals
Collections
Type conversion

“When I use a word,” Humpty Dumpty said, in rather a scornful tone, “it means just what I
choose it to mean—neither more nor less.”

Lewis Carroll, Through the Looking Glass

Most shell environments can only deal with strings, so the ability to use objects makes
PowerShell profoundly different. And where you have objects, you also have object types. Much
of PowerShell’s power comes from the innovative way it uses types. In this chapter, we’ll look at
the PowerShell type system, show how to take advantage of it, and examine some of the things
you can accomplish with types in PowerShell. One of the biggest impacts of an object’s type is
how it’s displayed.

(46)

2.1. Type management in the wild, wild West

Shell languages are frequently, though inaccurately, called typeless languages. In practice, you
can’t have a typeless language because programming in any form is all about working with types
and typed objects like numbers, strings, dates, and so on. For any given programming language,
one of the most important characteristics is how it deals with types and how much work the
language expects from you up front versus at runtime. Languages that require you to provide a
lot of up front explicit guidance are called statically typed, because all the types of objects they
can deal with must be known up front. Languages that don’t require much (if any) up front
guidance are called dynamically typed, where the set of types can change dynamically
throughout the program’s run. PowerShell falls into the latter dynamic camp.

In statically typed languages, the initial guidance you provide allows the language processor to
do a lot of work for you, but only if you stick to the types you initially planned for. At runtime, if
your program encounters types you didn’t plan for, the rigid nature of a static language can make
it difficult to accommodate these new types. By analogy, if your program only handles square
pegs, encountering a round peg is going to be a big problem.

In contrast, with dynamically typed languages, the user provides little type information up front.
Instead, their programs deal with the types as encountered. If all the program is interested in is
things that are blue, the shape of the object doesn’t matter. Round, square, or triangular—the
program doesn’t care. Even if the object doesn’t have a color property, it doesn’t matter to the
program—it’s not blue so it’s ignored.

These days, it’s rare to see a purely static language (reality has a nasty habit of intruding upon
academic notions of purity) and so most languages have some level of support for dynamic data
types. The amount of support largely depends on the domain of application. For example, there
isn’t much that’s dynamic in an accounting program. But in the area of IT systems management,
PowerShell’s domain of application, there’s something of an excess of riches regarding dynamic
types.

2.1.1. Types and classes

If we’re going to talk about types, it’s useful to have a common understanding of what a type is.
There are many thick books in the fields of philosophy, science, and mathematics that try to
address this question. We’ll ignore them all. Why? Because you already know what a type is!
You look at an object and say “that’s a bird.” Well, what type of bird is it? It’s a robin. What
properties do robins have? A red breast. What about its “parent class,” birds? What properties do
birds have? Wings, feathers, a beak, and so on. What do birds do? They fly, eat worms, poop on
your car. Now you’re an expert in object orientation along with everyone else on the planet.
Computer people always like to make things more formal, so we’ll use specific words when we
talk about types, as noted in table 2.1.

Table 2.1. Classes, types, and members defined

Term Example Notes

A type is a description of an object—what it looks like

(47)

Type Robin, Bird

and what it can do. That description is associated with
the type name. The relationship between an object and
its type is called an is-a relationship (though the
PowerShell operator for this is -is, not is-a). Some
examples of this relationship are Robin is-a bird or
Mickey is-a mouse. In PowerShell the code would be
Robin -is bird and Mickey -is mouse respectively.

Class Robin, Bird

Class is the keyword used in PowerShell v5 and later to
define a new type. You’ll see the words “type” and
“class” frequently used interchangeably but when we
define a type we use the class keyword. See chapter 19.

Property BreastColor, Size,
Weight

A property of an object is some piece of data describing
the object. The property is defined on a class but only
has value on an instance; for example, the class Bird
defines a property Color but only an individual bird has
a color. All Bird classes have the property Color. A
crow has the property Color == black.

Method StartFlying(),
EatWorm(),

Methods define behaviors on a class. In some object-
oriented languages methods are called messages,
because, for example, calling the StartFlying() method
effectively sends a message to the bird to start flying.

Member Size, EatWorm() Member is a general term that includes all aspects of a
type, both methods and properties.

Event OnButtonDown,
PoopOnCar

Events are a special kind of method except you don’t
call them directly. The object invokes them as a
consequence of some other action on the object. If you
tell a bird to fly by calling the StartFlying() method, this
might trigger the event PoopOnCar().

Generic type
List<integer>,
Dictionary<string,
integer>

A generic type contains instances of other types such as
a List of Integers or a dictionary mapping a name to a
number. See section 2.5.2 for more information about
generics.

Table 2.1 covers all the major concepts used by PowerShell when dealing with objects and
object-oriented programming. In later chapters, we’ll discuss additional variations on these
terms, but what we’ve covered so far is sufficient for now. Before we move on, here’s a brief
note on terminology.

Schema and classes and types, oh my!

In table 2.1, you see the words “class” and “type” can be used interchangeably. In practice, there
are a few more synonyms for “type” that you might run into, especially the term schema, which
is used a lot with XML and databases. In the databases case, schema defines the set of tables a
database uses and the structure of the rows in each table. The definition of schema in the Oxford
dictionary is “a representation of a plan or theory in the form of an outline or model.” Look—this
definition defines yet another term, model.

Again, these terms are all equivalent though the representations may differ significantly. Some of
this is due to the fact that object-oriented terminology grew out of languages designed to help
programmers deal with complexity by “modeling” the real world. When modeling something,

(48)

it’s important to remember the model is a simplification of the thing you’re trying to model. A
model Tyrannosaurs Rex isn’t 30 feet high and rarely eats lawyers.

The model should only include the information necessary to solve the problem at hand. This may
sound easy, but designing a model, especially in a fluid medium like software and IT, requires
thought. Whatever you design initially will have to grow and evolve as requirements change.
Fortunately, there are guiding patterns and principles that will help you write flexible models.
We’ll discuss these principles in chapter 19 when we look at writing classes in PowerShell.
We’ll also look at modeling in more detail when we look at Desired State Configuration (DSC)
management in chapter 18.

Whew—that was abstract, so let’s return from our intellectual clouds and focus on how all of this
stuff works in PowerShell.

2.1.2. PowerShell: A type-promiscuous language

Using the definitions for static and dynamic typing we looked at in the beginning of section 2.1,
it’s pretty clear we should characterize PowerShell as a dynamically typed language. But an even
better description is PowerShell is a type-promiscuous language (sounds salacious, doesn’t it?).
By type-promiscuous, we mean PowerShell will expend a tremendous amount of effort, much
more than a typical dynamic language, trying to turn what you have into what you need with as
little work on your part as it can manage. When you ask for a property Y, PowerShell doesn’t care
if the object foo is a member of class X. It only cares whether foo has a property Y.

People who are used to strongly typed environments find this approach, well, disturbing. It
sounds too much like “wild, wild, West” management. In practice, the Power-Shell runtime is
careful about making sure its transformations are reasonable and no information is unexpectedly
lost. This is particularly important when dealing with numeric calculations. In PowerShell, you
can freely mix and match different types of numbers in expressions. You can even include
strings in this mix. PowerShell converts everything as needed without specific guidance from the
user, as long as there’s no loss in precision. Table 2.2 presents some example conversion
scenarios. It includes both examples of successful conversions and of conversions the runtime
fails because they could result in an unintended loss of information.

Table 2.2. Examples of PowerShell type management

Example Result Type Comment

PS> 2 + 3.0 + '4'
9 System.Double

Everything widened to double-
precision floating-point
number.

PS> 2 + '3.0' + 4
9 System.Double

Everything widened to double-
precision floating-point
number.

PS> (3 + 4)
7 System.Int32 Integer as expected because all

elements are integers.

PS> 6/3
2 System.Int32

Integer as expected because all
elements are integers and 3 is a
factor of 6.

(49)

PS> 6/4
1.5

System.Double System switch to double to
avoid loss of precision.

PS> 1e300 + 12
1E+300 System.Double

In effect, adding an integer to a
number of this magnitude
means the integer is ignored.
This sort of loss is considered
acceptable by the system.

PS> 1e300 + 12d
Value was either too large or too small for a
Decimal.
At line:1 char:1
+ 1e300 + 12d
+ ~~~~~~~~~~~
+ CategoryInfo : OperationStopped: (:) [],
OverflowException
+ FullyQualifiedErrorId :
System.OverflowException

This results in an error because
when one of the operands
involved is a decimal value, all
operands are converted to
decimal first and then the
operation is performed.
Because 1e300 is too large to
be represented as a decimal, the
operation will fail with an
exception rather than lose
precision.

The .NET GetType() method, or Get-Member, is used to look at the base type of the results of the
various expressions as shown in figure 2.1. You can also pipe the results from a cmdlet (or
pipeline) to Get-Member to discover its output type.

Figure 2.1. Discovering the type of an expression

(50)

From these examples, you can see that although the PowerShell type-conversion system is
aggressive in the types of conversions it performs, it’s also careful about how it does things.

Now that you have a sense of the importance of types in PowerShell, let’s look at how it all
works.

2.1.3. Type system and type adaptation

In the previous section we said that when looking for a Color property, PowerShell doesn’t care
what type the underlying object is as long as it has a Color property on it. That’s an
oversimplification. The PowerShell code the user writes doesn’t have to care. But the PowerShell
runtime cares deeply as it does all the hard work of finding that property for you. A main goal of
the type system is to allow the user to work with a wide variety of data types and sources like
.NET, XML, WMI, and other ingredients in the alphabet soup that makes up computer science.

Let’s talk about the member resolution algorithm. Member resolution is done through a set of
layers. In PowerShell v1 and v2, there are two layers: synthetic members and native members. In
PowerShell v3 a new layer was added providing for fallback members.

There are three phases of member resolution: synthetic, native, and fallback. The PowerShell
member resolver code goes through each of these phases and stops as soon as it finds an
appropriate match. Let’s look at what happens in each layer.

Synthetic members

(51)

In section 2.1.1, we said that the members on an object are determined by that object’s type or
class. BWAHAHAHA—we lied to you. PowerShell has an extra layer it checks first, called the
PSObject wrapper. This wrapper allows the end user, who didn’t define the type, to change the set
of members on that type (sort of). For any given instance of an object, you can add new
properties or methods at runtime. You can even overshadow existing members possibly changing
their behavior to something more appropriate to the task at hand. But doing this only affects the
current instance. The class itself isn’t changed. For this reason, these members are sometimes
called singletons as they’re only defined for a single instance of the object. PowerShell includes
ways to add these members to every object of a class but they’re still singletons—each one is
unique to the object it’s attached to. It’s even possible to build an object purely out of synthetic
members with no “native” properties at all. You’ll see more about this in chapter 10 when we
discuss metaprogramming.

PowerShell versions and synthetic members

There was one significant change in implementation in this area between PowerShell v2 and
PowerShell v3. In PowerShell v1 and v2, every object was wrapped in a PSObject container that
also held its synthetic members. This caused a number of obscure bugs, because storing an object
with synthetic members in a strongly typed variable would result in the wrapper getting “lost”
along with the values of the synthetic members.

In PowerShell v3 and later, to fix these bugs, the implementation was changed to use a “look-
aside” mechanism. Instead of wrapping the object, the extensions are kept in a separate table and
are looked up when needed. This fixed all the data-loss problems resulting from using wrappers
but introduced a new even more obscure problem.

Certain types of objects like numbers are constant so there’s only ever one instance for any value
of that type. For example, there’s only ever one instance of the number 1. If you add a synthetic
member to the number 1 using look-aside, then that member will be the same everywhere that 1
is used. This caused a real bug where a v2 programmer was using the different instances of a
number (different wrappers) to carry around extra information. In v3, that information was
always the same because there was only ever one look-aside object for the number. By using
what was considered a bug in v2, the code was broken in v3 when the bug was fixed. It was an
extremely obscure situation, but it does provide an object lesson in that no matter how benign or
obscure a change, it can break people’s programs.

Native members

Native members are what we talked about in section 2.1—they’re the members defined by the
object’s type. If you know the type, then you know all the native members of that object. In the
PowerShell environment, there are multiple native types—.NET being the primary, but also
WMI and COM, where the type defines its members. These members can be discovered by using
the Get-Member cmdlet as follows:

PS> Get-Date | Get-Member

 TypeName: System.DateTime

Name MemberType Definition

---- ---------- ----------

Add Method datetime Add(timespan value)

AddDays Method datetime AddDays(double value)

AddHours Method datetime AddHours(double value)

(52)

:

DisplayHint NoteProperty DisplayHintType DisplayHint=DateTime

:

Date Property datetime Date {get;}

Day Property int Day {get;}

DayOfWeek Property System.DayOfWeek DayOfWeek {get;}

DateTime ScriptProperty System.Object DateTime {get=if ((& {...

The output from this example has been trimmed significantly (there are about 59 members on a
DateTime object) to show examples of each type of property. The first thing you see is the type of
the object followed by a list of its members. Notice this list also includes information about any
synthetic members attached to the instance such as DisplayHint and DateTime along with the native
properties like Day and methods like AddDays().

Fallback members

Fallback members are a final phase of member resolution. Unlike synthetic members, which are
added by the end user on native members defined in the class, fallback methods are defined by
the PowerShell runtime itself. Presently, there’s no way for the end user to add any new ones.
Fallback members resolve last—if something isn’t found, then the member resolver falls back
(duh!) to this type of member. Fallback members were first introduced in PowerShell v3 to solve
an interoperation problem with PowerShell Workflow.

Then in PowerShell v4, new ones were added as part of the DSC management feature. In both
cases, the members were designed to make it simpler for the script author to work with
collections. You’ll see examples of this in chapter 4.

Now, at last, what you’ve been waiting for: what you can do with PowerShell, or at least what
the basic types of objects are that you can represent and manipulate in a script.

2.1.4. Finding the available types

One thing you’ll have noticed is that there appear to be a lot of types available by default. This is
correct—the PowerShell runtime loads and uses many .NET (native) types. Unfortunately,
there’s no out-of-the-box way to find all of those types—there’s no Find-Type cmdlet. Let’s jump
ahead a bit and write one. First you need to know how .NET arranges its types. Within the host
process, the .NET runtime creates an Application Domain, or AppDomain. PowerShell is an
application that, not too surprisingly, runs inside an AppDomain. That’s the first step. You can
find your AppDomain using the .NET AppDomain class:

[System.AppDomain]::CurrentDomain

Note

The AppDomain class isn’t available in .NET core which means this technique can’t be used on
Linux or Mac machines running PowerShell v6.

Next you need to find the types in the AppDomain. Individual types (or classes as they’re
sometimes called in this context) are organized into assemblies—modules similar to the
PowerShell modules you’ll see in chapters 8 and 9. To get a list of assemblies, you use the

(53)

GetAssemblies() method:

[System.AppDomain]::CurrentDomain.GetAssemblies()

Once you have all the assemblies, you need to get a list of all the types in each assembly. You
call the—wait for it—GetTypes() method. You have to do this once for each assembly returned by
GetAssemblies(). You could use a foreach statement (see chapter 5) but instead here you’ll use one
of the fallback methods. The type of fallback method you’re going to use is a bit unusual because
it isn’t a specific method. One of the things the fallback method resolver does is, if the method
isn’t found on the object but the object is a collection, it tries to see if the method exists on the
members of the collection. It’s exactly what you need to call a method: GetTypes() on each
member of the collection returned by GetAssemblies(). And so you get:

[System.AppDomain]::CurrentDomain.GetAssemblies().GetTypes()

The result is a pretty powerful one-liner. But there’s one last thing you need to do. What you
have now will return all the types available. In fact with

[System.AppDomain]::CurrentDomain.GetAssemblies().GetTypes().Count

the result will be in the tens of thousands depending on which modules you’ve loaded. You want
to filter the result but now you can go back to PowerShell and use the Select-String cmdlet. Let’s
see all the types that mention DateTime:

[System.AppDomain]::CurrentDomain.GetAssemblies().GetTypes() |

Select-String datetime

Note this will still produce a lot of output. You can use more sophisticated regular expressions
(see section 3.4 for more information on regular expressions).

The last step is to turn this into a function that looks like the following:

function Find-Type {

 param

 (

 [regex]$Pattern

)

 [System.AppDomain]::CurrentDomain.

 GetAssemblies().GetTypes() |

 Select-String $Pattern

}

You now have a tool to find which types you’ve loaded. But you can also do the opposite.
Suppose you want to find out which assemblies contain a type? Well, this is a property on the
[type] object. You can see where the [PowerShell] type comes from using

[PowerShell].Assembly

This will give you lots of information about the assembly. If you want the location of the
filename, then

[PowerShell].Assembly.Location

will do the trick. And, if you’re a developer, it can be useful to know when the assembly was
modified. Again, you can mix the type expression with PowerShell:

PS> [PowerShell].Assembly.Location |

Get-ChildItem |

(54)

foreach LastWriteTime

28 April 2017 01:32:49

Now you have a couple of tools that will make discovering types and assemblies much easier.

PowerShell comes pretty much “batteries included” with respect to the set of types you can use.
In the next section, we’ll cover the basic set of types you’ll likely use most often and how to
express them in PowerShell.

(55)

2.2. Basic types and literals

All programming languages have a set of basic or primitive types from which everything else is
built. These primitive types usually have some form of corresponding syntactic literal. Literal
tokens in the language are used to represent literal data objects in the program. In PowerShell,
there are the usual literals—strings, numbers, and arrays—but there are other literals that aren’t
typically found outside of dynamic languages: dictionaries and hashtables. PowerShell also
makes heavy use of type literals that correspond to type objects in the system. In this section,
we’ll go through each of the literals, illustrate how they’re represented in script text, and explore
the details of how they’re implemented in the PowerShell runtime.

2.2.1. String literals

There are four kinds of string literals in PowerShell: single-quoted strings, double-quoted strings,
single-quoted here-strings, and double-quoted here-strings, shown in this order in figure 2.2.
Each string type will be discussed in detail later in this section. The underlying representation for
all these strings is the same, an object of type System.String.

Figure 2.2. String types in PowerShell

Note

(56)

It’s recommended to use single-quoted strings and here-strings, unless you’re explicitly using
variable expansion in the strings.

String representation in PowerShell

In PowerShell, a string is a sequence of 16-bit Unicode characters and is directly implemented
using the .NET System.String type. Because PowerShell strings use Unicode, they can effectively
contain characters from every language in the world.

Encoding matters

The encoding used in strings is obviously important in international environments. If you’re
interested in the nitty-gritty details of the encoding used in System.String, here’s what the MSDN
documentation has to say:

Each Unicode character in a string is defined by a Unicode scalar value, also called a
Unicode code point or the ordinal (numeric) value of the Unicode character. Each code
point is encoded using UTF-16 encoding, and the numeric value of each element of the
encoding is represented by a Char. The resulting collection of Char objects constitutes the
String.
A single Char usually represents a single code point (the numeric value of the Char equals
the code point). However, a code point might require more than one encoded element. For
example, a Unicode supplementary code point (a surrogate pair) is encoded with two Char
objects.

Refer to the MSDN documentation for additional details.

There are a couple of other characteristics that strings in PowerShell inherit from the underlying
.NET strings. They can also be arbitrarily long and they’re immutable—the contents of a string
can be copied but can’t be changed without creating an entirely new string.

Note

In almost all modern languages, strings are immutable. The biggest exception to this we’re aware
of is Apple’s new language Swift. Probably due to the need for backward compatibility with
Objective-C, Swift’s strings are mutable. It will be interesting to see how that works out.

Single- and double-quoted strings

Because of the expression-mode/command-mode parsing dichotomy described in section 1.5.3,
strings can be represented in several ways. In expression mode, a string is denoted by a sequence
of characters surrounded by matching quotes, as shown in the following examples:

PS> "This is a string in double quotes"

This is a string in double quotes

(57)

PS> 'This is a string in single quotes'

This is a string in single quotes

Literal strings can contain any character, including newlines, with the exception of an unquoted
closing quote character. Embedding closing quotes in a string is achieved in the following
manner:

PS> "Embed double quote like this "" or this `" "

Embed double quote like this " or this "

PS> 'Embed single quote like this '' '

Embed single quote like this '

Note

In single-quoted strings, the backtick isn’t special. This means it can’t be used for embedding
special characters such as newlines or escaping quotes.

Double-quoted strings (sometimes called expandable strings) support variable substitution.

Note

Arguments to commands without explicit quotes are treated as though they were in double
quotes, so variables will be expanded in that situation as well. You’ll see examples of this later
on.

Let’s look at an example of string expansion:

PS> $foo = "FOO"

PS> "This is a string in double quotes: $foo"

This is a string in double quotes: FOO

PS> 'This is a string in single quotes: $foo'

This is a string in single quotes: $foo

In the preceding lines, you can see $foo in the double-quoted string was replaced by the contents
of the variable—namely, FOO—but not in the single-quoted case.

Expandable strings can also include arbitrary expressions by using the subexpression notation. A
subexpression is a fragment of PowerShell script code, including statement lists, that’s replaced
by the value resulting from the evaluation of that code. Here’s an example where the
subexpression contains three simple statements:

PS> "Expanding three statements in a string: $(1; 2; 3)"

Expanding three statements in a string: 1 2 3

The result shows the output of the three statements concatenated together, space separated, and
inserted into the result string. Using a subexpression in a string is one way to quickly generate
formatted results when presenting data.

(58)

String expansion considerations

PowerShell expands strings when an assignment is executed. It doesn’t reevaluate those strings
when the variable is used later.

There’s a way to force a string to be expanded if you need to do it—by calling
$ExecutionContext.InvokeCommand.ExpandString('a is $a'). This method will return a new string
with all the variables expanded.

Here-string literals

Getting back to the discussion of literal string notation, there’s one more form of string literal,
called a here-string. A here-string is used to embed large chunks of text inline in a script as
illustrated in figure 2.2. This can be powerful when you’re generating output for another
program. Here’s an example that assigns a here-string to the variable $a:

PS> $a = @"

One is "1"

Two is '2'

Three is $(2+1)

The date is "$(Get-Date)"

"@

PS> $a

One is "1"

Two is '2'

Three is 3

The date is "06/09/2017 14:54:10"

On line 1, the here-string is assigned to the variable $a. The contents of the here-string start on
line 2, which has a string containing double quotes. Line 3 has a string with single quotes. Line 4
has an embedded expression, and line 5 calls the Get-Date cmdlet in a subexpression to embed the
current date into the string. When you look at the output of the variable shown in lines 9–12, you
see the quotes are all preserved and the expansions are shown in place.

Note

Here’s a note for C# users. There’s a lexical element in C# that looks a lot like PowerShell here-
strings. In practice, the C# feature is most like PowerShell’s single-quoted strings. In
PowerShell, a here-string begins at the end of the line and the terminating sequence must be at
the beginning of the line that terminates the here-string. In C#, the string terminates at the first
closing quote that isn’t doubled up.

Here-strings start with @<quote><newline> and end with <newline><quote>@. The <newlines> are
important because the here-string quote sequences won’t be treated as quotes without them. The
content of the here-string is all the lines between the beginning and ending quotes but not the
lines the quotes are on. Because of the fancy opening and closing quote sequences, other special
characters (such as quotes that would cause problems in regular strings) are fine here. This
makes it easy to generate string data without having quoting errors.

Here-strings come in single- and double-quoted versions like regular strings, with the significant

(59)

www.allitebooks.com

http://www.allitebooks.org

difference being that variables and subexpressions aren’t expanded in the single-quoted variant.
The single-quoted version is best for embedding large blocks of literal text where you don’t want
to deal with individually quoting $ everywhere. You’ll see how useful this can be when we look
at the Add-Type cmdlet in chapter 7.

That should be enough about strings for now. Let’s move on to numbers and numeric literals.

2.2.2. Numbers and numeric literals

As mentioned earlier, PowerShell supports all the basic .NET numeric types and performs
conversions to and from the different types as needed. Table 2.3 lists these numeric types.

Table 2.3. Numeric literals

Example numeric literal .NET full type name Short type name

1
0x1FE4 System.Int32 [int]

10000000000 System.Int64 [long]
1.1
1e3 System.Double [double]

There’s no single-precision numeric literal but
you can use a cast:
[float] 1.3

System.Single [single] or
[float]

1d
1.123d System.Decimal [decimal]

In general, you don’t specify a numeric literal as having a particular type; the system will figure
out the best way to represent the number. By default, an integer will be used. If the literal is too
large for a 32-bit integer, a 64-bit integer will be used instead. If it’s still too big or if it contains
a decimal point, a System.Double will be used. The one case where you want to tell the system that
you’re requesting a specific type is with the System.Decimal type. These are specified by placing
the letter d at the end of the number with no intervening space, as shown in table 2.3.

Multiplier suffixes

Plain numbers are fine for most applications, but in the system administration world, there are
many special values you want to be able to conveniently represent, namely, those powers of two
—kilobytes, megabytes, gigabytes, terabytes, and petabytes. (Terabyte and petabyte suffixes
aren’t available in PowerShell v1.)

PowerShell provides a set of multiplier suffixes for common sizes to help with this, as listed in
table 2.4. These suffixes allow you to easily express common large numbers.

Table 2.4. Numeric multiplier suffixes supported in PowerShell. Suffixes marked v2+ are available only in
PowerShell v2 or later. GB, TB, and PB also support non-integer values using the System.Double .NET type

(60)

Multiplier suffix Multiplication
factor

Example Equivalent value .NET type

kb or KB 1024 1KB 1024 System.Int32
kb or KB 1024 2.2KB 2252.8 System.Double
mb or MB 1024*1024 1MB 1048576 System.Int32
mb or MB 1024*1024 2.2MB 2306867.2 System.Double
gb or GB 1024*1024*1024 1GB 1073741824 System.Int32
tb or TB
(v2+)

1024*1024*1024*
1024 1TB 1099511627776 System.Int64

pb or PB
(v2+)

1024*1024*1024*
1024*1024 1PB 1125899906842624 System.Int64

Note

Yes, the PowerShell team is aware that these notations aren’t consistent with the ISO/IEC
recommendations (kilobyte, and so on). Because the point of this notation is convenience and
most IT people are more comfortable with KB than with Ki, they choose to err on the side of
comfort over conformance in this one case.

Hexadecimal literals

The last item we’ll cover in this section is hexadecimal literals. When working with computers,
it’s obviously useful to be able to specify hex literals. PowerShell uses the same notation as C,
C#, and so on—preceding the number with the sequence 0x and allowing the letters A–F as the
extra digits. As always, the notation is case-insensitive, as shown in the following examples:

PS> 0x10

16

PS> 0xDeadBeef

-559038737

Now that we’ve covered the basic literals, strings, and numbers, let’s move on to the literals that
let you express complex configuration data, inline in your script.

(61)

2.3. Collections: dictionaries and hashtables

Perhaps the most flexible data type in PowerShell is the hashtable. This data type lets you map a
set of keys to a set of values. For example, you may have a hashtable that maps “red” to 1,
“green” to 2, and “yellow” to 4.

Note

A dictionary is the general term for a data structure that maps keys to values. In the .NET world,
this takes the form of an interface (System.Collections.IDictionary) that describes how a
collection should do this mapping. A hashtable is a specific implementation of that interface.
Although the PowerShell hashtable literal syntax only creates instances of
System.Collections.Hashtable, scripts that you write will work properly with any object that
implements IDictionary.

2.3.1. Creating and inspecting hashtables

In PowerShell, you use hash literals to create a hashtable inline in a script. Here’s a simple
example:

PS> $user = @{ FirstName = 'John'; LastName = 'Smith';

PhoneNumber = '555-1212' }

PS> $user

Key Value

--- -----

LastName Smith

FirstName John

PhoneNumber 555-1212

This example created a hashtable that contains three key-value pairs. The hashtable starts with
the token @{ and ends with }. Inside the delimiters, you define a set of key-value pairs where the
key and value are separated by an equals sign (=). Formally, the syntax for a hash literal is

<hashLiteral> = '@{' <keyExpression> '=' <pipeline> [<separator> <keyExpression> '='

<pipeline>] * '}'

Hashtable definitions

We showed you this code to create a hashtable:

$user = @{ FirstName = 'John'; LastName = 'Smith';

PhoneNumber = '555-1212' }

$user

This is a shorthand way of creating a hashtable that we use at the command line that we’ve also
adopted throughout the book to save space. You could create the hashtable like this:

$user = @{

FirstName = 'John'

LastName = 'Smith'

PhoneNumber = '555-1212'

(62)

}

Each member of the key-value pair of the hashtable has its own line. There’s no need to use a
semicolon (;) between key-value pairs.

The semicolons in the original code aren’t part of the hashtable syntax; they’re generic line
breaks used to enable the definition to be expressed on one line.

Now that you’ve created a hashtable, let’s see how you can use it. PowerShell allows you to
access members in a hashtable in two ways: through property notation and through array
notation. Here’s what the property notation looks like:

PS> $user.firstname

John

This notation lets you treat a hashtable like an object and is intended to facilitate the use of
hashtables as a kind of lightweight data record. Now let’s look at using the array notation:

PS> $user['firstname']

John

PS> $user['firstname','lastname']

John

Smith

Property notation works pretty much the way you’d expect; you specify a property name and get
the corresponding value back. Array notation is more interesting. In the second command in the
example, you provided two keys and got two values back.

The underlying object for PowerShell hashtables is the .NET type, System.Collections.Hashtable.
The keys property will give you a list of the keys in the hashtable:

$user.keys

In the array access notation, you can use keys to get a list of all the values in the table:

$user[$user.keys]

Note

A more efficient way to get all the values from a hashtable is to use the Values property. The
point of this example is to demonstrate how you can use multiple indexes to retrieve the values
based on a subset of the keys.

The keys property didn’t return the keys in alphabetical order. This is because of the way
hashtables work—keys are randomly distributed in the table to speed up access. If you need to
get the values in alphabetical order use Sort-Object to perform the ordering.

Note

(63)

The hashtable keys mechanism expects strings, not objects, as keys, so always ensure you
convert any sorted keys to strings before using.

A digression: sorting, enumerating, and hashtables

Let’s digress and address a question that sometimes comes up when people, especially .NET
programmers, first encounter hashtables in PowerShell. The question is: Are hashtables
collections or scalar objects? From the .NET perspective, they’re enumerable collections like
arrays except they contain a collection of key-value pairs. But—and this is important
—PowerShell treats hashtables like scalar objects. It does this because, in scripting languages,
hashtables are commonly used as on-the-fly structures or data records, meaning you don’t have
to predefine the fields in a record; you make them up as you go. If PowerShell treated hashtables
as enumerable collections by default, this wouldn’t be possible, because every time you passed
one of these “records” into a pipeline, it would be broken up into a stream of individual key-
value pairs and the integrity of the original table would be lost.

This causes the most problems for people when they use hashtables in the foreach statement. In a
.NET language like C#, the foreach statement iterates over all the pairs. In PowerShell, the
foreach loop will run only once because the hashtable isn’t considered an enumerable, at least not
by default. If you want to iterate over the pairs, you’ll have to call the GetEnumerator() method
yourself:

PS> $h = @{a=1; b=2; c=3}

PS> foreach ($pair in $h.GetEnumerator()) {

 $pair.key + " is " + $pair.value

}

a is 1

b is 2

c is 3

In each iteration, the next pair is assigned to $pair and processing continues.

A significant part of the reason this behavior confuses people is when PowerShell displays a
hashtable, it uses enumeration to list the key-value pairs as part of the presentation. The result is
there’s no visible difference between when you call GetEnumerator() in the foreach loop and when
you don’t. This is desirable in the sense that it’s a good way to present a hashtable and doesn’t
require effort from the user to do this. On the other hand, it masks the details of what’s going on.
As always, it’s difficult to serve all audiences perfectly.

Another aspect of the hashtable collection question is people want to be able to “sort” a hashtable
the way you’d sort a list of numbers. In the case of a hashtable, this usually means that the user
wants to be able to control the order in which keys will be retrieved from the hashtable.
Unfortunately, this can’t work because the keys are stored in random order.

2.3.2. Ordered hashtables

We stated earlier that a hashtable’s keys were distributed randomly to speed up access. This
causes much anguish among some users when they use a hashtable to supply the properties and
values to be used when creating a new object in PowerShell.

(64)

In PowerShell v3 a resolution to this anguish was introduced in the form of an ordered hashtable.
This is created in much the same way as an ordinary hashtable except you add the [ordered] cast:

PS> $usero = [ordered]@{ FirstName = 'John'; LastName = 'Smith';

 PhoneNumber = '555-1212' }

PS> $usero

Name Value

---- -----

FirstName John

LastName Smith

PhoneNumber 555-1212

The underlying .NET type for an ordered hashtable is
System.Collections.Specialized.OrderedDictionary as opposed to the standard hashtable, which is
System.Collections.Hashtable. The two .NET types are similar, though not identical, as you’d
expect. You use an ordered hashtable in the same way as an ordinary hashtable.

The most important difference is the order of the keys is preserved in the ordered hashtable. But
there’s one “gotcha” with the way this was implemented. The OrderedDictionary type has two
ways of retrieving elements from the collection: by key or by the numerical index of the element.
In practice, this means you get some unfortunate effects when using integers as keys. The first
problem occurs when assigning elements to the hashtable. First, you’ll create an ordered
dictionary:

PS> $oh = [ordered] @{ }

Then add an element where the key is the integer 5 and the value is the string “five”:

PS> $oh[5] = 'five'

Specified argument was out of the range of valid values.

Parameter name: index

At line:1 char:1

+ $oh[5] = 'five'

+ ~~~~~~~~~~~~~~~

 + CategoryInfo : OperationStopped: (:) [], ArgumentOutOfRangeException

 + FullyQualifiedErrorId : System.ArgumentOutOfRangeException

This results in an error message because the OrderedCollection interprets the key 5 as an index
into the collection. Because there’s no element 5, it fails. There’s a (somewhat awkward)
workaround where you cast 5 to [object]—it’s still a number but now the runtime will use key-
based lookup instead of numeric index lookup:

PS> $oh[[object] 5] = 'five'

Now the assignment succeeds but you have to do the same trick to retrieve the element by key:

PS> $oh[[object] 5]

five

If you pass a number without the explicit cast, it will look up using the element index. The
correct element index for the key 5 is 0:

PS> $oh[0]

five

Hopefully you won’t encounter this problem but it’s handy to understand what’s going on.

2.3.3. Modifying and manipulating hashtables

(65)

Next let’s look at adding, changing, and removing elements in the hashtable. First let’s add the
date and the city where the user lives to the $user table:

PS> $user.date = Get-Date

PS> $user['city'] = 'Seattle'

PS> $user

Name Value

---- -----

date 09/06/2017 15:18:12

city Seattle

PhoneNumber 555-1212

FirstName John

LastName Smith

A simple assignment using either the property or array accessor notation allows you to add, or
modify, an element to a hashtable. If you want to remove an element from the table use the
remove() method:

PS> $user.remove("city")

If you want to create an empty hashtable, use @{ } with no member specifications between the
braces. This creates an empty table you can then add members to incrementally:

PS> $newHashTable = @{}

PS> $newHashTable

PS> $newHashTable.one = 1

PS> $newHashTable.two = 2

PS> $newHashTable

Key Value

--- -----

two 2

one 1

This technique can also be used for an ordered hashtable.

2.3.4. Hashtables as reference types

Hashtables are reference types. As an example, create a hashtable, assign it to a variable $foo, as
shown in the top part of figure 2.3. Then assign $foo to another variable, $bar; you’ll have two
variables that point to, or reference, the same object, as shown in the bottom part of figure 2.3.

Figure 2.3. Hashtable as a reference type

Consequently, any changes made to one variable will affect the other, because they’re pointing to
the same object. Let’s try this out. Create a new hashtable and assign it to $foo:

PS> $foo = @{

 a = 1

 b = 2

(66)

 c = 3

}

PS> $foo.a

1

Now assign $foo to $bar and verify it matches $foo as you’d expect:

PS> $bar = $foo

PS> $bar.a

1

Next assign a new value to the element a in $foo:

PS> $foo.a = "Hi there"

PS> $foo.a

Hi there

And see what happens to $bar:

PS> $bar.a

Hi there

The change made to $foo has been reflected in $bar.

Now if you want to make a copy of the hashtable instead of copying the reference, you can use
the Clone() method on the object:

PS> $foo=@{a=1; b=2; c=3}

PS> $bar = $foo.Clone()

Change the a member in the table:

PS> $foo.a = "Hello"

and verify the hashtable in $foo has changed:

PS> $foo.a

Hello

but the hashtable in $bar hasn’t:

PS> $bar.a

1

because it’s a copy, not a reference. This technique can be useful if you’re creating a number of
tables that are mostly the same. You can create a “template” table, make copies, and then change
the pieces you need to.

There’s still more to know about hashtables and how they work with operators, but we’ll cover
that in chapters 3 and 4. For now, let’s move on to the next data type.

(67)

2.4. Collections: arrays and sequences

In the previous section we talked about hashtables and hash literals. Now let’s talk about the
PowerShell syntax for arrays and array literals. Most programming languages have some kind of
array literal notation similar to the PowerShell hash literal notation, where there’s a beginning
character sequence followed by a list of values, followed by a closing character sequence. Here’s
how array literals are defined in PowerShell: They’re not. There’s no array literal notation in
PowerShell.

Yes, you read that correctly. There’s no notation for an array literal in PowerShell. How exactly
does this work? How do you define an inline array in a PowerShell script? Here’s the answer:
Instead of having array literals, there’s a set of operations that creates collections as needed. In
fact, collections of objects are created and discarded transparently throughout PowerShell. If you
need an array, one will be created for you. If you need a singleton (or scalar) value, the collection
will be unwrapped as needed.

Note

Since PowerShell v3, any object is treated as a pseudo-array and has a Count property. This is to
remove issues where pipelines could return one, or many, objects. The single object case would
cause errors in code designed for a collection of many objects.

2.4.1. Collecting pipeline output as an array

The most common operation resulting in an array in PowerShell is collecting the output from a
pipeline. When you run a pipeline that emits a sequence of objects and assign that output to a
variable, it automatically collects the elements into an array, specifically into a .NET object of
type [object[]].

But what about building a simple array in an expression? The simplest way to do this is to use
the comma operator (,). See chapter 4 for more information about using the comma operator.
When you assign that sequence to a variable, it’s stored as an array. Assign these three numbers
to a variable, $a, and look at the result type:

PS> $a = 1,2,3

PS> $a.GetType().FullName

System.Object[]

As in the pipeline case, the result is stored in an array of type [object[]].

2.4.2. Array indexing

Let’s explore some of the operations that can be performed on arrays. As is commonly the case,
getting and setting elements of the array (array indexing) is done with [] brackets. The length of
an array can be retrieved with the Length property.

(68)

Note

Arrays in PowerShell are origin-zero—the first element in the array is at index 0, not index 1.

As with hashtables, changes are made to an array by assigning new values to indexes in the
array. The following example assigns new values to the first and third elements in $a:

PS> $a[0] = 3.1415

PS> $a[2] = 'Hi there'

Simple assignment updates the element at the specified index.

2.4.3. Polymorphism in arrays

Another important thing to note from the previous example is arrays are polymorphic by default.
By polymorphic we mean you can store any type of object in an array. When you created the
array, you assigned only integers to it. In the subsequent examples, you assigned a floating-point
number and a string. The original array was capable of storing any kind of object. In formal
terms, PowerShell arrays are polymorphic by default (though it’s possible to create type-
constrained arrays).

Attempts to assign outside the bounds of an array will result in a range error. This is because
PowerShell arrays are based on .NET arrays and their size is fixed. You can add elements
through array concatenation using the plus (+) or plus-equals (+=) operators. Now add two more
elements to the array from the previous example:

PS> $a += 22,33

PS> $a.length

5

PS> $a[4]

33

So, the length of the array in $a is now 5. The addition operation did add elements. Here’s how
this works:

1. PowerShell creates a new array large enough to hold the total number of elements.
2. It copies the contents of the original array into the new one.
3. It copies the new elements into the end of the array.

You didn’t add any elements to the original array after all. Instead, you created a new, larger one.

2.4.4. Arrays as reference types

This copying behavior has some interesting consequences. You can explore this further by first
creating a simple array and looking at the value using string expansion:

PS> $a=1,2,3

PS> "$a"

1 2 3

Now assign $a to a new variable, $b, and check that $a and $b have the same elements:

PS> $b = $a

PS> "$b"

(69)

1 2 3

Changing the first element in $a also causes $b to change:

PS> $a[0] = 'Changed'

PS> "$a"

Changed 2 3

PS> "$b"

Changed 2 3

As with hashtables, array assignment is done by reference. When you assigned $a to $b, you got a
copy of the reference to the array instead of a copy of contents of the array. Add a new element
to $b:

PS> $b += 4

PS> "$b"

Changed 2 3 4

$b is now four elements long. Because of the way array concatenation works, $b contains a copy
of the contents of the array instead of a reference. If you change $a now, it won’t affect $b.
Conversely, changing $b will have no effect on $a.

To reiterate, arrays in PowerShell are reference types, not value types. When you assign them to
a variable, you get another reference to the array, not another copy of the array.

2.4.5. Singleton arrays and empty arrays

You saw how to use the comma operator to build up an array containing more than one element.
You can also use the comma operator as a prefix operator to create an array containing only one
element. For example:

PS> (, 1).length

1

This code creates an array containing a single element, 1.

Empty arrays are created through a special form of subexpression notation that uses the @ symbol
instead of the $ sign to start the expression. Here’s what it looks like:

PS> @().length

0

This notation is more general—it takes the result of the expression it encloses and ensures it’s
always returned as an array. If the expression returns $null or a scalar value, it will be wrapped in
a one-element array. Given this behavior, the other solution to creating an array with one element
is

PS> @(1)

1

PS> @(1).length

1

You place the value you want in the array in @(...) and you get an array back.

Use this notation when you don’t know whether the command you’re calling is going to return
an array. By executing the command in this way, you’re guaranteed to get an array back. Note if
what you’re returning is already an array, it won’t be wrapped in a new array. Compare this to

(70)

the use of the comma operator:

PS> (1,2,3).Length

3

PS> (, (1,2,3)).Length

1

PS> (@(1,2,3)).Length

3

Line 1 created a regular array of length 3. Next, on line 2, you apply the prefix operator to the
array and then get the length. The result now is only 1. This is because the unary comma operator
always wraps its arguments in a new array. On line 3, you use the @(...) notation and then get
the length. This time it remains 3. The @(...) sequence doesn’t wrap unless the object isn’t an
array.

Now let’s look at the last type of literal: the type literal. Because object types are so important in
PowerShell, you need to be able to express types in a script.

(71)

2.5. Type literals

In earlier sections you saw a number of things that looked like [type]. These are the type literals.
In PowerShell, you use type literals:

To specify a particular type
As operators in a cast (converting an object from one type to another)
As a part of a type-constrained variable declaration
As an object itself

Here’s an example of a cast using a type literal:

PS> $i = [int] '123'

In this example, you’re casting or converting a string into an instance of .NET type System.Int32.
You could use the longer .NET type name to accomplish the same thing:

PS> $i = [System.Int32] '123'

Now let’s look at something a bit more sophisticated. If you wanted to make this into an array of
integers, you’d do this:

PS> $i = [int[]] '123'

In this example, you’re not only casting the basic type, you’re also changing it from a scalar
object to an array. This breaks the general type converter rule that no more than one conversion
will be performed in a single step but converting a scalar into an array is so common it’s
supported directly.

Note

In PowerShell v1 you had to use a two-step process: $i = [int[]][object[]] '123'.

2.5.1. Type name aliases

Obviously, the shorter type name (or type alias, as it’s known) is more convenient. The number
of type aliases has grown to 93 in PowerShell v5.1. You can view the list like this:

PS> $tna = [psobject].Assembly.

GetType('System.Management.Automation.TypeAccelerators')::Get

PS> $tna.GetEnumerator() | Sort-Object Key

Anything in the System.Management.Automation namespace is specific to PowerShell. The other
types are .NET types and are covered in the MSDN documentation.

Type resolution

When PowerShell resolves a type name, it first checks the type name alias table; then it checks to

(72)

see whether a type exists with a full name that matches the string specified. Finally, it prepends
the type with System and checks to see whether a type exists that matches the new string. This
means things that are in the System namespace look like they might be aliased.

2.5.2. Generic type literals

There’s a special kind of type in .NET called a generic type, which lets you say something like
“a list of strings” instead of “a list” (compare with the standard types described in section 2.1).
And although you could do this without generics, you’d have to create a specific type for the
type of list. With generics, you create one generic list type (hence the name) and then
parameterize it with the type it can contain.

Note

Generic type literal support was added in v2. In v1 it was possible to express a type literal, but it
was a painful process.

This example shows the type literal for a generic list (System.Collections.Generic.List) of
integers:

PS> [system.collections.generic.list[int]] | Format-Table -Autosize

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True List`1 System.Object

If you look at the type literal, it’s easy to see how the collection element type is expressed: [int].
This is a nested type literal where the type parameter is enclosed in nested [] brackets. Create an
instance of this type:

PS> $l = New-Object System.Collections.Generic.List[int]

then add some elements to it:

PS> $l.add(1)

PS> $l.add(2)

Trying to add something that isn’t an integer will cause an error because the value can’t be
converted into an integer.

Now let’s look at a type that requires more than one type parameter. For example, a generic
dictionary requires two type parameters: the type of the keys and the type of the values. Here’s
what this looks like:

PS> [system.collections.generic.dictionary[string,int]] |

Format-Table -Autosize

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True Dictionary`2 System.Object

The two type parameters are separated by a comma inside the [] brackets.

(73)

Now let’s take a trip into the too-much-information zone and look in detail at the process
PowerShell uses to perform all these type conversions. This is a “spinach” section—you may not
like it, but it’s good for you.

The primary uses for type literals are in performing type conversions and invoking static
methods. We’ll look at both uses in the next two sections.

2.5.3. Accessing static members with type literals

As mentioned, a common use for type literals is for accessing static methods on .NET classes.
You can use the Get-Member cmdlet to look at the members on an object. To view the static
members, use the -Static flag:

PS> [string] | Get-Member -Static

This code will display all the static members in the .NET System.String class. If you want to call
one of these methods, you need to use the :: operator. Let’s use the Join() method to join an
array of strings. First create the array:

PS> $s = 'one','two','three'

then use the Join() method to join all the pieces into a single string with plus signs in between:

PS> [string]::Join(' + ', $s)

one + two + three

Another good example of the power of static methods is the [math] class from the .NET
Framework. This class, [System.Math], is a pure static class, meaning you can’t create an instance
of it—you can only use the static methods it provides. It contains a lot of methods and properties,
such as useful constants like Pi and e as static properties and all the trigonometric functions as
static methods.

As we’ve said, types in PowerShell provide tremendous power and breadth of capabilities. In
many cases, before rolling your own solution it’s worth browsing the MSDN documentation on
the .NET libraries to see if there’s something you can use to solve your problems. Now that
you’ve seen the types, let’s look at how PowerShell does type conversions.

(74)

2.6. Type conversions

Automatic type conversion is the “secret sauce” that allows a strongly typed language like
PowerShell to behave like a typeless command-line shell. Without a comprehensive type-
conversion system to map the output of one command to the input type required by another
command, PowerShell would be nearly impossible to use as a shell.

In the next few sections we’ll go through an overview of how the type-conversion system works.
Then we’ll look at the conversion algorithm in detail. Finally, we’ll explore special conversion
rules that apply only when binding cmdlet parameters.

2.6.1. How type conversion works

Type conversions are used any time an attempt is made to use an object of one type in a context
that requires another type (such as adding a string to a number). Examples include:

Converting a string input to a cmdlet parameter to a number as required by the cmdlet
Casting operations in the shell

In PowerShell, you use types to accomplish many things that you’d do with methods or functions
in other languages. You use type literals as operators to convert (or cast) one type of object to
another. Here’s a simple example:

PS> [int] '0x25'

37

In this example, a string representing a hexadecimal number is converted into a number by using
a cast operation. A token specifying the name of a type in brackets can be used as a unary
operator that will try to convert its argument into the desired type. These type cast operations can
be composed (several casts can be chained together):

PS> [int] [char]'a'

97

Notice you first cast the string into a char and then into an int. This is necessary because the
simple conversion would try to parse the entire string as a number. This only works for a string
containing exactly one character. If you want to convert an entire string, you need to use array
types. Here’s what that looks like:

PS> [int[]] [char[]] 'Hello world'

The string was split into an array of characters, then that array of characters was converted into
an array of integers. If you wanted to see those numbers in hex, you’d have to use the –f format
operator and a format-specifier string:

PS> "0x{0:x}" -f [int] [char] 'a'

0x61

If you want to make a roundtrip—string to char to int to char to string—you can do this:

PS> [string][char][int] ("0x{0:x}" -f [int] [char] 'a')

a

(75)

When PowerShell converts arrays to strings, it takes each array element, converts that element
into a string, and then concatenates all the pieces together. Because this would be an unreadable
mess, it inserts a separator between each element. That separator is specified using the $OFS
variable (see the about_Automatic_Variables help file) which defaults to a single space. It can be
set to anything you want, even the empty string.

Note

Variable expansion in strings goes through the same mechanism as the type converter, so you’ll
get the same result.

2.6.2. PowerShell’s type-conversion algorithm

In this section we’ll cover the steps in the conversion process in painful detail—much more than
you’ll generally need to know in your day-to-day work. But if you want to be an expert on
PowerShell, this stuff is for you. In general, the PowerShell type conversions are separated into
two major buckets.

Note

Type conversion is one of the areas of the PowerShell project that grew organically. The team sat
down, wrote a slew of specifications, threw them out, and ended up doing something completely
different. This is one of the joys of this type of work. Nice, clean theory falls apart when you put
it in front of real people. The type-conversion algorithm as it exists today is the result of
feedback from many of the early adopters both inside Microsoft as well as outside. The
PowerShell community helped tremendously in this area.

PowerShell language standard conversions

These standard built-in conversions performed by the engine itself. They’re always processed
first and can’t be overridden. This set of conversions is largely guided by the historical behavior
of shell and scripting languages, and isn’t part of the normal .NET type-conversion system.

.NET-based custom converters

.NET-based custom converters use (and abuse in some cases) existing .NET mechanisms for
doing type conversion.

Table 2.5 lists the set of built-in language conversions that PowerShell uses. The conversion
process always starts with an object of a particular type and tries to produce a representation of
that object in the requested target type. The conversions are applied in the order shown in table
2.5. Only one conversion is applied at a time. The PowerShell engine doesn’t automatically chain
conversions.

(76)

Table 2.5. PowerShell language standard conversions

Converting from To target type Result description

$null [string] ''(empty string)
 [char] '0' (string containing a single character 0)

 Any kind of
number

The object corresponding to 0 for the
corresponding numeric type

 [bool] $false
 [PSObject] $null

 Any other type
of object $null

Derived class Base class The original object is returned unchanged.
Anything [void] The object is discarded.

Anything [string] The PowerShell internal string converter is
used.

Anything [xml] The original object is first converted into a
string and then into an XML document object.

Array of type [X] Array of type
[Y]

PowerShell creates a new array of the target
type, then copies and converts each element in
the source array into an instance for the target
array type.

Non-array (singleton) object Array of type
[Y]

Creates an array containing one element and
then places the singleton object into the array,
converting if necessary.

System.Collections.IDictionary [Hashtable]

A new instance of
System.Collections.Hashtable is created, and
then the members of the source IDictionary are
copied into the new object.

[string] [char[]] Converts the string to an array of characters.

[string] [regex] Constructs a new instance of a .NET regular
expression object.

[string] Number

Converts the string into a number using the
smallest representation available that can
accurately represent that number. If the string
isn’t purely convertible (only contains numeric
information), then an error is raised.

[int] System.Enum
Converts the integer to the corresponding
enumeration member if it exists. If it doesn’t, a
conversion error is generated.

If none of the built-in PowerShell language-specific conversions could be applied successfully,
then the .NET custom converters are tried. Again, these converters are tried in order until a
candidate is found that will produce the required target type. This candidate conversion is
applied. If the candidate conversion throws an exception (a matching converter is found but it
fails during the conversion process), no further attempt to convert this object will be made, and
the overall conversion process will be considered to have failed.

(77)

Note

Developing an understanding of these conversions depends on a fair knowledge of the .NET type
conversion mechanisms. You’ll need to refer to additional documentation if you want to
understand everything in table 2.6. With the .NET docs, you can see exactly what steps are being
applied in the type-conversion process.

Custom converters are executed in the order described in table 2.6.

Table 2.6. Custom type conversions

Converter type Description

PSTypeConverter

A PSTypeConverter can be associated with a particular type
using TypeConverterAttribute or the <TypeConverter> tag in
the types .ps1xml file. If the value to convert has a
PSTypeConverter that can convert to the target type, then it’s
called. If the target type has a PSTypeConverter that can convert
from values to convert, then it’s called.
The PSTypeConverter allows a single type converter to work
for a number of different classes. For example, an enum type
converter can convert a string to any enum (there doesn’t need
to be separate type to convert each enum). Refer to the
PowerShell SDK documentation from MSDN for complete
details on this converter.

TypeConverter

This is a Common Language Runtime (CLR) defined type that
can be associated with a particular type using the
TypeConverterAttribute or the <TypeConverter> tag in the
types file. If the value to convert has a TypeConverter that can
convert to the target type, then it’s called. If the target type has a
TypeConverter that can convert from the source value, then it’s
called.
The CLR TypeConverter doesn’t allow a single type converter
to work for a number of different classes. Refer to the
PowerShell SDK documentation and the Microsoft .NET
Framework documentation for details on the TypeConverter
class.

Parse() method

If the value to convert is a string and the target type has a
Parse() method, then that Parse() method is called. Parse() is a
well-known method name in the CLR world and is commonly
implemented to allow conversion of strings to other types.

Constructors
If the target type has a constructor that takes a single parameter
matching the type of the value to convert, then this constructor
is used to create a new object of the desired type.
If the value to convert has an implicit cast operator that converts
to the target type, then it’s called. Conversely, if the target type

(78)

Implicit cast operator has an implicit cast operator that converts from value to
convert’s type, then that’s called.

Explicit cast operator

If the value to convert has an explicit cast operator that converts
to the target type, then it’s called. Alternatively, if the target
type has an explicit cast operator that converts from value to
convert’s type, then that’s called.

IConvertable System.Convert.ChangeType is then called.

This section covered the set of type conversions that PowerShell will apply in expressions. In the
parameter binder are a few extra steps that are applied first.

2.6.3. Special type conversions in parameter binding

In this section we’ll go over the extra type-conversion rules that are used in parameter binding
that haven’t already been covered. If these steps are tried and aren’t successful, the parameter
binder goes on to call the normal PowerShell type-converter code.

Note

If at any time failure occurs during the type conversion, an exception will be thrown.

Here are the extra steps:

1. If there’s no argument for the parameter, the parameter type must be either a [bool] or the
special PowerShell type SwitchParameter; otherwise, a parameter binding exception is
thrown. If the parameter type is a [bool], it’s set to true. If the parameter type is a
SwitchParameter, it’s set to SwitchParameter.Present.

2. If the argument value is null and the parameter type is [bool], it’s set to false. If the
argument value is null and the parameter type is SwitchParameter, it’s set to
SwitchParameter.Present. Null can be bound to any other type, so it passes through.

3. If the argument type is the same as the parameter type, the argument value is used without
any type conversion.

4. If the parameter type is [object], the current argument value is used without any coercion.
5. If the parameter type is a [bool], use the PowerShell Boolean IsTrue() method to determine

whether the argument value should set the parameter to true or false.
6. If the parameter type is a collection, the argument type must be encoded into the

appropriate collection type. You’ll encode a scalar argument type or a collection argument
type to a target collection parameter type. You won’t encode a collection argument type
into a scalar parameter type (unless that type is System.Object or PSObject).

7. If the argument type is a scalar, create a collection of the parameter type (currently only
arrays and IList are supported) of length 1 and set the argument value as the only value in
the collection. If needed, the argument type is converted to the element type for the
collection using the same type-coercion process this section describes.

8. If the argument type is a collection, create a collection of the parameter type with length
equal to the number of values contained in the argument value. Each value is then coerced
to the appropriate element type for the new collection using the recursive application of

(79)

this algorithm.
9. If none of these steps worked, use the conversions in table 2.5. If those fail, then the

overall parameter binding attempt fails.

Once again, this is a level of detail that you don’t often need to consider, but it’s useful to know
it’s available when you need it.

Scriptblock parameters

And finally, there’s one last aspect of the parameter binder type converter to cover: a feature
called scriptblock parameters.

First, a preview of things to come. PowerShell has something called a scriptblock which is a
fragment of code that you can pass around as an object itself. This is a powerful concept, and
we’ll cover scriptblocks in great detail in later chapters, but for now we’re going to look at them
in the context of parameter binding.

Here’s how scriptblock parameters work. Normally, when you pipe two cmdlets together, the
second cmdlet receives values directly from the first. Scriptblock parameters (you could also call
them computed parameters) allow you to insert a piece of script to perform a calculation or
transformation in the middle of the pipelined operation. This calculation can do pretty much
anything you want because a scriptblock can contain any element of PowerShell script.

Here’s an example of how this works. You want to take a collection of XML files and rename
them as text files. You could write a loop to do the processing, but scriptblock parameters greatly
simplify this task. To rename each file, use the Rename-Item cmdlet. This cmdlet takes two
parameters: the current filename and the new name. Use a scriptblock parameter as an argument
to the -NewName parameter to generate the new filename. This scriptblock will use the -replace
operator to replace the .xml file extension with the desired .txt. Here’s the command line that
performs this task:

PS> Get-ChildItem -Path *.xml |

Rename-Item -Path {$_.Name} `

-NewName {$_.Name -replace '\.xml$', '.txt'} -Whatif

The original path for -Path is the current name of the file. The -NewName parameter is the filename
with the extension replaced. The -WhatIf parameter will let you see what the command will do
before moving anything. Once you’re happy that the correct operations are being performed,
remove the -WhatIf and the renaming will proceed.

Scriptblock parameters can be used with any pipelined parameter as long as the type of that
parameter isn’t [object] or [scriptblock]. In these cases, the scriptblock is passed as the
parameter instead of using it to calculate a new value. You’ll see why this is important when we
look at the Where-Object and ForEach-Object cmdlets.

You now know everything you need to know about how types work on PowerShell. Well, not
quite everything. In the next two chapters, we’ll discuss how the PowerShell operators build on
this basic type foundation. But for now, we’re through!

(80)

2.7. Summary

PowerShell is built on the .NET type system and can extend those types as required.
PowerShell has a set of basic types for working with strings and numbers.
PowerShell supports advanced types such as hashtables and arrays.
Type literals can be used in type casts and as a way to call static methods.
Generic type literals greatly simplify working with generic types.
PowerShell automatically manages a large number of type conversions.
Scriptblock parameters allow you to calculate new values for pipelined parameters instead
of having to write a loop to do this (we’ll look at scriptblocks in detail in chapter 7).

We’ve mentioned operators a few times in this chapter—they’re how PowerShell performs a
number of actions. Chapter 3 will introduce the basic operators used in PowerShell.

(81)

Chapter 3. Operators and expressions
This chapter covers

Arithmetic operators
Assignment operators
Comparison operators
Pattern matching and text manipulation
Logical and bitwise operators

Operators, Mr. Rico! Millions of them!

Robert A. Heinlein, Starship Troopers (paraphrased)

The goal of PowerShell is to enable you to get real work done. As in any language, expressions
consist of operators and objects. The operators perform their operations on objects, giving you
(hopefully) useful results. This chapter covers the set of basic operators in PowerShell and how
they’re used in expressions. Without operators PowerShell can’t perform comparisons,
arithmetic, logical operations, or a host of other activities. The operators we’re going to cover in
this chapter are shown in figure 3.1.

Figure 3.1. Broad groups of operators we’ll cover in this chapter

(82)

Note

(83)

Operators are normally classed as unary if they take a single operand and binary if they take two.
The operators in this chapter are all binary. We’ll look at unary operators in chapter 4.

As you’ll see, PowerShell has lots of operators. PowerShell operators are typically more
powerful than the corresponding operators in conventional languages such as C# or Java. If you
invest the time to learn what the PowerShell operators are and how they work, in a single line of
code you’ll be able to accomplish tasks that would normally take a significant amount of
programming.

One of the characteristics that makes PowerShell operators so powerful is they’re polymorphic.
This means they work on more than one type of object. Although this is generally true in other
object-based languages, in those languages the type of the object defines the behavior of the
operator.

Note

If you’re a C# or Visual Basic user, here’s something you might want to know. In “conventional”
.NET languages, the operator symbols are mapped to a specific method name on a class called
op_<operatorName>. For example, in C#, the plus operator (+) maps to the method op_Addition().
Although PowerShell is a .NET language, it takes a different approach that’s more consistent
with dynamic scripting languages, as you’ll see in the following sections.

In PowerShell, the interpreter primarily defines the behavior of the operators, at least for
common data types: strings, numbers, hashtables, and arrays. Type-based polymorphic methods
are only used as a backup. This allows PowerShell to provide more consistent behavior over this
range of common objects and higher-level behaviors than are provided by the objects
themselves, especially when dealing with collections. We’ll cover these special behaviors in the
sections for each class of operator. Now let’s get going and start looking at the operators.
PowerShell has help files that describe all operators by groups. You can view a list of the
available help files that relate to operators:

PS> Get-Help operator

(84)

3.1. Arithmetic operators

First we’ll cover the basic arithmetic operators shown in figure 3.2.

Figure 3.2. Arithmetic operators in PowerShell that will be covered in this section

We touched on the polymorphic behavior of these operators briefly in chapter 2, where we
discussed type conversions. The operators themselves are listed with examples in table 3.1.

Table 3.1. Basic arithmetic operators in PowerShell

Operator Description Example Result

+ Add two values 2 + 4 6
 'Hi ' + 'there' 'Hi there'
 1,2,3 + 4,5,6 1,2,3,4,5,6
* Multiply two values 2 * 4 8
 'a' * 3 'aaa'
 1,2 * 2 1,2,1,2

- Subtract one value from
another 6 - 2 4

/ Divide two values 6 / 2 3
 7 / 4 1.75

% Return the remainder from a
division operation (modulus) 7 % 4 3

In terms of behavior, the most interesting operators are + and *. We’ll cover them in detail in the
next two sections.

3.1.1. Addition operator

As mentioned earlier, PowerShell defines the behavior of the + and * operators for numbers,
strings, arrays, and hashtables:

Adding or multiplying two numbers produces a numeric result following the numeric
widening rules.
Adding two strings performs string concatenation, resulting in a new string.
Adding two arrays joins the two arrays (array concatenation), producing a new array.
Adding two hashtables creates a new hashtable with combined elements.

(85)

The interesting part occurs when you mix operand types. In this situation, the type of the left
operand determines how the operation will proceed, as shown in table 3.2.

Table 3.2. Result of addition operations

Left operand Right operand Result

Number Anything PowerShell will convert the right operand to a
number.

String Anything
PowerShell will convert the right operand to a
string and append to the left operand (string
concatenation).

Array or collection Scalar PowerShell will add the right operand to a
collection.

Array or collection Array or other
enumerable collection

PowerShell will append the right operand to a
collection.

If any of the conversions described in table 3.2 fail, an error will be thrown.

Note

The “left-hand” rule for arithmetic operators: the type of the left operand determines the type of
the overall operation. This is an important rule to remember.

At this point, it’s probably a good idea to reiterate how array concatenation is done in
PowerShell. Because the underlying .NET array objects are of fixed size (as discussed in chapter
2), concatenation is accomplished by creating a new array of type [object[]] and copying the
elements from the operands into this new array. In the process of creating the new array, any type
constraint on the original arrays will be lost. If the left operand is [int[]]—an array of type [int]
—and you add a non-numeric string to it, a new array will be created that will be of type
[object[]], which can hold any type of object. Modifying an array in this manner is common
practice when storing data from a number of sources in your script prior to output.

Let’s look at an example. First create an integer array:

PS> $a = [int[]] (1,2,3,4)

Now assign an integer and then a string that can be converted to an integer:

PS> $a[0] = 10

PS> $a[0] = '0xabc'

Both work fine. Finally, try assigning a non-numeric string to the array element:

PS> $a[0] = 'hello'

Cannot convert value "hello" to type "System.Int32".

Error: "Input string was not in a correct format."

At line:1 char:1

+ $a[0] = 'hello'

+ ~~~~~~~~~~~~~~~

(86)

 + CategoryInfo : InvalidArgument: (:) [], RuntimeException

 + FullyQualifiedErrorId : InvalidCastFromStringToInteger

This fails, as you might expect. An array of type [int[]] can hold only integers, and 'hello' can’t
be converted into an integer! So far, so good. Now let’s do an array concatenation:

PS> $a = $a + 'hello'

And now try the assignment that failed previously:

PS> $a[0] = 'hello'

This time the assignment succeeds without error. What happened here? Let’s look at the type of
the array:

PS> $a.GetType().FullName

System.Object[]

When the new, larger array was created to hold the combined elements, it was created as type
[object[]], which isn’t type constrained. It can hold any type of object, so the assignment
proceeded without error.

Finally, let’s see how addition works with hashtables. Similar to arrays, addition of hashtables
creates a new hashtable and copies the elements of the original tables into the new one. The left
elements are copied first; then the elements from the right operand are copied. (This only works
if both operands are hashtables.) If any collisions take place—if the keys of any of the elements
in the right operand match the keys of any element in the left operand—then an error will occur
saying the key already exists in the hashtable. (This was an implementation decision; the
PowerShell team could’ve had the new element overwrite the old one, but the consensus was
generating an error message is usually the better thing to do.)

Now that we’ve finished with addition, let’s move on to the multiplication operator.

3.1.2. Multiplication operator

As with addition, PowerShell defines multiplication behavior for numbers, strings, and arrays.
(PowerShell doesn’t do anything special for hashtables for multiplication.) Multiplying numbers
works as expected and follows the widening rules discussed in chapter 2. In fact, the only legal
right operand for multiplication is a number.

If the operand on the left is a string, then that string is repeated the number of times specified in
the right operand. Let’s try this out. Multiply the string “abc” by 3:

PS> 'abc' * 3

abcabcabc

Try multiplying by 0:

PS> 'abc' * 0

The result appears to be nothing—but which “nothing”—spaces, empty string, or null? Here’s
how to check:

1. Check the type of the result using ('abc' * 0).GetType().FullName, which tells you it’s a
string.

(87)

2. Check the length using ('abc' * 0).Length.

Because the length is 0, you can tell it’s in fact an empty string.

Now let’s look at how multiplication works with arrays. As with strings, multiplication applied
to an array repeats the array. Let’s look at some examples. First create an array with three
elements:

PS> $a=1,2,3

PS> $a.Length

3

and multiply it by 2:

PS> $a = $a * 2

PS> $a.Length

6

The length of the new array is 6. Looking at the contents of the array (using variable expansion
in strings to save space), you see it’s “1 2 3 1 2 3”—the original array doubled.

As with addition, first a new larger array is created during multiplication, and then the
component elements are copied into it. This has the same issue that addition had, where the new
array is created without type constraints. Even if the original array could hold only numbers, the
new array can hold any type of object.

3.1.3. Subtraction, division, and the modulus operators

Addition and multiplication are the most interesting of the arithmetic operators in terms of
polymorphic behavior, but let’s go over the remaining operators. Subtraction, division, and the
modulus (%) operators are only defined for numbers by PowerShell. (Modulus returns the
remainder from a division operation.) Again, as with all numeric computations, the widening
rules for numbers are obeyed. For basic scalar types like strings and numbers, these operations
are only defined for numbers, so if either operand is a number (not merely the left operand), an
attempt will be made to convert the other operand into a number as well.

Note

Here’s an important characteristic about how division works in PowerShell that you should keep
in mind. Integer division underflows into floating point (technically System.Double). This means 5
divided by 4 in PowerShell results in 1.25 instead of 1, as it would in C#. If you want to round
the decimal part to the nearest integer, cast the result into [int]. You also need to be aware that
PowerShell uses what’s called “Banker’s rounding” when converting floating-point numbers into
integers. Banker’s rounding rounds 0.5 up sometimes and down sometimes. The convention is to
round to the nearest even number, so that both 1.5 and 2.5 round to 2, and both 3.5 and 4.5 round
to 4.

If neither operand is a number, you might expect an error, but in PowerShell v5 this will work
because the strings can be converted to numbers:

PS> '123' / '4'

(88)

30.75

In earlier versions of PowerShell, the operation is undefined and you’ll get an error:

PS> '123' / '4'

Method invocation failed because [System.String] doesn't contain

a method named 'op_Division'.

At line:1 char:8

+ '123' / <<<< '4'

Take note of this particular error message, though. PowerShell has no built-in definition for this
operation, so as a last step it looks to see whether the type of the left operand defines a method
for performing the operation. In fact, PowerShell looks for the op_<operation> methods on the left
operand if the operation isn’t one of those defined by PowerShell itself. This allows the operators
to work on types such as System.Datetime (the .NET representation of dates) even though there’s
no special support for these types in PowerShell.

Okay, now that you know all about arithmetic operators and operations in PowerShell, you need
to have a way to save the results of these operations. Variable assignment is the answer, so we’ll
look at assignment and the assignment operators next.

(89)

3.2. Assignment operators

In this section we’ll cover the assignment operators, which are shown in figure 3.3 and listed
with examples in table 3.3. You’ll use these extensively when setting and modifying the values
of variables.

Figure 3.3. PowerShell assignment operators

As you can see, along with simple assignment, PowerShell supports the compound operators that
are found in C-based languages. These compound operators retrieve, update, and reassign a
variable’s value all in one step. The result is a much more concise notation for expressing this
type of operation.

In table 3.3, for each of the compound assignment operators, the third column shows the
equivalent decomposed operation.

Table 3.3. PowerShell assignment operators

Operator Example Equivalent Description

= $a = 3 Sets the variable to the specified value.

+= $a += 2 $a = $a + 2
Performs the addition operation in the existing
value, and then assigns the result back to the
variable.

-= $a -= 13 $a = $a – 13
Performs the subtraction operation in the
existing value, and then assigns the result back
to the variable.

*= $a *= 3 $a = $a * 3 Multiplies the value of a variable by the
specified value or appends to the existing value.

/= $a /= 3 $a = $a / 3 Divides the value of a variable by the specified
value.

%= $a %= 3 $a = $a % 3
Divides the value of a variable by the specified
value and assigns the remainder (modulus) to
the variable.

The arithmetic parts of the compound arithmetic/assignment operators follow all the rules for the
arithmetic operators described in the previous section. The formal syntax for an assignment
expression looks like this:

<lvalueList> <assignmentOperator> <pipeline>

<lvalueList> := <lvalue> [, <lvalue>] *

<lvalue> := <variable> | <propertyReference> | <arrayReference>

(90)

One interesting thing to note from this syntax is that multiple assignments are allowed. For
example, the expression

PS> $a,$b,$c = 1,2,3,4

is a perfectly legal statement. It says, “Assign 1 to $a, assign 2 to $b, and assign the remaining
elements 3 and 4 of the list to $c.” Multiple assignments can be used to greatly simplify certain
types of operations, as you’ll see in the next section.

3.2.1. Multiple assignments

Multiple assignments work only with the basic assignment operator. You can’t use it with any of
the compound operators. But it can be used with any type of assignable expression such as an
array element or property reference. Here’s a quick example where multiple assignments are
particularly useful. The canonical pattern for swapping two variables in conventional languages
is

PS> $temp = $a

PS> $a = $b

PS> $b = $temp

This takes three lines of code and requires you to use a temporary variable. Here’s how to do it
using multiple assignments in PowerShell:

PS> $a,$b = $b,$a

It’s simple and clean—only one line of code with no temporary variables to worry about. So far,
you’ve seen that using multiple assignments can simplify basic operations such as swapping
values. But when combined with some of PowerShell’s other features, it lets you do much more
interesting things than that. You’ll see this in the next section.

3.2.2. Multiple assignments with type qualifiers

This is all interesting, but let’s look at a more practical example. Say you’re given a text file
containing some data that you want to parse into a form you can work with. First let’s look at the
data file:

quiet 0 25

normal 26 50

loud 51 75

noisy 76 100

This file contains a set of sound-level descriptions. The format is a string describing the level,
followed by two numbers describing the upper and lower bounds for these levels out of a
possible 100. You want to read this information into a data structure so you can use it to
categorize a list of sounds later on. Here’s the fragment of PowerShell code needed to do this:

PS> $data = Get-Content -Path data.txt | foreach {

 $e=@{}

 $e.level, [int] $e.lower, [int] $e.upper = -split $_

 $e

}

You start by using the Get-Content cmdlet to write the data into a pipeline. Each line of the file is
sent to the ForEach-Object cmdlet to be processed. The first thing you do in the body of the
ForEach-Object cmdlet is initialize a hashtable in $e to hold the result. You take each line stored in

(91)

the $_ variable and apply the -split operator to it. This splits the string into an array at each space
character in the string. (We cover the -split operator in detail later in this chapter.) Then you
assign the split string to three elements of the hashtable: $e.level, $e.lower, and $e.upper.

But there’s one more thing you want to do. The array being assigned is all strings. For the upper
and lower bounds, you want numbers, not strings. To do this, add a cast before the assignable
element. This causes the value being assigned to first be converted to the target type. The end
result is the upper and lower fields in the hashtable are assigned numbers instead of strings.
Finally, note the result of the pipeline is being assigned to the variable $data, so you can use it
later on.

Let’s look at the result of this execution. Because there were four lines in the file, there should be
four elements in the target array:

PS> $data.Length

4

You see there are. Now let’s see if the value stored in the first element of the array is what you
expect: it should be the “quiet” level:

PS> $data[0]

Key Value

--- -----

upper 25

level quiet

lower 0

You can use the GetType() method to look at the types, and you can see the level description field
is a string and the two bounds fields are integers, as expected.

In this last example, you’ve seen how array assignment can be used to perform sophisticated
tasks in only a few lines of code. By now, you should have a good sense of the utility of
assignments in processing data in PowerShell. There’s one last point to cover about assignment
expressions, which we’ll discuss in the next section.

3.2.3. Assignment operations as value expressions

The last thing you need to know about assignment operators is they’re expressions. This means
you can use them anywhere you’d use any other kind of expression. This lets you initialize
multiple variables at once. Let’s initialize $a, $b, and $c to the number 3:

PS> $a = $b = $c = 3

What exactly happened? Well, it’s the equivalent of the following expression:

PS> $a = ($b = ($c = 3))

$c is assigned 3. The expression ($c = 3) returns the value 3, which is in turn assigned to $b, and
the result of that assignment (also 3) is finally assigned to $a, so once again, all three variables
end up with the same value.

Note

(92)

The three variables are totally independent—not references to the same object.

Now, because you can “intercept” the expressions with parentheses, you can perform additional
operations on the values returned from the assignment statements before this value is bound in
the outer assignment. Here’s an example that does this:

PS> $a = ($b = ($c = 3) + 1) + 1

In this expression, $c gets the value 3. The result of this assignment is returned, and 1 is added to
that value, yielding 4, which is then assigned to $b. The result of this second assignment also has
1 added to it, so $a is finally assigned 5.

Now you understand assignment and arithmetic operators. But a language isn’t much good if you
can’t compare things, so let’s move on to the comparison operators.

(93)

3.3. Comparison operators

In this section we’ll cover what the comparison operators are in PowerShell and how they work.
These operators are shown in figure 3.4. They come into their own when used in the flow-control
statements you’ll see in chapter 5.

Figure 3.4. The comparison operators in PowerShell. The operators beginning with “c” are case-sensitive; all
others are case-insensitive.

We’ll cover how case sensitivity factors into comparisons and how the operators work for scalar
values and for collections of values. The ability of these operators to work on collections
eliminates the need to write looping code in a lot of scenarios.

PowerShell has a sizable number of comparison operators, in large part because there are case-
sensitive and case-insensitive versions of all the operators. These are listed with examples in
table 3.4.

Table 3.4. PowerShell comparison operators

Operator Description Example Result

-eq, –ceq, –ieq Equals 5 –eq 5 $true
-ne, –cne, –ine Not equals 5 –ne 5 $false
-gt, –cgt, –igt Greater than 5 –gt 3 $true
-ge, –cge, –ige Greater than or equal to 5 –ge 3 $true
-lt, –clt, –ilt Less than 5 –lt 3 $false
-le, –cle, -ile Less than or equal to 5 –le 3 $false

In table 3.4, you can see for each operator there’s a base or unqualified operator form, such as -
eq and its two variants, -ceq and -ieq. The “c” variant is case-sensitive, and the “i” variant is
case-insensitive. This raises the question: What’s the behavior for the base operators with respect
to case? The answer is the unqualified operators are case-insensitive. All three variants are
provided to allow script authors to make their intention clear—that they meant a particular
behavior rather than accepting the default.

Design decisions

Let’s talk about the most contentious design decision in the PowerShell language. And the
winner is: Why the heck doesn’t PowerShell use the conventional symbols for comparison like >,
>=, <, <=, ==, and !=? The answer is the > and < characters are used for output redirection. Because

(94)

PowerShell is a shell and all shell languages in the last 30 years have used > and < for I/O
redirection, people expected that PowerShell would do the same. During the first public beta of
PowerShell, this topic generated discussions that went on for months. The PowerShell team
looked at a variety of alternatives, such as modal parsing where sometimes > meant greater than
and sometimes it meant redirection. They looked at alternative character sequences for the
operators like :> or ->, either for redirection or comparison. They did usability tests and held
focus groups, and in the end, settled on what they had started with.

The redirection operators are > and <, and the comparison operators are taken from the UNIX
test(1) command. It’s generally believed that, because these operators have a 30-year pedigree,
they’re adequate and appropriate to use in PowerShell. (It’s also expected that people will
continue to complain about this decision, though hopefully not for 30 more years.)

Now that you’re clear on the case-sensitivity issue, let’s move on to discuss the semantics of the
comparison operators. We’ll begin by describing their operation on scalar data types; then in the
subsequent section we’ll describe how they work with collections of objects.

3.3.1. Scalar comparisons

In this section we’ll explore how the comparison operators work with scalar objects. In
particular, we’ll cover their polymorphic behavior with scalar data types.

Basic comparison rules

As with the assignment operators, the behavior of the comparison operators is significantly
affected by the type of the left operand. If you’re comparing a number and a string, the string will
be converted into a number and a numerical comparison will be done. If the left operand is a
string, the right operand will be converted to a string, and the results compared as strings.

Type conversions and comparisons

As with any PowerShell operator that involves numbers, when comparisons are done in a
numeric context, the widening rules are applied. This produced somewhat unexpected results in
early versions of PowerShell. Here’s an example that illustrates this. In the first part of the
example, you use a cast to convert the string “123” into a number. Once you’re doing the
conversion in a numeric context, the numbers get widened to double because the right operand is
a double; and because 123.4 is larger than 123, the -lt operator returns True:

PS> [int]'123' -lt 123.4

True

Now try it using a string as the right operand. The cast forces the left operand to be numeric, but
the right operand is not yet numeric. It’s converted to the numeric type of the left operand, which
is [int], not [double]. This means the value is truncated and the comparison now returns False:

PS> [int] "123" -lt "123.4"

False

Note

(95)

This behavior has been corrected in later versions of PowerShell (definitely by v5.1) so expect
the previous code to return True.

Finally, if you force the context to be [double] explicitly, the comparison again returns True:

PS> [double] "123" -lt "123.4"

True

Although all these rules seem complicated (and, speaking as the guy [Bruce] who implemented
them, they are), the results are generally what you’d intuitively expect. This satisfies the
principle of least astonishment. Most of the time you don’t need to worry about the specifics and
can let the system take care of the conversions. It’s only when things don’t work as expected that
you need to understand the details of the conversion process. To help you debug cases where this
happens, PowerShell provides a type-conversion tracing mechanism to help you track down the
problems. (Chapter 6 describes how to use this debugging feature.) You can always apply a set
of casts to override the implicit behavior and force the results you want.

3.3.2. Comparisons and case sensitivity

Next let’s look at the “i” and “c” versions of the comparison operators—the case-sensitive and
case-insensitive versions. Obviously, case sensitivity only applies to strings. All the comparison
operators have both versions. For example, the -eq operator has the following variants:

PS> 'abc' -eq 'ABC'

True

PS> 'abc' -ieq 'ABC'

True

PS> 'abc' -ceq 'ABC'

False

The default case -eq is case-insensitive, as is the explicitly case-insensitive operator -ieq, so in
the example, strings “abc” and “ABC” compare as equal. The -ceq operator is case-sensitive, so
with this operator, strings “abc” and “ABC” compare as not equal.

The final item to discuss with scalar comparisons is how things that aren’t strings and numbers
are compared. In this case, the .NET comparison mechanisms are used:

1. If the object implements the .NET IComparable interface, then that will be used.
2. If not, and if the object on the left side has an Equals() method that can take an object of

the type of the right operand, this is used.
3. If there’s no direct mechanism for comparing the two, an attempt will be made to convert

the right operand into an instance of the type of the left operand, and then PowerShell will
try to compare the resulting objects. This is how things such as [DateTime] objects are
compared.

Not all objects are directly comparable. For example, there’s no direct way to compare a
System.DateTime object to a System.Diagnostics.Process object—a type conversion error is the
result. This is where a human has to intervene. The obvious field on a Process object to compare
is the StartTime of the process. Use the property notation to do this:

PS> [DateTime]'1/1/2017' -gt (Get-Process powershell*)[0].StartTime

False

(96)

PS> [DateTime]'1/1/2018' -gt (Get-Process powershell*)[0].StartTime

True

In this expression, you’re looking to see whether the first element in the list of Process objects
had a start time greater than the beginning of this year (no), and whether it had a start time from
before the beginning of next year (obviously true). You can use this approach to find all the
processes on a computer that started today:

PS> Get-Process | where {$_.starttime -ge [DateTime]::today}

The Get-Process cmdlet returns a list of all the processes on this computer, and the Where-Object
cmdlet selects those processes where the StartTime property of the process is greater than or
equal to today.

Note

The where command used in the previous example is an alias for the Where-Object cmdlet, which
is described in chapter 6.

This completes our discussion of the behavior of the comparison operators with scalar data. We
paid a lot of attention to the role types play in comparisons, but so far, we’ve avoided discussing
collection types—lists, arrays, and so on. We’ll get to that next.

3.3.3. Using comparison operators with collections

In this section we’ll focus on the behavior of the comparison operators when they’re used with
collections of objects.

Basic comparison operations involving collections

Here’s the basic behavior. If the left operand is an array or collection, the comparison operation
will return the elements of that collection that match the right operand. This works with strings as
well. When processing the array, the scalar comparison rules are used to compare each element.
In the next example, the left operand is an array containing a mix of numbers and strings, and the
right operand is the string ‘2’:

PS> 1,'2',3,2,'1' -eq '2'

2

2

It returns the two ‘2’s. Let’s look at more examples where you have leading zeros in the
operands:

PS> 1,'02',3,02,'1' -eq '2'

2

PS> 1,'02',3,02,'1' -eq 2

2

When the elements are compared as numbers, they match. When compared as strings, they don’t
match because of the leading zero.

(97)

Containment operators

All of the comparison operators we’ve discussed so far return the matching elements from the
collection. Although this is extremely useful, there are times when you want to find out whether
or not an element is there. This is what the -contains, -notcontains, -in and -notin operators,
shown in figure 3.5, are for.

Figure 3.5. The PowerShell containment operators. Those on the bottom row are case-sensitive and the others
are case-insensitive.

These operators return $true if the set contains the element you’re looking for instead of
returning the matching elements. They’re listed in table 3.5 with examples.

Table 3.5. PowerShell containment operators

Operator Description Example Result

-contains
-ccontains
-icontains

The collection on the
left contains the value
specified on the right.

1,2,3 –contains 2 $true

-notcontains
-cnotcontains
-inotcontains

The collection on the
left doesn’t contain the
value specified on the
right.

1,2,3 –notcontains 2 $false

-in
-cin
-iin

The value specified on
the left is in the
collection on the right.

2 -in 1,2,3 $true

-notin
-cnotin
-inotin

The value specified on
the left isn’t in the
collection on the right.

2 -notin 1,2,3 $false

The -contains operator works like this:

PS> 1,'02',3,02,'1' -contains '02'

True

PS> 1,'02',3,02,'1' -notcontains '02'

False

Now, instead of returning 02 and 2, you return a single Boolean value. Because all values in
PowerShell can be converted into a Boolean value, this doesn’t seem as if it would particularly
matter, and usually it doesn’t. The one case where it does matter is if the matching set of
elements is something that’s false. This even includes Booleans. The concept is easier to
understand with an example:

(98)

PS> $false,$true -eq $false

False

PS> $false,$true -contains $false

True

In the first command, -eq searches the list for $false, finds it, and then returns the matching
value. But because the matching value was literally $false, a successful match looks as if it
failed. When you use the -contains operator in the expression, you get the result you’d expect,
which is $true. The other way to work around this issue is to use the @(...) construction and
the count property:

PS> @($false,$true -eq $false).count

1

The @(...) sequence forces the result to be an array and then takes the count of the results. If
there are no matches the count will be zero, which is equivalent to $false. If there are matches
the count will be nonzero, equivalent to $true. There can also be some performance advantages
to -contains, because it stops looking on the first match instead of checking every element in the
list.

Note

The @(...) construction is described in detail in chapter 4.

It may seem odd to have both a –contains operator and an –in operator. They both appear to do
the same thing but from opposite directions. The –in operator was introduced in PowerShell v3:

PS> 1,2,3 -contains 2

True

PS> 2 -in 1,2,3

True

The –in operator simplifies syntax in certain situations but comes into its own when using the
simplified filter syntax in Where-Object:

PS> $names = 'powershell', 'powershell_ise'

PS> Get-Process | where Name -in $names

The simplified Where-Object syntax takes the form

<property> <operator> <value>

You can’t fit the -contains operator into that pattern as it expects the array to be tested first, so
you have to revert to the full syntax of

PS> Get-Process | where {$names -contains $_.Name}

This isn’t as compact or as intuitive as the simplified syntax.

In this section, we covered all the basic comparison operators. We addressed the issue of case
sensitivity in comparisons, and we covered the polymorphic behavior of these operations. Now
let’s move on to look at PowerShell’s operators for working with text. One of the hallmark

(99)

features of dynamic languages is great support for text manipulation and pattern matching. In the
next section we’ll cover how PowerShell incorporates these features into the language.

(100)

3.4. Pattern matching and text manipulation

In this section we’ll explore the pattern-matching and text-manipulation operators in PowerShell
(see figure 3.6).

Figure 3.6. The pattern-matching and text-manipulation operators in PowerShell. All the operators that use
patterns (everything except -join) have case-sensitive (“c” prefix) and case-insensitive forms.

Beyond the basic comparison operators, PowerShell has a number of pattern-matching operators.
These operators work on strings, allowing you to search through text, extract pieces of it, and
edit or create new strings. The other text-manipulation operators allow you to break strings apart
into pieces or add individual pieces back together into a single string.

We’ll start with the pattern-matching operators. PowerShell supports two built-in types of
patterns: wildcard expressions and regular expressions. Each of these pattern types is useful in
distinct domains. We’ll cover the operation and applications of both types of patterns along with
the operators that use them.

3.4.1. Wildcard patterns and the -like operator

You usually find wildcard patterns in a shell for matching filenames. For example, the command

PS> Get-ChildItem -Path *.txt

finds all the files ending in .txt. In this example, the * matches any sequence of characters.
Wildcard patterns also allow you to specify character ranges. In the next example, the pattern

PS> Get-ChildItem -Path [fm]*.txt

will return all the files that start with either the letter “f” or “m” that have a .txt extension.
Finally, you can use the question mark (?) to match any single character.

The wildcard pattern-matching operators are listed in table 3.6, which includes simple examples
of how each one works.

Table 3.6. PowerShell wildcard pattern-matching operators

Operator Description Example Result

-like, –clike, –ilike Do a wildcard pattern
match. 'one' –like 'o*' $true

(101)

-notlike, –cnotlike, -
inotlike

Do a wildcard pattern
match; true if the
pattern doesn’t match.

'one' –notlike 'o*' $false

You can see from the table that there are several variations on the basic -like operator. These
variations include case-sensitive and case-insensitive versions of the operator, as well as variants
that return true if the target doesn’t match the pattern. Table 3.7 summarizes the special
characters that can be used in PowerShell wildcard patterns.

Table 3.7. Special characters in PowerShell wildcard patterns

Wildcard Description Example Matches Doesn’t match

*
Matches zero or more
characters anywhere in
the string.

a*

a
aa
abc
ab

bc
babc

? Matches any single
character. a?c abc

aXc
a~
ab

[<char>-<char>] Matches a sequential
range of characters. a[b-d]c

abc
acc
adc

aac
aec
afc
abbc

[<char><char>...]
Matches any one
character from a set of
characters.

a[bc]c abc
acc

a
ab
Ac
adc

Although wildcard patterns are simple, their matching capabilities are limited, so PowerShell
also provides a set of operators that use regular expressions.

3.4.2. Regular expressions

Regular expressions (regexes) are conceptually (if not syntactically) a superset of wildcard
expressions. By this, we mean you can express the same patterns in regular expressions that you
can in wildcard expressions, but with slightly different syntax.

Note

In PowerShell, wildcard patterns are translated internally into the corresponding regular
expressions under the covers.

With regular expressions, instead of using * to match any sequence of characters as you would in
wildcard patterns, you use .*; and, instead of using ? to match any single character, you use the
dot (.).

(102)

Although regular expressions are similar to wildcard patterns, they’re much more powerful and
allow you to do sophisticated text manipulation with small amounts of script. The PowerShell
operators –match, -replace, and –split work with regular expressions.

3.4.3. The -match operator

The –match and –replace operators are shown in table 3.8 along with a description and some
examples.

Table 3.8. PowerShell regular expression -match and -replace operators. Note the case-sensitive and case-
insensitive versions of each operator.

Operator Description Example Result

-match
-cmatch
-imatch

Do a pattern match using
regexes. 'Hello' –match '[jkl]' $true

-notmatch
-cnotmatch
-inotmatch

Do a regex pattern match;
return true if the pattern doesn’t
match.

'Hello' –notmatch '[jkl]' $false

-replace
-creplace

Do a regex substitution on the
left string and return the
modified string.

'Hello' –replace 'ello','i' 'Hi'

-ireplace Delete the portion of the string
matching the regex. 'abcde' –replace 'bcd' 'ae'

The -match operator is similar to the -like operator in that it matches a pattern and returns a
result. Along with that result, though, it sets the $matches variable. This variable contains the
portions of the string that are matched by individual parts of the regular expressions. The only
way to clearly explain this is with an example:

PS> 'abcdef' -match '(a)(((b)(c))de)f'

True

PS> $matches

Key Value

--- -----

5 c

4 b

3 bc

2 bcde

1 a

0 abcdef

Here, the string on the left of the -match operator is matched against the pattern on the right. In
the pattern string, you can see a number of components, each of which is a submatch. We’ll get
to why this is important in the next section. The result of this expression was true, which means
the match succeeded. It also means $matches should be set and contains a hashtable where the
keys of the hashtable are indexes that correspond to parts of the pattern that matched. The values
are the substrings of the target string that matched. There’s always a default element that
represents the entire string that matched.

You have the outermost match in index 0, which matches the whole string. Next you have a top-

(103)

level match at the beginning of the pattern that matches “a” at index 1. At index 2, you have the
complete string matched by the next top-level part, which is “bcde”. Index 3 is the first nested
match in that top-level match, which is “bc”. This match also has two nested matches: b at
element 4 and c at element 5.

Matching using named captures

Calculating these indexes is fine if the pattern is simple. If it’s complex, as in the previous
example, it’s hard to figure out what goes where—and even if you do, when you look at what
you’ve written a month later, you’ll have to figure it out all over again. The .NET regular
expression library provides a way to solve this problem by using named captures. You specify a
named capture by placing the sequence ?<name> immediately inside the parentheses that indicate
the match group. This allows you to reference the capture by name instead of by number, making
complex expressions easier to deal with. Here’s what this looks like:

PS> 'abcdef' -match '(?<o1>a)(?<o2>((?<e3>b)(?<e4>c))de)f'

True

PS> $matches

Key Value

--- -----

o1 a

e3 b

e4 c

o2 bcde

1 bc

0 abcdef

Now let’s look at a more realistic example.

Parsing command output using regular expressions

Existing utilities for Windows produce text output, so you have to parse the text to extract
information. (As you may remember, avoiding this kind of parsing was one of the reasons
PowerShell was created. But it still needs to interoperate with the rest of the world.) For
example, the net.exe utility can return information about your computer configuration. The
second line of this output contains the name of the computer. Your task is to extract the name
and domain for this computer from that string. One way to do this is to calculate the offsets and
then extract substrings from the output. This is tedious and error-prone (because the offsets might
change). Here’s how to do it using the $matches variable. First let’s look at the form of this string:

PS> (net config workstation)[1]

Full Computer name brucepay64.redmond.corp.microsoft.com

It begins with a well-known pattern, Full Computer name, so start by matching against that to
make sure there are no errors. You’ll see there’s a space before the name, and the name itself is
separated by a period. You’re pretty safe in ignoring the intervening characters, so here’s the
pattern you’ll use:

PS> $p='^Full Computer.* (?<computer>[^.]+)\.(?<domain>[^.]+)'

You check the string at the beginning, and then allow any sequence of characters that ends with a
space, followed by two fields that are terminated by a dot. Notice that we don’t say that the fields
can contain any character. Instead, they can contain anything but a period. This is because
regular expressions are greedy—they match the longest possible pattern, and because the period

(104)

is any character, the match won’t stop at the period. Now go ahead and apply this pattern:

PS> (net config workstation)[1] -match $p

True

It matches, so you know that the output string was well formed. Now let’s look at what you
captured from the string:

PS> $matches.computer

brucepay64

PS> $matches.domain

redmond

You see that you’ve extracted the computer name and domain as desired. This approach is
significantly more robust than using exact indexing because

You checked with a guard string instead of assuming that the string at index 1 was correct.
You didn’t care about where in the line the data appeared, only that it followed a basic
well-formed pattern.

With a pattern-based approach, output format can vary significantly, and this pattern would still
retrieve the correct data. By using techniques like this, you can write more change-tolerant
scripts than you’d otherwise do.

The -match operator lets you match text. Now let’s look at how to go about making changes to
text. This is what the -replace operator is for, so we’ll explore that next.

3.4.4. The -replace operator

The -replace operator allows you to do regular expression–based text substitution on a string or
collection of strings. For example:

PS> '1,2,3,4' -replace '\s*,\s*','+'

1+2+3+4

What this has done is replace every instance of a comma surrounded by zero or more spaces with
a + sign. A common task is replacing text within a file:

PS> ${c:old.txt} -replace 'is (red|blue)','was $1' > new.txt

The pattern to replace: 'is (red|blue)'—the parentheses establish a submatch. Now look at the
replacement string. It contains '$1', which might be assumed to be a PowerShell variable. But
because the string is in single quotes, it won’t be expanded. Instead, the regular expression
engine uses this notation to allow submatches to be referenced in the replacement expression.
This allows PowerShell to intelligently replace "is" with "was":

PS> 'The car is red' -replace 'is (red|blue)','was $1'

The car was red

The pattern matches "is red" but you only want to replace "is". These substitutions make this
possible. The complete set of substitution character sequences is shown in table 3.9.

Finally, what happens if the pattern doesn’t match? Let’s try it:

PS> 'My bike is yellow' -replace 'is (red|blue)','was $1'

My bike is yellow

(105)

You see if the pattern isn’t matched, the string is returned as is.

Table 3.9. Character sequences for doing substitutions in the replacement pattern for -replace operator

Character sequence Description

$number Substitutes the last submatch matched by group number.

${name} Substitutes the last submatch matched by a named capture of the
form (?<name>).

$$ Substitutes a single "$" literal.
$& Substitutes a copy of the entire match itself.

$` Substitutes all the text from the argument string before the
matching portion.

$' Substitutes all the text of the argument string after the matching
portion.

$+ Substitutes the last submatch captured.
$_ Substitutes the entire argument string.

You can use regular expression substitutions and PowerShell variable expansion at the same time
by escaping the '$' before the substitution with a backtick (`). The result looks like this:

PS> $a = 'really'

PS> 'The car is red' -replace 'is (red|blue)',"was $a `$1"

The car was really red

In the output string the word “red” was preserved using the regular expression substitution
mechanism and the word “really” was added by expanding the $a variable.

Note

You need to double quote (") the replacement string as shown because you’re performing
variable substitution.

Alternatively, you may want to remove the matching parts. You can do this using -replace by
omitting the replacement string:

PS> 'The quick brown fox' -replace 'quick'

The brown fox

In this example, the word “quick” was removed from the sentence.

Here’s one final point we should make clear. The -replace operator doesn’t change strings—it
returns a new string with the necessary edits applied.

Up to this point, all the operations we’ve looked at have involved transformations on a single
string. Now let’s look at how to take strings apart and put them back together using two more
string operators: -split and -join. This will complete your knowledge of the set of operators
PowerShell provides for manipulating strings.

(106)

3.4.5. The -join operator

PowerShell has two operators for working with collections and strings: -split and -join. These
operators allow you to join the elements of a collection into a single string or split strings into a
collection of substrings. We’ll look at the -join operator first because it’s the simpler of the two.
This operator can be used both as a unary operator and a binary operator.

The unary form of the -join operator allows you to concatenate a collection of strings into a
single string with no separator between each item in the resulting string. Here’s a simple
example. First assign an array of numbers to the variable $in:

PS> $in = 1,2,3

Now use the -join operator on this variable and assign the result to a new variable, $out:

PS> $out = -join $in

PS> $out

123

Checking the type of the result

PS> $out.GetType().FullName

System.String

you see it’s a string. The -join operator first converted each array element into a string and then
joined the results into a single larger string.

Next, let’s do something a bit more sophisticated. Say you want to reverse a string.
Unfortunately, the .NET [string] type has no built-in reverse operator, but the [array] type does
have a static method for reversing arrays. This method takes an array as input and sorts it in
place. To use this, you need to do two conversions: from a string to an array of characters, and
from an array of characters back to a string. From chapter 2, you know you can use a cast to
convert a string into a character array. The array’s Reverse() method is used to reverse the
contents of the array in place:

PS> $ca = [char[]] 'abcd'

PS> [array]::Reverse($ca)

Use a unary -join to convert the character array back into a string:

PS> $ra = -join $ca

PS> $ra

dcba

Now let’s look at one potential gotcha using the unary form of the operator. Let’s redo the join of
string “1,2,3” again, but without using a variable to hold the value. Here’s what that looks like:

PS> -join 1,2,3

1

2

3

Surprise! Instead of joining the array members into a single string, it returned the same array.
This is because unary operators have higher precedence than binary operators and, in
PowerShell, the comma is a binary operator. As a result, the expression is parsed like

PS> (-join 1),2,3

1

(107)

2

3

To use the unary -join operator in a more complex expression, then, make sure you put
parentheses around the argument expression:

PS> -join (1,2,3)

123

When parentheses are used, the result of the expression is as expected. Next let’s look at the
(much more useful) binary form. The obvious difference with this operator is you can specify the
string to use as an element separator instead of always using the default of nothing between the
joined strings. Place an array to join into a variable called $numbers and put the joined result into a
variable called $exp:

PS> $numbers = 1,2,3

PS> $exp = $numbers -join '+'

Look at the contents of $exp:

PS> $exp

1+2+3

It contains the numbers with a plus sign between each number. Because this is a valid
PowerShell expression, you can pass the resulting string to the Invoke-Expression cmdlet for
evaluation. The result is 6. This works on any operator. Let’s use the range operator (see chapter
4) and the multiply operator to calculate the factorial of 10. Here’s what the code looks like:

PS> $fact = Invoke-Expression (1..10 -join '*')

This code is evaluating 1*2*3 and so on up to 10, with the result

PS> $fact

3628800

Although this is a simple way to calculate factorials, it’s not efficient. Later on, you’ll see more
efficient ways of writing this type of expression. For now, let’s look at a more practical example
and do some work with a file. Let’s use a here-string to generate a test file on disk:

PS> @'

line1

line2

line3

'@ > out.txt

Now use the Get-Content cmdlet to read that file into a variable, $text:

PS> $text = Get-Content -Path out.txt

The Get-Content cmdlet returns the contents of a file as an array of strings—in fact it’s an
[object] array, which you should be used to by now. Although this is exactly what you want
most of the time, sometimes you want the entire file as a single string. The Get-Content cmdlet
(prior to PowerShell v3) has no parameter for doing this, so you’ll have to take the array of
strings and turn it back into a single string. You can do this with the binary -join operator if you
specify the line separator as the string to use when joining the array elements. On Windows, the
line separator is two characters: carriage return (`r) and a line feed (`n). In a single string, this is
expressed as “`r`n”. Now you can use this separator string in a -join expression:

PS> $single = $text -join "`r`n"

(108)

In PowerShell v3 (and later) you can use the -Raw parameter on Get-Content to achieve the same
result:

PS> $single2 = Get-Content -Path out.txt -Raw

Now that you know how to put things together, we’ll show you how to take them apart with -
split.

3.4.6. The -split operator

The -split operator performs the opposite operation to -join: it splits strings into a collection of
smaller strings. Again, this operator can be used in both binary and unary forms.

In its unary form, this operator will split a string on whitespace boundaries, where whitespace is
any number of spaces, tabs, or newlines. You saw this in an example earlier in this chapter.

The binary form of the operator is much more, ahem, sophisticated. It allows you to specify the
pattern to match on, the type of matching to do, and the number of elements to return, as well as
match type-specific options. Most of the time you need to specify an argument string and split
pattern and let the rest of the options use their default values. Let’s look at the basic application
of this operator. First, split a string on a character other than whitespace:

PS> 'a:b:c:d:e' -split ':'

This is pretty straightforward. The string is split into five elements at the : character. But
sometimes you don’t want all the matches. The -split operator allows you to limit the number of
elements to return. Do so by specifying an integer after the match pattern:

PS> 'a:b:c:d:e' -split ':',3

a

b

c:d:e

In this case, you only asked for three elements to be returned. Notice the third element is the
entire remaining string. If you specify a split count number less than or equal to 0, then all the
splits take place.

By default, -split uses regular expressions like -match and -replace. But if the string you’re
trying to split contains one of the many characters that have special meaning in regular
expressions, things become a bit more difficult because you’ll have to escape these characters in
the split pattern. This can be inconvenient and error-prone, so -split allows you to choose simple
matching through an option known as SimpleMatch. When you specify SimpleMatch, instead of
treating the split pattern as a regular expression, it’s handled as a simple literal string that must
be matched. For example, say you want to split on *:

PS> 'a*b*c' -split '*'

This results in a regular expression parsing error. Now try it again with SimpleMatch:

PS> 'a*b*c' -split '*',0,'SimpleMatch'

a

b

c

This time it worked properly. This option is particularly handy when you aren’t using literal split
strings but instead are getting them from a script argument or input file. In those cases, it’s much

(109)

simpler to use SimpleMatch instead of escaping all the special regular expression characters.

-. split operator options

The last element in the -split operator syntax is the match options string. These options are
shown in table 3.10. Multiple options can be specified in a string with commas between them,
like RegexMatch,IgnoreCase,MultiLine or SimpleMatch,IgnoreCase.

Table 3.10. Match options for the -split operator

Option Description Applies to

IgnoreCase

Allows you to override default
case-sensitive behavior when
using the -csplit variant of the
operator.

RegexMatch, SimpleMatch

CultureInvariant

Disables any culture-specific
matching behavior (what
constitutes uppercase, for
example) when matching the
separator strings.

RegexMatch

IgnorePatternWhitespace

Ignores unescaped whitespace
and comments embedded in the
pattern. This allows for
commenting complex patterns.

RegexMatch

MultiLine

Treats a string as though it’s
composed of multiple lines. A
line begins at a newline
character and will be matched
by the ^ pattern.

RegexMatch

SingleLine

This option, which is the
default, tells the pattern
matcher to treat the entire string
as a single line. Newlines in the
string aren’t considered the
beginning of a line.

RegexMatch

ExplicitCapture

This option specifies that the
only valid captures are
explicitly named or numbered
ones of the form (?<name>...).
This allows unnamed
parentheses to act as
noncapturing groups without
the syntactic clumsiness of the
expression (?:...). See section
4.4.3 on how captures work.

RegexMatch

We won’t cover the options here. In practice, you aren’t likely to need most of them.

(110)

Using scriptblocks with the -split operator

As powerful as regular expressions are, sometimes you may need to split a string in a way that
isn’t convenient or easy to handle with regular expressions. To deal with these cases, PowerShell
allows you to pass a scriptblock to the operator. The scriptblock is used as a predicate function
that determines whether there’s a match. Here’s an example. First set up a string to split. This
string contains a list of colors that you want to split into pairs, two colors per pair:

PS> $colors = "Black,Brown,Red,Orange,Yellow," +

"Green,Blue,Violet,Gray,White"

Next, initialize a countervariable that will be used by the scriptblock. You’re using an array here
because you need to be able to modify the contents of this variable. Because the scriptblock is
executed in its own scope, you must pass it an array so it can modify the value:

PS> $count=@(0)

And now split the string. The scriptblock, in braces in the example, splits the string on every
other comma:

PS> $colors -split {$_ -eq ',' -and ++$count[0] % 2 -eq 0 }

Black,Brown

Red,Orange

Yellow,Green

Blue,Violet

Gray,White

This gives you the color pairs you were looking for.

Whew! So that’s it for the pattern-matching and text-manipulation operators. In this section, we
covered the two types of pattern-matching operators—wildcard patterns and regular expressions.
All quite spiffy, but let’s come back down to Earth now and cover the last of the basic operators
in the PowerShell language. These are the logical operators (-and, -or, -xor, -not) and their
bitwise equivalents (-band, -bor, -bnot).

(111)

3.5. Logical and bitwise operators

PowerShell has logical operators -and, -or, -xor, and -not for combining simpler comparisons
into more complex expressions. The logical operators convert their operands into Boolean values
and then perform the logical operation.

PowerShell also provides corresponding bitwise operators for doing binary operations on integer
values. These operators can be used to test and mask bit fields. Both of these sets of operators are
shown in figure 3.7.

Figure 3.7. Logical and bitwise operators available in PowerShell

Table 3.11 lists these operators with examples showing how each can be used.

Table 3.11. Logical and bitwise operators

Operator Description Example Result

-and Do a logical and of the left and
right values. 0xff -and $false $false

-or Do a logical or of the left and
right values. $false –or 0x55 $true

-xor Do a logical exclusive-or of the
left and right values.

$false –xor $true
$true –xor $true

$true
$false

-not Do the logical complement of
the argument value. -not $true $false

-band
Do a binary and of the bits in
the values on the left and right
sides.

0xff –band 0x55 85 (0x55)

-bor
Do a binary or of the bits in the
values on the left and right
sides.

0x55 -bor 0xaa 255 (0xff)

-bxor Do a binary exclusive-or of the
left and right values.

0x55 -bxor 0xaa
0x55 -bxor 0xa5

255 (0xff)
240 (0xf0)

-bnot Do the bitwise complement of
the argument value. -bnot 0xff -256(0x

ffffff00)

-shl

All bits are moved n places to
the left where n is the right
operand. A zero is inserted in
the one’s place.

100 -shl 4 1600

(112)

-shr
All bits are moved n places to
the right where n is the right
operand.

100 -shr 4 6

As with most languages based on C/C++, the PowerShell logical operators are short-circuit
operators—they only do as much work as they need to. With the -and operator, if the left operand
evaluates to $false, then the right operand expression isn’t executed. With the -or operator, if the
left operand evaluates to $true, then the right operand isn’t evaluated.

Note

In PowerShell v1, the bitwise operators were limited in that they only supported 32-bit integers
([int]). 64-bit integers ([long]) are supported in PowerShell v2, and later. If the arguments to the
operators are neither [int] nor [long], PowerShell will attempt to convert them into [long] and
then perform the operation.

(113)

3.6. Where() and ForEach() methods

PowerShell v4 introduced two new operators for working with collections. While their syntax is
identical to method invocation syntax, they’re called “operators” because they aren’t
implemented as methods on the target object. The Where() and ForEach() methods work in a
similar manner to the Where-Object and ForEach-Object cmdlets. We’re including them with the
operators because of the way they’re used.

3.6.1. Where() method

The Where() method provides a way to filter collections using a condensed syntax. In all cases,
using the Where() method is faster (up to ten times faster) than using Where-Object, but consumes
more memory. This is because the cmdlet goes through the parameter binder, which is complex.
The method binder is much simpler and therefore faster. But the foreach loop is still the fastest
way to iterate over a collection. The syntax will be more familiar to programmers than
administrators so we’ll explain it with examples.

Consider a standard use of Where-Object:

PS> Get-Process | where Handles -gt 1000

The collection of processes is filtered and only those processes with more than 1,000 handles are
returned. You can use the Where() method to achieve the same result:

PS> (Get-Process).where({$_.Handles -gt 1000})

PS> (Get-Process).where({$psitem.Handles -gt 1000})

You must use either $_ or $psitem with the property on which you’re filtering. The () are optional
but we recommend you use them to make the syntax more obvious when you come to review it,
or when you’re writing for others to use. We’ll use the () in the rest of this section to make the
syntax more obvious but as an example of not using them you can write the previous two
examples as:

PS> (Get-Process).where{$_.Handles -gt 1000}

PS> (Get-Process).where{$psitem.Handles -gt 1000}

Note

Bruce made a change to the parser in PowerShell v4 to allow any method that takes a single
scriptblock as an argument to be written without parentheses around the scriptblock literal. The
change was made for these methods but works with any method. Also note these methods were
added to simplify node selection in the Desired State Configuration (DSC) node statement (see
chapter 18).

Qualifiers can be applied to display the first or last member of the collection:

PS> (Get-Process).where({$_.Handles -gt 1000}, 'First')

PS> (Get-Process).where({$_.Handles -gt 1000}, 'Last')

(114)

This can be extended to the first or last n members:

PS> (Get-Process).where({$_.Handles -gt 1000}, 'First', 3)

PS> (Get-Process).where({$_.Handles -gt 1000}, 'Last', 3)

There’s an option to split the results:

PS> $proc = (Get-Process).where({$_.Handles -gt 1000}, 'Split')

$proc is a collection—the first member contains the processes that match the filter and the second
member those that don’t.

Note

The collection, $proc, is an instance of [System.Collections.Object-Model.Collection`1[PSObject].
The fact that it’s a collection matters because you can add members to a collection but not to an
array. A secondary aspect is, because it’s always the same type, you can write additional
extension methods on this type to do Linq-like collection operations on the result of the type.

You can further filter the results using Until and SkipUntil:

PS> (Get-Process | sort Handles).where({$_.Handles -gt 1000}, 'Until')

Using Until will display all results until you reach results that match the filter defined in the
scriptblock. If you want to display only the results that match the filter then use SkipUntil:

PS> (Get-Process | sort Handles).where({$_.Handles -gt 1000}, 'SkipUntil')

If you don’t sort the members of the collection, SkipUntil will display everything after the first
match irrespective of whether it matches the filter.

3.6.2. ForEach() method

The ForEach() method is a bit simpler than the Where() method you’ve just seen. Again,
demonstrating the use of this method is best achieved by some examples. First, create an array of
integers:

PS> $data = 1,2,3,4,5

You can execute a scriptblock within the ForEach() method:

PS> ($data).ForEach({$_ * 2})

PS> $data.ForEach({$_ * 2})

When the data is already an array you don’t need to wrap it in (). If you need to change the type
of the objects in the collection, use this approach:

PS> $data | Get-Member

PS> $data.ForEach([double]) | Get-Member

Values for a particular property can be displayed as follows:

PS> (Get-Process).foreach('Name')

(115)

If the objects within the collection have methods, they can be invoked:

PS> (Get-Process -Name notepad).foreach('Name')

PS> (Get-Process -Name notepad).foreach('Kill')

You can also pass arguments into the method if required.

(116)

3.7. Summary

PowerShell operators are polymorphic with special behaviors defined by PowerShell for
the basic types: numbers, strings, arrays, and hashtables. For other object types, the op_
methods are invoked.
The behavior of most of the binary operators is determined by the type of the operand on
the left.
PowerShell uses widening when working with numeric types. For any arithmetic
operation, the type of the result will be the narrowest .NET numeric type that can properly
represent the result. Integer division will underflow into floating point if the result of the
operation isn’t an integer. Casts can be used to force an integer result.
There are two types of pattern-matching operations in PowerShell: wildcard patterns
(usually used for matching filenames) and regular expressions.
Because the comparison and pattern-matching operators work on collections, in many
cases you don’t need a looping statement to search through collections.
Regular expressions are powerful and can be used to do complex text manipulations with
little code. PowerShell uses the .NET regular expression classes to implement the regular
expression operators in the language.
PowerShell has two operators for converting between strings and collections: -split and -
join.
PowerShell has built-in operators for working with binary values: -band, -bor, -bxor, and -
bnot.
The Where() and ForEach() methods on collections can be used to filter the members of the
collection and invoke methods.

We’re not done yet! In the next chapter, we’ll finish our discussion of operators and expressions.
Stay tuned!

(117)

Chapter 4. Advanced operators and variables
This chapter covers

Operators for working with types
Unary operators
Grouping and subexpressions
Array, property, and method operators
The format and redirection operators
Working with variables

The greatest challenge to any thinker is stating the problem in a way that will allow a
solution.

Bertrand Russell

The previous chapter covered the basic operators in PowerShell, and in this chapter, we’ll
continue our discussion of operators by looking at the advanced ones, which include things that
some people don’t think of as operators at all. We’ll break the operators into related groups, as
shown in figure 4.1.

Figure 4.1. The broad groups of operators we cover in this chapter

In this chapter, we’ll look at how to work with types, properties, and methods, and how to use
these operators to build complex data structures. PowerShell is an automation engine for the
Windows environment, and whatever you’re doing, you’ll need to manipulate data of some sort
—for instance, Windows Management Instrumentation (WMI) query results, Active Directory

(118)

user data, or data retrieved from a web service. Irrespective of the data source you’ll need the
operators in this, and the previous chapter, to enable your processing of that data into the format
you need to solve your problem.

The chapter concludes with a detailed discussion of how variables work in PowerShell and how
you can use them with operators to accomplish significant tasks.

(119)

4.1. Operators for working with types

The type of an object is fundamental to determining the sorts of operations you can perform on
that object. PowerShell provides a set of operators that can work with types, as shown in figure
4.2. They’re also listed in table 4.1 with examples and more description.

Figure 4.2. The binary operators for working with types

You can test whether an object is of a particular type using the -is operator, which returns true if
the object on the left is of the type specified on the right. By “is,” we mean the left object is
either of the type specified on the right side or is derived from that type.

The -isnot operator returns true if the left expression is not of the type specified on the right. The
right operand must be represented as a type or a string that names a type. This means you can use
either a type literal such as [int] or the literal string “int”. The -as operator will try to convert the
left operand into the type specified by the right operand. Again, either a type literal or a string
naming a type can be used.

Note

The PowerShell -is and -as operators are directly modeled on the corresponding operators in C#.
But PowerShell’s version of -as uses PowerShell’s more aggressive approach to casting. For
example, C# won’t cast the string “123” into the number 123, whereas the PowerShell operator
will. The PowerShell -as operator will also work on any type, and the C# operator is restricted to
reference types.

The -as operator is more flexible than a cast—you can use a runtime expression to specify the
type, whereas the cast is fixed at parse time. One final difference between a regular cast and
using the -as operator is, in a cast, if the conversion doesn’t succeed an error is generated. With
the -as operator if the cast fails, then the expression returns $null instead of generating an error.

Table 4.1 provides several more examples of how to use the type operators PowerShell provides.

Table 4.1. PowerShell operators for working with types

Operator Example Results Description

-is $true -is [bool] $true True if the type on the left matches the
type of the object on the right.

(120)

 $true -is [object] $true This is always True—everything is an
object except $null.

 $true -is [ValueType] $true
The left side is an instance of a .NET
value type such as an integer or
floating-point number.

 'hi' -is [ValueType] $false
A string is not a value type; it’s a
reference type so this expression returns
False.

 'hi' -is [object] $true A string is still an object.
 12 -is [int] $true 12 is an integer.

 12 -is 'int' $true
The right side of the operator can be
either a type literal or a string naming a
type.

-isnot $true -isnot [string] $true The object on the left is not of the type
specified on the right.

 $null -isnot [object] $true The null value is the only thing that
isn’t an object.

-as '123' -as [int] 123 Takes the left side and converts it to the
type specified on the right.

 123 -as 'string' '123'
Turns the left side into an instance of
the type named by the string on the
right.

In practice, most of the time the automatic type-conversion mechanism will be all you need, and
explicit casts will take care of the majority of the remaining cases. Why have these operators?
They’re mostly used in scripting. If you want to have a script that behaves differently based on
whether it’s passed a string or a number, for example, you’ll need to use the -is operator to select
which operation to perform.

(121)

4.2. Unary operators

Now let’s look at the unary operators, which take only one argument. These operators are shown
in figure 4.3 and listed with examples in table 4.2.

Figure 4.3. Various unary operators

You’ve seen most of these operators in previous sections. The unary + and - operators do what
you’d expect for numbers. Applying them to any other type results in an error.

The use of the type casts as unary operators was discussed at length in chapter 2, so we won’t go
into it again. The interesting operators in this section are the increment and decrement operators.
They match the behavior of the equivalent operators in the C programming language with both
the prefix and postfix forms of the operators.

These operators are special in that they take an assignable expression as an argument. An
assignable expression is, well, anything that can be assigned to it. This includes variables, array
elements, and object properties. These operators retrieve the current value of the assignable
expression, increment (add 1) or decrement (subtract 1) that value, and then assign it back to the
assignable expression. As with the unary + and - operators, the increment (++) and decrement (--)
operators are only defined for variables containing numbers. Applying the increment and
decrement operators to a variable containing anything other than a number results in an error.

Table 4.2. PowerShell unary operators

Operator Example Results Description

- - (2+2) -4 Negation. Tries to convert its argument to a
number, and then negates the result.

+ + '123' 123
Unary plus. Tries to convert its argument to a
number and returns the result. This is
effectively a cast to a number.

-- --$a; $a--
Depends on the
current value of
the variable

Pre- and post-decrement operator. Converts the
content of the variable to a number, and then
tries to subtract one from that value. The prefix
version returns the new value; the postfix
version returns the original value.

++ ++$a; $a++

Depends on the
current value of
the variable

Pre- and post-increment operator. Converts the
variable to a number, and then adds 1 to the
result. The prefix version returns the new value;

(122)

the postfix version returns the original value.

[<type>] [int] '0x123' 291 Type cast. Converts the argument into an
instance of the type specified by the cast.

, , (1+2)

One-element
array
containing the
value of the
expression

Unary comma operator. Creates a new one-
element array of type [object[]] and stores the
operand in it.

The other thing that’s special about these operators is they result in voidable statements. This
means the output of these expressions, when used as statements, is discarded instead of writing
into the output pipe. Expression types that result in voidable statements include assignment
expressions and the increment/decrement operators. As is the case in languages like C# or Java,
when the increment and decrement operators are used in an expression, they return a value, but
when they’re used as a standalone statement, they return nothing.

Note

Early in the development of PowerShell, there were no “voidable” statements. Unfortunately,
this meant people kept finding strange values appearing in their output leading to the PowerShell
team receiving many complaints. Until they came up with the voidable statement concept, it was
thought they’d have to remove ++ and --. Fortunately, they got it to work properly. It’s funny
how sometimes you need to do something complicated to make the user’s experience simple.

Generally, this behavior does what you want and so it won’t affect how you use PowerShell
other than to make it work as you expect. But sometimes you would like the output to be kept. In
those situations, here’s a trick you can use: if the expression is enclosed in parentheses, the result
will be returned instead of discarded:

PS> $l = 1

PS> foreach ($s in "one","two","three")

{ "$(($l++)): $s" }

1: one

2: two

3: three

So far, we’ve been careful to say only some expressions result in voidable statements. For other
statement types, you’ll have to explicitly discard the output of the statement, manually turning a
regular statement into a voidable one. The way to do this is through an explicit cast using the
[void] type literal, as in

PS> [void] $(Write-Output "discard me")

The statement with a value you want to discard is enclosed in a subexpression, and the whole
thing is cast to void. Wait, what’s a subexpression? We’ll look at them next.

(123)

4.3. Grouping and subexpressions

So far you’ve seen a variety of situations where collections of expressions or statements have
been grouped together. You’ve even used these grouping constructs in string expansions. These
operators are shown in figure 4.4.

Figure 4.4. PowerShell operators for grouping expressions and statements

Now let’s look at them in more detail. Table 4.3 provides more details and some examples.

Table 4.3. Expression and statement grouping operators

Operator Example Results Description

(...)
(2 + 2) * 3
(Get-
Date).DayOfWeek

12
Returns the
current weekday

Parentheses group expression
operations and may contain either a
simple expression or a simple
pipeline. They may not contain
statements like while loops.

$(...) $($p = "a*“;
Get-Process $p)

Returns the
process objects for
all processes
starting with the
letter a

Subexpressions group collections of
statements as opposed to being
limited to a single expression. If the
contained statements return a single
value, that value will be returned as a
scalar. If the statements return more
than one value, they’ll be accumulated
in an array.

@(...) @(dir c:\; dir d:\)

Returns an array
containing the
FileInfo objects in
the root of the C:
and D: drives

The array subexpression operator
groups collections of statements in the
same manner as the regular
subexpression operator, but with the
additional behavior that the result will
always be returned as an array.

The first grouping notation is the simple parenthetical notation. As in most languages, the
conventional use for this notation is to control the order of operations. In PowerShell,
parentheses also have another use. Looking at the syntax specification shown in figure 4.4 for
parenthetical expressions illustrates this:

(<pipeline>)

(124)

From the syntax, you can see pipelines are allowed between simple parentheses. This allows you
to use a command or pipeline as a value in an expression. For example, to obtain a count of the
number of files in a directory, you can use the Get-ChildItem cmdlet in parentheses and then use
the Count property to get the number of objects returned:

PS> (Get-ChildItem).count

46

Note

People familiar with other languages tend to assume the expression (1,2,3,4) is an array literal in
PowerShell. In fact, as you learned in chapter 2, this isn’t the case. The comma operator,
discussed in the next section, allows you to easily construct arrays in PowerShell, but there are
no array literals as such in the language. All the parentheses do is control the order of operations.
There’s nothing special about them otherwise. In fact, the precedence of the comma operator is
such that you typically never need parentheses for this purpose. More on that later.

Now let’s move on to the next set of grouping constructs: the subexpressions.

4.3.1. Subexpressions $(...)

There are two forms of the subexpression construct:

$(<statementList>)

@(<statementList>)

The syntactic difference between a subexpression (either form) and a simple parenthetical
expression is you can have any list of statements in a subexpression instead of being restricted to
a single pipeline. This means you can have any PowerShell language element in these grouping
constructs, including loop statements. It also means you can have several statements in the group.
Let’s look at an example that counts the number of elements in the Fibonacci sequence below
100:

PS> $($c=$p=1; while ($c -lt 100) {$c; $c,$p=($c+$p),$c}).count

10

By enclosing the statements in $(<statement>), you can retrieve the result of the enclosed
collection of statements as an array.

Note

Languages like Python have a special notation for generating collections of objects called “List
Comprehensions.” In PowerShell, because collections occur naturally as a consequence of the
shell pipeline model there’s no need for this extra syntax. When statements returning multiple
objects are used as a value, they’ll automatically be collected into an array.

Another difference between the subexpression construct and simple parentheses is how voidable

(125)

statements are treated. First initialize $a to 0; then use a post-increment expression in parentheses
and assign it to the variable $x:

PS> $a=0

PS> $x=($a++)

Checking the value of $x, you see it’s 0, as expected, and $a is now 1. Now do a second
assignment, this time with the expression in $(...):

PS> $x=$($a++)

Checking the value, you see it’s $null:

PS> $x

PS> $x -eq $null

True

This is because the result of the post-increment operation was discarded, so the expression
returned nothing.

4.3.2. Array subexpressions @(...)

Now let’s take a look at the difference between the array subexpression @(...) and the regular
subexpression. The difference is, in the case of the array subexpression, the result is always
returned as an array; this is a fairly small but useful difference. In effect, it’s shorthand for

[object[]] $(...)

This shorthand exists because in many cases you don’t know if a pipeline operation is going to
return a single element or a collection. Rather than writing complex checks, you can use this
construction and be assured the result will always be a collection. If the pipeline returns an array,
no new array is created and the original value is returned as is. If the pipeline returns a scalar
value, that value will be wrapped in a new one-element array. It’s important to understand how
this is different from the behavior of the comma operator, which always wraps its argument
value in a new one-element array. Doing something like @(@(1)) doesn’t give you a one-
element array containing a second one-element array containing a number. The expressions

PS> @(1)

PS> @(@(1))

PS> @(@(@(1)))

all return the same value. On the other hand,

PS> ,1

nests to one level, and

PS> ,,1

nests to two levels, and so forth.

Note

How to figure out what the pipeline returns is the single hardest thing to explain in the

(126)

PowerShell language. The problem is people get confused; they see @(12) returns a one-element
array containing the number 12. Because of prior experience with other languages, they expect
@(@(12)) should therefore produce a nested array, an array of one element containing an array of
one element, which is the integer 12. As mentioned previously, this is not the case. Rather,
@(@(12)) returns exactly the same thing as @(12). If you think of rewriting this expression as
[object[]]$([object[]] $(12)), then it’s clear why this is the case—casting an array into an
array of the same type has no effect; it’s already the correct type, so you get the original array.

Here’s an example of where this feature is useful: a pipeline expression that sorts some strings
and then returns the first element in the sorted collection. Start by sorting an array of three
elements:

PS> $('bbb','aaa','ccc' | sort)[0]

aaa

This returns “aaa”, as you’d expect. Now do it with two elements:

PS> $('bbb','aaa' | sort)[0]

aaa

Still “aaa”, so everything makes sense. Now try it with one element:

PS> $('aaa' | sort)[0]

a

Wait a minute—what happened here? Well, what happened is you sorted one element, and in a
pipeline, you can’t tell if the commands in the pipeline mean to return a single object (a scalar) or
an array containing a single object. The default behavior in PowerShell is to assume that if you
return one element, you intended to return a scalar. In this case, the scalar is the string “aaa”, and
index 0 of this array is the letter a, which is what the example returns.

This is where you use the array subexpression notation because it ensures you always get what
you want. You know you want the pipeline to return an array, and by using this notation, you can
enforce the correct behavior. Here are the same three examples again, but this time using the
array subexpression:

PS> @('bbb','aaa','ccc' | sort)[0]

aaa

PS> @('bbb','aaa' | sort)[0]

aaa

PS> @('aaa' | sort)[0]

aaa

This time, all three commands return “aaa” as intended. Why have this notation? Why not use
the casts? Well, here’s what it looks like using the cast notation:

PS> ([object[]] ('aaa' | sort))[0]

aaa

Because of the way precedence works, you need an extra set of parentheses to get the ordering
right, which makes the whole expression harder to write. In the end, the array subexpression
notation is easy to use, although it’s a bit difficult to grasp at first. The advantage is you have to
learn something only once, but you get to use it over and over again.

(127)

Let’s move on to the other operations PowerShell provides for dealing with collections and
arrays of objects. The ability to manipulate collections of objects effectively is the heart of any
automation system. Let’s see what PowerShell has to offer here.

(128)

4.4. Array operators

Arrays or collections of objects occur naturally in many of the operations that you execute. An
operation such as getting a directory listing in the file system results in a collection of objects.
Getting the set of processes running on a machine or a list of services configured on a server both
result in collections of objects. Not surprisingly, PowerShell has a set of operators and operations
for working with arrays and collections. These operators are shown in figure 4.5.

Figure 4.5. PowerShell array operators

We’ll go over these operators in the following sections.

4.4.1. Comma operator

You’ve seen many examples using the comma operator to build arrays. We covered this topic in
some detail in chapter 2, but there are a couple of things we still need to cover. This means when
you’re building an array with expressions, you need to wrap those expressions in parentheses as
this example illustrates:

PS> 1,2,1+2

1

2

1

2

The result is an array of the four elements, 1,2,1,2, because the expression was parsed as
(1,2,1)+2, building an array of three elements and then appending a fourth. You have to use
parentheses to get the desired effect:

PS> 1,2,(1+2)

1

2

3

Note

The comma operator has higher precedence than any other operator except type casts and
property and array references. This is worth emphasizing because it’s important to keep in mind
when writing expressions. If you don’t remember this, you’ll produce some strange, and
incorrect, results.

The next thing we’ll look at is nested arrays. Because a PowerShell array can hold any type of

(129)

object, obviously it can also hold another array. Your task will be to build the tree structure
shown in figure 4.6.

Figure 4.6. A binary tree (arrays of arrays of arrays)

This data structure starts with an array of two elements. These two elements are also both arrays
of two elements, and they, in turn, contain arrays of two numbers. Let’s see how to go about
constructing something like this.

There are a couple of ways you can approach this. First, you can build nested arrays one piece at
a time using assignments. Alternatively, you can nest the comma operator within parentheses.
Starting with last things first, here’s how to build a nested array structure using commas and
parentheses. The result is concise:

PS> $a = (((1,2),(3,4)),((5,6),(7,8)))

And here’s the same construction using intermediate variables and assignments. It’s rather less
concise but hopefully easier to understand.

PS> $t1 = 1,2

PS> $t2 = 3,4

PS> $t3 = 5,6

PS> $t4 = 7,8

PS> $t1_1 = $t1,$t2

PS> $t1_2 = $t3,$t4

PS> $a = $t1_1, $t1_2

In either case, what you’ve done is build a data structure that looks like the tree shown in figure
4.6.

Note

In Perl and PHP, you have to do something special to get reference semantics with arrays. In
PowerShell, arrays are always reference types, so no special notation is needed.

(130)

Let’s verify the shape of this data structure. First, use the length property to verify that $a holds
an array of two elements:

PS> $a.Length

2

Next, check the length of the array stored in the first element of that array:

PS> $a[0].Length

2

It’s also two elements long, as is the array stored in the second element:

PS> $a[1].Length

2

Now let’s look two levels down. This is done by indexing the result of an index as follows:

PS> $a[1][0].Length

2

Note that $a[0][0] isn’t the same as $a[0,0], which is either a subset of the elements in the array
called a slice if $a is one-dimensional, or a single index if the array is two-dimensional. You can
compose index operations as deeply as you need to. This example retrieves the second element
of the first element of the second element stored in $a:

PS> $a[1][0][1]

6

Note

Remember that in .NET, and therefore PowerShell, array element indexing starts at zero for the
first element.

To see exactly what’s going on here, look at figure 4.7. In this figure, the dotted lines show the
path followed to get to the value 6.

Figure 4.7. Indexing through a binary tree with the expression $a[1][0][1]

(131)

These examples show how you can construct arbitrarily complex data structures in PowerShell.
Although this isn’t something you’ll need to use frequently, the capability is there if you need it.
In section 4.4.3, when we discuss array slices, you’ll see an example using nested arrays to index
multidimensional arrays.

4.4.2. Range operator

The next operator we’ll discuss is the range operator (..). This operator is effectively a shortcut
for generating a sequential array of numbers. For example, the expression

1..5

is equivalent to

1,2,3,4,5

although it’s somewhat more efficient than using the commas. The syntax for the range operator
is

<valueExpression> .. <valueExpression>

It has higher precedence than all the binary operators except for the comma operator. This means
expressions like

PS> 1..3+4..6

work, but the following gives you a syntax error:

PS> 1+3..4+6

It’s an error because the expression is being parsed like

1 + (3..4) + 6

This is because the range operator has higher precedence than the addition operator.

In a range operator expression, the left and right operands represent bounds, but either the left or
the right can be the upper bound. If the left operand is greater than the right operand, a

(132)

descending sequence is generated. The boundaries can also be negative.

The upper and lower bounds must resolve to integers after applying the usual type conversions.
A string that looks like a number will automatically be converted into a number, and a floating-
point value will automatically be converted to an integer using the Banker’s rounding algorithm
described in chapter 3.

The range operator is most commonly used with the foreach loop because it allows you to easily
loop a specific number of times or over a specific range of numbers. This is done so often that
the PowerShell engine treats it in a special way. A range like 1..10mb doesn’t generate a 10 MB
array—it treats the range endpoints as the lower and upper bounds of the loop, making it
efficient. (The foreach loop is described in detail in the next chapter.)

Note

In PowerShell v1, the range operator was limited to an upper bound of 40 KB to avoid
accidentally creating arrays that were too large. In practice, this was never a problem, so this
limit was removed in version 2 with one exception. In restricted language mode, this limit is still
enforced.

The other place where the range operator gets used frequently is with array slices, which you’ll
learn about next.

4.4.3. Array indexing and slicing

Most people don’t think of indexing into an array as involving operators or that [] is an
operator, but in fact, that’s exactly what it is. It has a left operand and a right operand (the “right”
operand is inside the brackets). The syntax for an array indexing expression is

<valueExpression> [<valueExpression>]

There are a couple of things to note here. First, this is one of the few areas where you can’t
directly use a pipeline. That’s because brackets don’t (and can’t) delimit a pipeline as they’re
used in pipeline arguments as wildcard patterns. If you want to use a pipeline as an index
expression, you have to use parentheses or the subexpression notation.

The second thing to note is spaces aren’t allowed between the last character of the expression
being indexed and the opening bracket. This is necessary to distinguish array expressions on the
command line from wildcard patterns.

From the syntax, you can see array indexing works on more than variables; it can be applied to
any expression that returns a value. Because the precedence of the square brackets is high
(meaning they get evaluated before most other operators), you usually have to put the expression
in parentheses. If you don’t, you’ll get an error. For example:

PS> (1,2,3)[0]

1

Here you retrieved the first element in the collection, which is at index 0. (Like all .NET-based

(133)

languages, indexes start at 0 in PowerShell.) PowerShell also supports negative indexes, which
index from the end of the array. Let’s try it out:

PS> (1,2,3)[-1]

3

PS> (1,2,3)[-2]

2

Specifying –1 retrieves the last element in the array, –2 retrieves the second-to-last element, and
so on. In fact, negative indexes are exactly equivalent to taking the length of the array and
subtracting the index from the array. In effect, negative indexing is shorthand for $array.Length -
$index.

Array slices

You’ve seen how to get individual elements out of an array. You can get sequences of elements
out of arrays as well. Extracting these sequences is called array slicing, and the results are array
slices, as illustrated in figure 4.8.

Figure 4.8. How an array slice is generated from the original array

Slicing is done by specifying an array of indexes instead of a single index. The corresponding
element for each index is extracted from the original array and returned as a new array that’s a
slice of the original. From the command line, this operation looks like this:

PS> $a = 1,2,3,4,5,6,7

PS> $indexes = 2,3,4,5

PS> $a[$indexes]

3

4

5

6

This example used a variable storing the array 2,3,4,5 to get the corresponding elements out of
the array in $a. Now let’s process the values that are stored in the $indexes variable. You’ll use
the ForEach-Object cmdlet to process each element of the array and assign the results back to the
array:

PS> $indexes = 2,3,4,5 | foreach {$_-1}

You want to adjust for the fact that arrays start at index 0, so subtract 1 from each index element.
Now when you do the indexing

PS> $a[$indexes]

2

3

4

(134)

5

you get the elements that correspond to the original index value—2 returns 2, and so on. But do
you need to use the intermediate variable? You have to wrap the expression in brackets so it will
be treated as a single value:

PS> $a[(2,3,4,5 | foreach {$_-1})]

2

3

4

5

4.4.4. Using the range operator with arrays

There’s one other tool in the indexing toolkit: the range operator discussed in the previous
section. This operator is a convenient way to get slices of arrays. Say you have an array of ten
elements, with values 0–9. To get the first four elements of an array, you can use the range
operator as follows:

PS> $a = 0..9

PS> $a[0..3]

By taking advantage of the way negative indexing works, you can get the last four elements of
the array by doing this:

PS> $a[-4..-1]

You can even use ranges to reverse an array. To do this, you need to know the length of the
array, which you can get through the length property. You can see this in the following example,
which casts the result of the expression to a string so it will be displayed on one line:

PS> [string] $a[($a.Length-1) .. 0]

9 8 7 6 5 4 3 2 1 0

Note

This isn’t an efficient way of reversing the array. Using the Reverse static member on the [array]
class is more efficient.

In PowerShell, slicing works for retrieving elements of an array, but you can’t use it for
assignments. You get an error if you try. For example, to replace the slice [2,3,4] with a single
value 12, here’s what you have to do:

PS> $a = $a[0,1] + 12 + $a[5 .. 9]

PS> "$a"

0 1 12 5 6 7 8 9

You have to take the array slices before and after the desired values and then concatenate all
three pieces together to produce a new array.

4.4.5. Working with multidimensional arrays

So far we’ve covered one-dimensional arrays as well as arrays of arrays (which are also called

(135)

jagged arrays). The reason for the term jagged is shown in figure 4.9.

Figure 4.9. An example of a jagged array in the variable $a. Each member of $a is also an array but they’re all of
different lengths—hence the term jagged.

In figure 4.9, $a is an array of arrays as you’ve seen before, but each of the member arrays is a
different length. Instead of having a regular structure, you have a jagged one because the counts
are uneven.

Now that you understand what a jagged array is, we’ll move on to multidimensional arrays.
PowerShell needs to support multidimensional arrays because .NET allows for arrays to be
multidimensional and PowerShell is built on top of .NET. Figure 4.10 shows a two-dimensional
array.

Figure 4.10. A two-dimensional 6 x 4 array of numbers

As shown in figure 4.10, PowerShell indexes into multidimensional arrays by looking at the type
of the array and mapping the set of indexes onto the number of dimensions, or rank, the array
has. If you specify two indexes and the array is one-dimensional, you’ll get two elements back. If
the array is two-dimensional, you’ll get one element back. Let’s try this.

Construct a multidimensional array using the New-Object cmdlet:

PS> $2d = New-Object -TypeName 'object[,]' -ArgumentList 2,2

This statement created a 2 x 2 array of objects. Look at the dimensions of the array by retrieving
the Rank property from the object:

(136)

PS> $2d.Rank

2

Now set the value in the array to particular values. Do this by indexing into the array:

PS> $2d[0,0] = "a"

PS> $2d[1,0] = 'b'

PS> $2d[0,1] = 'c'

PS> $2d[1,1] = 'd'

PS> $2d[1,1]

d

This appears to imply that slices don’t work in multidimensional arrays, but in fact they do when
you use nested arrays of indexes and wrap the expression by using the comma operator in
parentheses:

PS> $2d[(0,0) , (1,0)]

a

b

This example retrieved the elements of the array at indexes (0,0) and (1,0). And, as in the case of
one-dimensional arrays, you can use variables for indexing. You can even use a variable
containing a pair of index arrays:

PS> $one = 0,0

PS> $two = 1,0

PS> $pair = $one,$two

PS> $2d[$pair]

a

b

This covers pretty much everything you need to know about arrays. Now let’s move on to
properties and methods. As you’ll remember from chapter 1, properties and methods are the
attributes of an object that let you inspect and manipulate that object. Because PowerShell is an
object-based shell, a good understanding of how properties and methods work is necessary if you
want to master PowerShell. We’re going to be spending a fair bit of time on these features, so
let’s get started.

(137)

4.5. Property and method operators

As you’ve seen in many examples so far, the property reference operator in PowerShell is the dot
(.). As was the case with array indexing, this is properly considered an operator in PowerShell
with left and right operand expressions. This operator, along with the static member operator ::,
is shown in figure 4.11.

Figure 4.11. Property and method operators in PowerShell

Note

When we say property here, we’re talking about any kind of data member on an object,
regardless of the underlying CLR representation (or implementation) of the member. If you don’t
know what this means, good—because it doesn’t matter. But some people like to know all the
details of what’s going on.

First let’s look back at the basics. Everything in PowerShell is an object (even scripts and
functions). Objects have properties (data) and methods (code). To get at both, you use the dot
operator. To get the length of a string, you use the length property:

PS> 'Hello world!'.Length

12

In a similar fashion, you can get the length of an array:

PS> (1,2,3,4,5).Length

5

As was the case with the left bracket in array indexing, spaces aren’t permitted between the left
operand and the dot. This is necessary to make sure that arguments to cmdlets aren’t mistaken for
property reference operations.

4.5.1. Dot operator

What’s special about the dot operator? Well, just as the left operand can be an expression, so can
the right operand. The right operand is evaluated, which results in a value. That value is then
used as the name of the property on the left operand to retrieve the values of the property. This
series of steps is illustrated in figure 4.12.

Figure 4.12. The steps performed to retrieve a calculated property from an object

(138)

Let’s look at an example of how this process can be used with variables. First define a variable to
hold the name of the property you want to retrieve:

PS> $prop = 'length'

Now, use that variable in an expression to retrieve the property:

PS> 'Hello world'.$prop

11

This mechanism gives you that magic “one more level of indirection” computer science people
are so fond of. Let’s expand on this. To get a list of all the properties on an object, use the Get-
Member (or gm) cmdlet on an object. This example uses GetChildItem to get a FileInfo object to
work with:

PS> Get-ChildItem -Path c:\windows*.dll | Get-Member -type property

You only need the name, so you can use the Name property on these objects:

PS> Get-ChildItem -Path c:\windows*.dll |

Get-Member -type property |

select Name

Name

Attributes

CreationTime

CreationTimeUtc

Directory

DirectoryName

Exists

Extension

FullName

(139)

IsReadOnly

LastAccessTime

LastAccessTimeUtc

LastWriteTime

LastWriteTimeUtc

Length

Name

Next, you’ll use this list of names to get the corresponding values from the first .dll file in the
list. First get the object into a variable:

PS> $obj = @(Get-ChildItem -Path $env:windir\system32*.dll)[0]

And get the list of names; for brevity’s sake, get the properties that start with the letter l:

PS> $names = $obj | Get-Member -Type property l* | foreach {$_.name}

Note

In PowerShell v3 and later, to extract a property from a pipeline, you can use foreach <name>. For
example, the command dir | foreach fullname would return the full path name for all the files in
the current directory.

Finally, use the list of names to print out the value:

PS> $names | foreach { "$_ = $($obj.$_)" }

LastAccessTime = 07/16/2016 12:42:05

LastAccessTimeUtc = 07/16/2016 11:42:05

LastWriteTime = 07/16/2016 12:42:05

LastWriteTimeUtc = 07/16/2016 11:42:05

Length = 34816

Fallback dot operator

In section 2.1.3 we introduced the concept of a fallback operator, where if the object itself
doesn’t have a property and that object is a collection, PowerShell will check the contained
objects to see if that member exists and return a collection of those values.

Note

It’s effectively the equivalent of the foreach <name> mentioned in the preceding note, but it’s
much faster. On the down side, to use it with commands, you have to write the expression in
parentheses. And as an expression, it doesn’t stream.

Here’s the example we just looked at, but rewritten with the fallback dot:

PS> $names = ($obj | Get-Member -Type property l*).name

Because you have the names in a variable, which is an expression, rather than the foreach cmdlet,
you could use the foreach fallback operator (but remember there can be no space between the h
and the "{"), which looks like this:

(140)

PS> $names.foreach{ "$_ = $($obj.$_)" }

LastAccessTime = 07/16/2016 12:42:05

LastAccessTimeUtc = 07/16/2016 11:42:05

LastWriteTime = 07/16/2016 12:42:05

LastWriteTimeUtc = 07/16/2016 11:42:05

Length = 34816

You get the same output. But wait, you say foreach doesn’t look like a property, and you’d be
correct. It’s a method that we’ll look at in more detail in the next section.

Using methods

Let’s look at using methods. The method call syntax is

<valueExpression> . <methodName> (<argument> , <argument> , ...)

As always, spaces aren’t allowed before or after the dot or before the opening parenthesis. Here’s
a basic example:

PS> 'Hello world!'.Substring(0,5)

Hello

This example uses the Substring method to extract the first six characters from the left operand
string (the 6th is the space). As you can see, the syntax for method invocations in PowerShell
matches what you see in pretty much every other language that has methods. Contrast this with
how commands are called. In method calls, arguments in the argument list are separated by
commas, and the whole list is enclosed in parentheses. With commands, the arguments are
separated with spaces and the command ends at the end of a line or at a command terminator,
such as the semicolon or the pipe symbol.

Empirically, a programmer-style syntax for programmer-style activities like method invocations
and a shell-style syntax for shell-style activities like command invocation seem to work best.
This approach is not without some small issues. First, if you want to pass an expression to a
method, you have to wrap that array in parentheses so the array comma operator isn’t confused
with the argument separator commas. Second, if you want to use the output of a command as an
argument, you have to wrap the command in parentheses. Here’s an example:

PS> [string]::join('+',(1,2,3))

1+2+3

This example uses the [string]::Join static method to create a string out of the array 1,2,3 with a
plus sign between each one. Now let’s do the same thing with the output of a command. The
handle count for the PowerShell processes will be output and joined into a string, again separated
with the plus sign (with spaces on either side this time):

PS> [string]::join(' + ', (Get-Process p* | foreach{$_.handles}))

752 + 699

You might have noticed the use of the double-colon operator (::) in these examples. We briefly
discussed this operator in chapter 3 as part of our discussion of types in PowerShell. In the next
section, we’ll look at it in more detail.

4.5.2. Static methods and the double-colon operator

The :: operator is the static member accessor. Whereas the dot operator retrieved instance

(141)

members, the double-colon operator accesses static members (properties as well as methods) on
a class, as is the case with the join method in the example at the end of the last section. The left
operand to the static member accessor is required to be a type—either a type literal or an
expression returning a type, as you see here:

PS> $t = [string]

PS> $t::join('+',(1,2,3))

1+2+3

The language design team chose to use a separate operator for accessing static methods because
of the way static methods are accessed. Here’s the problem. If you had a type MyModule with a
static property called Module, then the expression

[MyModule].Module

is ambiguous. That’s because there’s also an instance member Module on the System.Type instance
representing the type MyModule. Now you can’t tell if the “Module” instance member on
System.Type or the “Module” static member on MyModule should be retrieved. By using the double-
colon operator, you remove this ambiguity.

Note

Other languages get around this ambiguity by using the typeof() operator. Using typeof() in this
example, typeof(MyModule).Module retrieves the instance property on the Type object and
MyModule.Module retrieves the static property implemented by the MyModule class.

Using namespaces in PowerShell v5 and later

One of the problems with using type names anywhere is how long they can be—for example,
[System.Windows.Forms.Form]. Most languages deal with that through some sort of using statement
and, with PowerShell v5, that’s also finally true for PowerShell!

Note

And it only took ten years for it to be added. Bruce apologizes.

The syntax for the using namespace statement is as follows:

using namespace <namespace>

This will make all the types defined in that namespace directly available to scripts. A related use
of using is to load assemblies, which look like:

using assembly <assembly>

We used both of these statements in the example at the beginning of chapter 1:

using assembly System.Windows.Forms

(142)

using namespace System.Windows.Forms

$form = [Form] @{

 Text = 'My First Form'

}

$button = [Button] @{

 Text = 'Push Me!'

 Dock = 'Fill'

}

$button.add_Click{

 $form.Close()

}

$form.Controls.Add($button)

$form.ShowDialog()

This fragment of script loads the Windows Forms assembly into memory and then makes all the
types defined in the namespace System.Windows.Forms available.

Here are a couple of important points to remember about the using statement. First, it has to be
the first non-comment statement in a script or module. This is because, with using, types are
resolved at compile time instead of runtime. This is a good thing because it helps you catch your
errors sooner. Second, you have to have the assembly containing the reference type namespace
loaded before you can run your script. Because a lot of things are loaded by PowerShell by
default this isn’t that much of a problem. This is what using assembly <...> is intended for. By
specifying both statements as shown in the example, everything will work fine.

Note

There was a bug in how using assembly worked; instead of scanning the assembly before it’s
loaded, it defers loading it until runtime. This, unfortunately, makes it exactly useless for its
intended purpose. Hopefully that bug will be fixed by the time you read this, but if not and you
see a “type not found” error, at least you’ll know why.

So far, so good with methods. You know how to call them “statically” where you know the name
of the method to call beforehand. But PowerShell is a dynamic language, so one might expect
that there’s a way to call them using a name discovered at runtime. This is the topic of the next
section.

4.5.3. Indirect method invocation

Earlier we talked about how you could do indirect property references by using a variable on the
right side of the dot operator. You can do the same thing with methods, but it’s a bit more
complicated. The obvious approach

$x.$y(2)

doesn’t work. What happens is $x.$y returns an object that lists the overloads for that method
that’s the different forms of the method that you can use:

PS> 'abc'.substring

OverloadDefinitions

string Substring(int startIndex)

string Substring(int startIndex, int length)

(143)

Now that you have this information object, what else can you do with it? The thing you most
probably want to do is invoke it, and the way to do that is to use the Invoke method on the
method information object:

PS> 'abc'.substring.Invoke(1)

bc

This also works for static methods. First assign the name of the operation to invoke to a variable:

 PS> $method = 'sin'

look at the information about that method:

PS> [math]::$method

OverloadDefinitions

static double Sin(double a)

and finally, invoke it:

PS> [math]::$method.Invoke(3.14)

0.00159265291648683

Although it’s an advanced technique, the ability to invoke properties and methods indirectly
turns out to be powerful because it means the behavior of your script can be configured at
runtime. You’ll learn how this can be used when we talk about scriptblocks in chapter 7.

This finishes our discussion of properties and methods. You may have noticed in some of the
examples so far, you’ve had to do some fairly complicated things to display the results in the
way you want. Clearly, on occasion you’ll need a better way to present output, and that’s the
purpose of the format operator, covered in the next section.

(144)

4.6. Format operator

Most of the time, PowerShell’s built-in formatting and output system will take care of presenting
your results, but sometimes you need more explicit control over the formatting of your output.
You may also want to format text strings in a specific way, like displaying numbers in
hexadecimal format. PowerShell allows you to do these things with the format operator, shown
in figure 4.13.

Figure 4.13. The format operator lets you control the formatting of your output.

The format operator (-f) is a binary operator that takes a format string as its left operand and an
array of values to format as its right operand. Here’s an example:

PS> '{2} {1} {0}' -f 1,2,3

3 2 1

In the format string, the values enclosed in braces correspond to the index of the element in the
right operand array. The element is converted into a string and then displayed. Along with
reordering, when the elements are displayed, you can control how they’re laid out.

Note

For people familiar with the Python language, the PowerShell format operator is modeled on the
Python % operator but uses –f because % isn’t used in PowerShell formatting directives.

Here are more examples:

PS> '|{0,10}| 0x{1:x}|{2,-10}|' -f 10,20,30

| 10| 0x14|30 |

Here, the first format specifier element (,10) tells the system to pad the text out to ten characters.
The next element is printed with the specifier :x, telling the system to display the number as a
hexadecimal value. The final display specification has a field width specifier, but this time it’s a
negative value, indicating that the field should be padded to the right instead of to the left.

The -f operator is shorthand for calling the .NET Format method on the System.String class. The
key benefit of the -f operator is it’s a lot shorter to type. This is useful when you’re typing on the
command line. The underlying Format() method has a rich set of specifiers. The basic syntax of
these specifiers is

{<index>[,<alignment>][:<formatString>]}

(145)

Some examples of using format specifiers are shown in table 4.4.

Table 4.4. Examples of using format specifiers

Format
specifier Description Example Output

{0} Displays a particular element '{0} {1}' -f 'a','b' a b
{0:x} Displays a number in hexadecimal '0x{0:x}' -f 181342 0x2c45e

{0:X} Displays a number in hexadecimal with
the letters in uppercase '0x{0:X}' -f 181342 0x2C45E

{0:dn} Displays a decimal number left-
justified, padded with zeros '{0:d8}' -f 3 00000003

{0:p} Displays a number as a percentage '{0:p}' -f .123 12.30%

{0:C}
Displays a number as currency (based
on your cultural settings). C can be
upper or lower case.

'{0:c}' -f 12.34 $12.34

{0,n} Displays with field width n, left-aligned '|{0,5}|' -f 'hi' | hi|

{0,-n) Displays with field width n, right-
aligned '|{0,-5}|' -f 'hi' |hi |

{0:hh} {0:mm} Displays the hours and minutes from a
DateTime value

'{0:hh}:{0:mm}' -f
(Get-Date) 01:34

There are many more things you can do with formatting. Refer to the Microsoft MSDN
documentation for the full details of the options.

Now that you know how to format strings, let’s look at how you can direct your output to files
with the redirection operators.

(146)

4.7. Redirection and redirection operators

All modern shell languages have input and output redirection operators, and PowerShell is no
different. The redirection operators supported in PowerShell are shown in figure 4.14.

Figure 4.14. Redirection operators that are available in PowerShell

You can use the redirection operators to send particular types of output to a file. The type of data
to be output is identified as follows:

* = All output
1 = Success output
2 = Errors
3 = Warning messages
4 = Verbose output
5 = Debug messages
6 = Information messages

The All, Warning, Verbose, and Debug redirection operators were introduced in PowerShell v3.
The Information redirection operator was introduced in PowerShell v5.

Note

The Input redirection operator, <, isn’t implemented in PowerShell. Using this operator in an
expression will result in a syntax error.

The redirection operators allow you to control where output and other data objects are written
(including discarding them, if that’s what you want to do). The following example saves the
output of the Get-Date cmdlet to a file called out.txt:

PS> Get-Date > out.txt

Now let’s see what happens when you redirect the error output from a cmdlet. You’ll let the
output be displayed normally:

PS> Get-ChildItem out.txt,nosuchfile 2> err.txt

 Directory: C:\Test

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 16/05/2016 16:40 22278 out.txt

(147)

Obviously, no error was displayed on the console. Let’s see what was written to the error file:

PS> Get-Content err.txt

Get-ChildItem : Cannot find path 'C:\Test\nosuchfile' because it does not exist.

At line:1 char:1

+ Get-ChildItem out.txt,nosuchfile 2> err.txt

+ ~~~

+ CategoryInfo : ObjectNotFound: (C:\test\nosuchfile:String)

[Get-ChildItem], ItemNotFoundException

+ FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.GetChildItemCommand

You see the full error message that would’ve been displayed on the console. The > operator will
overwrite any previous contents of the file. Use >> (or n>>) to append to the chosen output file.

The next operator to discuss is the stream combiner, n>&1. This operator causes the appropriate
data objects to be routed into the output stream instead of going to their dedicated stream. For
example, if you want to get all the output and error records from a script to go to the same file,
you’d use

PS> myScript > output.txt 2>&1

or

PS> myScript 2>&1 > output.txt

The order doesn’t matter. Now all the error records will appear inline with the output records in
the file. This technique also works with assignment:

PS> $a = myScript 2>&1

This code causes all the output and error objects from myScript to be placed in $a. You can then
separate the errors by checking for their type with the -is operator, but it would be easier to
separate them upfront. This is another place where you can use the grouping constructs. The
following construction allows you to capture the output objects in $output and the error objects in
$error:

PS> $error = $($output = myScript) 2>&1

You’d use this idiom when you wanted to take additional action on the error objects. For
example, you might be deleting a set of files in a directory. Some of the deletions might fail.
These will be recorded in $error, allowing you to take additional actions after the deletion
operation has completed.

Sometimes you want to discard output or errors. In PowerShell, you do this by redirecting to
$null. If you don’t care about the output from myScript, then you’d write

PS> myScript > $null

and to discard the errors, you’d write

PS> myScript 2> $null

The last thing to mention for I/O redirection is, under the covers, redirection is done using the
Out-File cmdlet. In fact,

PS> myScript > file.txt

is syntactic sugar for

(148)

PS> myScript | Out-File -Path file.txt

In some cases, you’ll want to use Out-File directly because it gives you more control over the
way the output is written using the -Encoding parameter, which lets you specify the encoding
(such as ASCII, Unicode, UTF8, and so on). The -Width parameter tells the cmdlet how wide you
want the output formatted. The full details for this cmdlet are available by running the command

PS> Get-Help Out-File -Full

at the PowerShell command line.

Earlier in this section we talked about assignment as being a kind of output redirection. This
analogy is even more significant than we alluded to. We’ll go into details in the next section,
when we finally cover variables themselves.

(149)

4.8. Working with variables

In many of the examples so far, you’ve used variables. Now let’s look at the details of
PowerShell variables. First, PowerShell variables aren’t declared; they’re created as needed on
first assignment. There also isn’t any such thing as an uninitialized variable. If you reference a
variable that doesn’t yet exist, the system will return the value $null (although it won’t create a
variable).

Note

$null, like $true and $false, is a special constant variable that’s defined by the system. You can’t
change the value of these variables.

You can tell whether a variable exists by using the Test-Path cmdlet:

PS> Test-Path variable:NoSuchVariable

False

This works because variables are exposed through the PowerShell unified drive names. Just as
files and the registry are available through virtual drives, so are PowerShell variables. You can
get a list of all the variables that currently exist by using:

PS> Get-ChildItem variable:/

The results will vary depending on the version of PowerShell you’re running.

How do you create a variable? Let’s find out.

4.8.1. Creating variables

A number of variables are defined by the system: $true, $false, and $null are the ones you’ve
seen so far.

Note

Run the command Get-Help about_Automatic_Variables to get a list including detailed descriptions
of all the automatic variables.

Unlike many other languages, in PowerShell, you don’t have to declare variables. You create
variables by assigning to the variable name as shown in the following:

PS> Test-Path variable:myNewVariable

False

PS> $myNewVariable = 'i exist'

PS> Test-Path variable:myNewVariable

(150)

True

Type-constrained variables

By default, a PowerShell variable can hold any type of object. If you want to add a type-
constraint attribute to a variable, you use the cast notation on the left of the variable. Let’s add a
type constraint to the variable $var:

PS> [int] $var = 2

Looking at the result, you see the number 2:

PS> $var

2

That’s fine. What happens if you try to assign a string to the variable?

PS> $var = '0123'

PS> $var

123

First, there was no error. Second, by looking at the output of the variable, you can see the string
“0123” was converted into the number 123. This is why we say the variable has a type attribute.
Unlike strongly typed languages where a variable can only be assigned an object of the correct
type, PowerShell will allow you to assign any object as long as it’s convertible to the target type
using the rules described in chapter 2. If the type isn’t convertible, you’ll get a runtime type-
conversion error.

Attribute-constrained variables

PowerShell has always supported type-constrained variables like you saw in the previous section.
PowerShell v5 also introduced the capability to use more sophisticated constraints—the same
constraints used in cmdlets and advanced functions—expressed using attributes. An attribute
looks like a type but contains a possibly empty parenthetical expression. Some examples are
[Parameter()] and [ValidateLength(0,5)]. Here’s an example showing how to use the
[ValidateRange()] attribute on a variable. The goal is to restrict the length of the string that could
be assigned to a variable. This can be enforced by adding the constraint as follows:

PS> [ValidateLength(0,5)] [string] $cv = ''

This says the string must be between zero and five characters long. Try it by assigning the string
“12345” to the variable:

PS> $cv = '12345'

The assignment quietly succeeds. Now try it again with a string one character longer:

PS> $cv = '123456'

The variable cannot be validated because the value 123456

is not a valid value for the cv variable.

At line:1 char:1

+ $cv = '123456'

+ ~~~~~~~~~~~~~~

 + CategoryInfo : MetadataError: (:) [], ValidationMetadataException

 + FullyQualifiedErrorId : ValidateSetFailure

This time it fails as expected.

(151)

Note

At best, the default error message in this example would have to be described as “suboptimal.”
On the up side, because it’s a built-in message, it’s localized, which means it’s readable
everywhere. On the down side, that makes it incomprehensible in all languages. This isn’t to say
the overall feature is useless. This type of declarative checking can replace a lot of custom
validation code and less code leads to smaller programs and fewer errors. Remember to catch the
exception (see the try statement in chapter 14) and provide useful error messages to your users.

4.8.2. Variable name syntax

But wait—so far, we’ve totally ignored the rules for variable names! Obviously, you need to
know what characters are legal in a variable name. We’ve delayed talking about this because
PowerShell is, as you might expect, much more flexible than most languages when it comes to
naming variables. In fact, a variable name can contain literally any character you want, as long as
you follow a couple of simple rules. There are two notations for variables. The simple notation
starts with a dollar sign followed by a sequence of characters, which can include letters,
numbers, the underscore, and the colon:

PS> $_i_am_variable_number_2 = 2

The colon in a variable name is used as a drive separator—more on that in a minute, but first
we’ll look at the alternate notation for variables. This notation, which requires enclosing the
variable name in braces, allows you to use any character in a variable name, including spaces.
Here’s an example of what that would look like:

PS> ${This is a variable name}

You can use any character you want in the braces. Even the close brace is allowed if you escape
it by writing `} as in ${a`}}.

Earlier, we said the colon character was special in a variable name. This is used to delimit the
drive or namespace qualifier that the system uses to locate the variable. For example, to access
PowerShell global variables, you use the global namespace qualifier:

PS> $global:var = 13

PS> $global:var

13

This example sets the variable var in the global context to the value 13. You can also use the
namespace notation to access variables at other scopes. This is called a scope modifier. Scopes
will be covered in chapter 6, so we won’t say anything more about them here.

Along with the scope modifiers, the namespace notation lets you get at any of the resources
surfaced in PowerShell as drives. For example, to get at the environment variables, you use the
env namespace:

PS> $env:SystemRoot

C:\WINDOWS

In this example, you retrieved the contents of the SystemRoot environment variable. You can use

(152)

these variables directly in paths. Many of the namespace providers are also available through the
variable notation (but you usually have to wrap the path in braces):

PS> ${c:old.txt} -replace 'is (red|blue)','was $1' > new.txt

The initial construct should now start to make sense. The sequence ${c:old.txt} is a variable that
references the file system provider through the C: drive and retrieves the contexts of the file
named old.txt. With this simple notation, you read the contents of a file. No open/read/close—
you treat the file itself as an atomic value.

Note

Using variable notation to access a file can be startling at first, but it’s a logical consequence of
the unified view model in PowerShell. Because things like variables and functions are available
as drives, things such as drives are also available using the variable notation. In effect, this is an
application of the Model-View-Controller (MVC) pattern. Each type of data store (file system,
variables, environment, and so forth) is a model. The PowerShell provider infrastructure acts as
the controller, and there are (by default) two views: the file system navigation view and the
variable view. The user is free to choose and use the view most suitable to the task at hand. For
the technical minded, the provider must implement the IContentCmdletProvider interface for this
technique to work.

You can also write to a file using the namespace variable notation. Here’s that example rewritten
to use variable assignment instead of a redirection operator (remember, earlier we said
assignment can be considered a form of redirection in PowerShell):

PS> ${c:new.txt} = ${c:old.txt} -replace 'is (red|blue)','was $1'

You can even do an in-place update of a file by using the same variable on both sides of the
assignment operator. To update the file old.txt instead of making a copy, use

PS> ${c:old.txt} = ${c:old.txt} -replace 'is (red|blue)','was $1'

All you did was change the name in the variable reference from new.txt to old.txt. This won’t
work if you use the redirection operator, because the output file is opened before the input file is
read. That would have the unfortunate effect of truncating the previous contents of the output
file. In the assignment case, the file is read atomically—all at once, processed, and then written
atomically. This allows for “in-place” edits because the file is buffered entirely in memory
instead of in a temporary file. To do this with redirection, you’d have to save the output to a
temporary file and then rename the temporary file so it replaces the original. Now let’s leverage
this feature along with multiple assignments to swap two files, f1.txt and f2.txt:

PS> ${c:f1.txt},${c:f2.txt} = ${c:f2.txt},${c:f1.txt}

Issues with using variables to read files

All these examples using variables to read and write files cause the entire contents of files to be
loaded into memory as a collection of strings. On modern computers, it’s possible to handle very
large files this way, but doing this is memory-intensive and, depending on what you’re doing,
may not be the most efficient solution. Also, in the case of huge files (like Big Data) you’ll

(153)

eventually run out of memory and fail. Keep this in mind when using these techniques.

When accessing a file using the variable namespace notation, PowerShell assumes that it’s
working with a text file. Because the notation doesn’t provide a mechanism for specifying the
encoding, you can’t use this technique on binary files. You’ll have to use the Get-Content -Raw
and Set-Content cmdlets instead.

When the file system provider reads the file, it returns the file as an array of strings. This
provides a simple way to get the length of a file:

PS> ${c:file.txt}.Length

4.8.3. Working with variable cmdlets

You can also work with variables using the variable cmdlets, which let you do a couple of things
you can’t do directly from the language.

Indirectly setting a variable

Sometimes it’s useful to be able to get or set a variable when you won’t know the name of that
variable until runtime. For example, you might want to initialize a set of variables from a .csv
file. You can’t do this using the variable syntax in the language because the name of the variable
to set is resolved at parse time. First you need a .csv file:

PS> Get-Content variables.csv

"Name", "Value"

"srcHost", "machine1"

"srcPath", "c:\data\source\mailbox.pst"

"destHost", "machine2"

"destPath", "d:\backup"

As you can see, the .csv file is a text file with rows of values separated by commas, hence CSV,
or comma-separated values. The choice of Name and Value was deliberate because these are the
names of the parameters on the Set-Variable cmdlet. This cmdlet takes input from the pipeline by
property name and value so you can’t pipe the output of Import-CSV directly into Set-Variable:

PS> Import-Csv .\variables.csv | foreach {Set-Variable -Name $_.Name -Value $_.Value}

It’s as simple as that. If you wanted to see the full details, you could specify the -Verbose
parameter to the cmdlets, and it would display each variable as it was set. You can use the
parameters on the cmdlet to directly set a variable:

PS> Set-Variable -Name srcHost -Value machine3

PS> $srcHost

machine3

Now let’s see what else you can do with the cmdlets.

Getting and setting variable options

If there’s a cmdlet to set a variable, there should also be a cmdlet to get variables—the Get-
Variable cmdlet:

PS> Get-Variable -ValueOnly srcHost

(154)

machine3

Notice this example specified the -ValueOnly parameter. What happens if you don’t do that? If -
ValueOnly isn’t specified, Get-Variable returns the [PSVariable] object that PowerShell uses to
represent this object. You can see the Name and Value properties on this object, but there are a lot
of other properties as well. Let’s explore the Options property. This property allows you to set
options on the variable including things like ReadOnly and Constant. The variables you’ve created
so far are still changeable:

PS> $srcHost = 'machine9'

PS> $srcHost

machine9

But if you’re using them to configure the environment, you may not want them to be. To address
this, you can set the ReadOnly option using Set-Variable and the -Option parameter:

PS> Set-Variable -Option ReadOnly -Name srcHost -Value machine1

PS> $srcHost = 'machine4'

Cannot overwrite variable srcHost because it is read-only

or constant.

At line:1 char:1

+ $srcHost = 'machine4'

+ ~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : WriteError:

(srcHost:String) [], SessionStateUnauthorizedAccessException

 + FullyQualifiedErrorId : VariableNotWritable

Now when you try to change the value of this variable, you get an error. The variable is
unchanged. If you can’t change it, how about removing it? Try the remove command:

PS> Remove-Variable srcHost

Remove-Variable : Cannot remove variable srcHost because it is constant or

 read-only. If the variable is read-only,try the operation again specifying

 the Force option.

At line:1 char:1

+ Remove-Variable srcHost

+ ~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : WriteError: (srcHost:String) [Remove-Variable],

SessionStateUnauthorizedAccessException

 + FullyQualifiedErrorId :

VariableNotRemovable,Microsoft.PowerShell.Commands.RemoveVariableCommand

This failed with the expected error. But you can still force the removal of a read-only variable by
using the -Force parameter on Remove-Variable:

PS> Remove-Variable -Force srcHost

When you specify -Force, the variable is removed and there’s no error. If you don’t want the
value to be changed, you can use the Constant option:

PS> Set-Variable -Option Constant -Name srcHost -Value machine1

When this option is specified, even using -Force will fail if you try to remove the variable.

Using PSVariable objects as references

And now for one last trick. You’ve looked at how to use the name of a variable to access it
indirectly. You can bypass the name-lookup process and use the variable reference directly. Let’s
see how this works. To use a PSVariable object as a reference, first you have to get one. Earlier
you saw how to do this with Get-Variable (or its alias gv):

(155)

PS> $ref = Get-Variable -Name destHost

Now that you have a reference, you can use the reference to get the variable’s name:

PS> $ref.Name

destHost

or its value:

PS> $ref.Value

machine2

Having the reference also allows you to set the variable’s value:

PS> $ref.Value = 'machine12'

When you check the variable using the language syntax, you see the change:

PS> $destHost

machine12

Variable names vs. variable values

Here’s a tip to keep in mind if you’re trying to do these tricks. You need to keep variable name
and variable value firmly separated in your thinking. Remember that $ isn’t part of the variable’s
name. It’s part of a token in the PowerShell language indicating that whatever follows the $ is the
name of a variable.

The correct way to use the variable cmdlets is to use the variable name without the leading $.

4.8.4. Splatting a variable

The last topic that we’re going to touch on in this chapter is something called variable splatting,
which affects how argument variables are passed to commands. Splatting turns each value in a
collection into individual arguments. If you have an array with three elements in it, those
elements will be passed as three individual arguments. If you have a hashtable, each name-value
pair becomes a named parameter–argument pair for the command.

To do this, when referencing the variable that you want to pass to the command, you use @
instead of $ as the prefix to the variable. Here’s an example to show how this works. First you
need a command to work with—you’ll define a function (see chapter 6) that takes three
arguments:

PS> function s {param ($x, $y, $z) "x=$x, y=$y, z=$z" }

This function uses string expansion to display the value of each of its parameters. Now create an
array to pass into this command:

PS> $list = 1,2,3

The variable $list contains three integers. Pass this using the normal variable notation:

PS> s $list

x=1 2 3, y=, z=

From the output, you can see all three values in the argument were assigned to the $x parameter.

(156)

The other two parameters didn’t get assigned anything. Next, splat the variable by calling the
function with @list instead of $list:

PS> s @list

x=1, y=2, z=3

This time the output shows each parameter was assigned one member of the array in the variable.
What happens if there are more elements than there are variables? Let’s try it. First add some
elements to the $list variable:

PS> $list += 5,6,7

Now the variable contains seven elements. Pass this to the function:

PS> s @list

x=1, y=2, z=3

It appears the last four arguments have vanished. In fact, what has happened is they’re assigned
to the special variable $args. Let’s redefine the function to show this:

PS> function s {param ($x, $y, $z) "$x,$y,$z args=$args" }

Print out the three formal arguments $x, $, and $z along with the special $args variable. When you
run the new function

PS> s @list

1,2,3 args=5 6 7

you see the missing arguments have ended up in $args. The most important use of splatting is for
enabling one command to effectively call another. Variable parameters and how they’re bound
are covered in much more detail in chapter 6.

Now that you understand how an array of values can be splatted, let’s look at how you work with
named parameters. In the previous example, you could have used the explicit names of the
parameters to pass things in instead of relying on position. For example, you can use the names
to explicitly pass in values for -x and -y, in the reverse order:

PS> s -y first -x second

second,first, args=

You see second is in the first (x) position and first is in the second (y) position. How can you use
splatting to do this? Well, parameters and their values are name-value pairs, and in PowerShell,
the way to work with name-value pairs is with hashtables. Let’s try this out. First create a
hashtable with the values you want:

PS> $h = @{x='second'; y='first'}

Now splat the hashtable the same way you splatted the variable containing an array:

PS> s @h

second,first, args=

As before, the x parameter gets the value second, and the y parameter gets the value first. The
next question you should have is: What happens if you also want to explicitly pass in -z? Try it:

PS> s -z third @h 1 2 3

second,first,third args=1 2 3

(157)

It works exactly the way you want. If you specify the parameter both in the hashtable and
explicitly on the command line, you’ll get an error.

Splatting

By now we’re sure you’re wondering why this technique is it called splatting. Here’s the
reasoning behind this term. Think of a rock hitting a car windshield. A rock is a solid object that
remains intact after it bounces off your car. Next, think of a bug hitting the windshield instead of
a rock. Splat! The contents of the bug are distributed over the windshield rather than remaining
as a single object. This is what splatting does to a variable argument. It distributes the members
of the argument collection as individual arguments instead of remaining a single intact argument.
The other rational behind this term is that in Ruby, the operator is *, which is what the
aforementioned insect looks like post impact. PowerShell can’t use * because it would be
confused with the wildcard character. Instead it uses @ because splatting involves arrays and
PowerShell uses @ for many array operations. We submit that this is the most visceral
mnemonic in the programming language field (at least that we’re aware of).

That’s all we’re going to say about variables here. In chapter 6, we’ll return to variables and talk
about how variables are defined in functions and how they’re scoped in the PowerShell language.
We’ll also look at splatting again when we cover how commands can call other commands.

(158)

4.9. Summary

The type operators allow you to write scripts that have polymorphic behavior. By using
these operators to examine the types of objects, you can decide how to process different
types of objects. You can also use the operators to dynamically convert from one type of
object to another.
The prefix and postfix operators ++ and -- are a convenient way of incrementing and
decrementing variables.
The subexpression operator $(...) allows you to use arbitrary PowerShell script code
anywhere that you can use a value expression. The array subexpression operator @(...)
also guarantees that the result of an expression will always be an array.
PowerShell arrays support both jagged arrays—arrays that contain or reference other
arrays—and multidimensional arrays. Array slicing is supported, both for one-dimensional
and multidimensional arrays when retrieving values. It isn’t supported when assigning to
an array index.
Use the comma operator (,) to build arrays and complex nested data structures such as
jagged arrays.
Use the dot operator (.) for accessing instance members and the double-colon (::) operator
for accessing static members. We looked at how to indirectly invoke both properties and
methods using these operators.
The using namespace and using assembly operators can make it much easier to work directly
with .NET types as well as PowerShell classes (see chapter 19).
The format operator -f can be used to perform complex formatting tasks when the default
formatting doesn’t produce the desired results. The formatting sequences are the same as
the sequences used by the System.String.Format() method in the .NET framework.
The PowerShell redirection operators allow you to control where the output and error
objects are written. They also allow you to easily discard these objects if so desired by
redirecting to $null. The redirection operators are “syntactic sugar” for the Out-File cmdlet.
Using the cmdlet directly allows you to control things such as what file encoding will be
used when writing to a file.
PowerShell variable namespaces let you access a variety of Windows data stores,
including environment variables and the file system, using the variable notation.
It’s possible to use the variable cmdlets to set options on variables and do indirect variable
accesses using either the variable name or a PSVariable object.
PowerShell uses splatting to allow you to take collections of values, either arrays or
hashtables, and distribute the members of these collections as individual arguments to a
command.

You can perform a lot of tasks using only operators and variables, but to get the most from
PowerShell you need to dig further into the language. You’ll start that in the next chapter when
we introduce the various flow control statements.

(159)

Chapter 5. Flow control in scripts
This chapter covers

Conditional, looping, and switch statements
Labels, break, and continue
Flow control with cmdlets
Statements as values
Performance issues

I may not have gone where I intended to go, but I think I have ended up where I needed to
be.

Douglas Adams, The Long Dark Tea-Time of the Soul

Previous chapters showed how you can solve surprisingly complex problems in PowerShell
using only commands and operators. Sooner or later, though, if you want to write significant
programs or scripts, you must add custom looping or branch logic to your solution. Conditional
statements enable your code to branch, dependent on tests you create. Loops execute a block of
code one or more times depending on criteria you set—making your code shorter and more
easily maintained. In this chapter, we’ll cover PowerShell’s take on the traditional programming
constructs that all languages possess.

Flow-control behavior in PowerShell

As always, behavioral differences exist with the PowerShell flow-control statements (if, switch,
and loop statements) of which new users should be aware. The most obvious difference is
PowerShell typically allows the use of pipelines in places where other programming languages
only allow simple expressions. This makes the PowerShell switch statement both a looping
construct and a conditional statement—which is why it gets its own group.

The PowerShell flow-control statements and cmdlets are listed in figure 5.1, arranged in groups.
Each of the flow-control statements described in this chapter has a corresponding about* help file
with additional examples.

Figure 5.1. PowerShell flow-control statements

(160)

This is also the first time we’ve dealt with keywords in PowerShell. Keywords are part of the
core PowerShell language, which means they can’t be redefined or aliased. Keywords are case-
insensitive, though by convention are written in lowercase in PowerShell scripts.

Note

A full list of keywords can be found in the about_Language_Keywords help file. You should also
view the about_Reserved_Words file for words that have special meaning in PowerShell and so
shouldn’t be used as variable names.

Keywords are also context-sensitive, which means they’re only treated as keywords in a
statement context—usually as the first word in a statement. This is important because it lets you
have both a foreach loop statement and a foreach filter cmdlet, as you’ll see later in this chapter.
Let’s begin our discussion with the conditional statement.

(161)

5.1. Conditional statement

PowerShell has one main conditional statement: the if statement, shown in figure 5.2.

Figure 5.2. The syntax of the PowerShell conditional statement

This statement lets a script decide whether an action should be performed by evaluating a
conditional expression and then selecting the path to follow based on the results of that
evaluation. The PowerShell if statement is similar to the if statement found in most
programming languages, though elseif is used as a single keyword for subsequent clauses.

Let’s work through examples that illustrate how the if statement works:

PS> if ($x -gt 100){

 "It's greater than one hundred"

} elseif ($x -gt 50){

 "It's greater than 50"

} else {

 "It's not very big."

}

In this example, if the variable $x holds a value greater than 100, the string “It’s greater than one
hundred” will be emitted. If $x is greater than 50 but less than 100, it will emit “It’s greater than
50”; otherwise, you’ll get “It’s not very big.” You can have zero or more elseif clauses to test
different things. The elseif and else parts are optional, as is the case in other languages.

Note

elseif is a single keyword with no spaces allowed between the words.

The braces are mandatory around the statement lists, even when you have only a single
statement, or even no statements, in the list. Leaving out the {} generates a syntax error.

Grammar lessons

The PowerShell grammar technically could support leaving out the braces. In fact, the
PowerShell team did enable this feature at one point, but when people tried it out, it resulted in a
lot of errors, and the code was harder to read and maintain. The problem is a newline or a
semicolon is required to terminate a command. This leads to the situation where you write
something like

if ($x -gt 3) write x is $x while ($x--) $x

and discover, because you’ve missed the semicolon before the while statement, it writes out the

(162)

while statement instead of executing it. In the end, the cost of typing a couple of additional
characters was more than offset by a decreased error rate. For this reason, the language design
team decided to make the braces mandatory. The braces make the syntactical associations within
the code much more obvious.

In scripts, the syntax of the PowerShell flow-control statements is reasonably freeform with
respect to whitespace. But when PowerShell is being used interactively, the else or elseif
keyword has to be on the same line as the previous closing brace—otherwise, the interpreter will
consider the statement complete and execute it immediately.

The PowerShell if statement allows a pipeline in the condition clause:

PS> if ((Get-ChildItem *.txt | Select-String -List spam).Length -eq 3)

{

 'Spam! Spam! Spam!'

}

In this case, you search all the text files in the current directory looking for the word “spam.” If
exactly three files contain this word, then you print out

Spam! Spam! Spam!

Note

Yes, these are, in fact, Monty Python references. This is where the Python language got its name.
If you’re familiar with Python or Perl, you’ll occasionally recognize cultural references from
those languages in PowerShell examples here and elsewhere. Many of the PowerShell
development team members had their first scripting experiences with those languages.

Because you can use pipelines and subexpressions in the conditional part of an if statement, you
can write quite complex conditional expressions in PowerShell. With subexpressions, you can
even use an if statement inside the condition part of another if statement:

PS> $x = 10

PS> if ($(if ($x -lt 5) { $false } else { $x }) -gt 20)

 {$false} else {$true}

True

PS> $x = 25

PS> if ($(if ($x -lt 5) { $false } else { $x }) -gt 20)

 { $false } else {$true}

False

If looking at this makes your head hurt, welcome to the club—it made ours hurt to write it! Let’s
dissect this statement and see what it’s doing. Let’s take the inner if statement first:

if ($x -lt 5) { $false } else { $x }

You can see this statement is straightforward. If $x is less than the number 5, it returns false;
otherwise, it returns the value of $x. What the outer if statement is doing is also pretty obvious: if
the result of the first (formally inner) statement is greater than 20, it returns $false; otherwise it
returns $true.

(163)

Now that you can do branching, let’s move on to the looping statements.

(164)

5.2. Looping statements

Looping is the ability to repeat a set of actions some specific number of times, either based on a
count or a condition expression. The PowerShell loop statements cover both of these cases and
are shown in figure 5.3.

Figure 5.3. PowerShell loop statements

5.2.1. while loop

The while statement is PowerShell’s basic looping statement. It executes the commands in the
statement list as long as a conditional test evaluates to true. A while loop tests at the top of the
loop. If your conditional test is false at the start, the loop won’t execute.

When you execute a while statement, PowerShell evaluates the <expression> pipeline section of
the statement before entering the <statements> section. The output from the pipeline is then
converted to either true or false, following the rules for the Boolean interpretation of values
described in chapter 2. As long as this result converts to true, PowerShell reruns the <statements>
section, executing each statement in the list.

For example, the following while statement displays the numbers 1–3:

$val = 0

while($val -ne 3)

{

 $val++

 write-host "The number is $val"

}

In this example, the condition ($val isn’t equal to 3) is true while $val is 0, 1, and 2. Each time
through the loop, $val is incremented by 1 using the unary ++ increment operator ($val++). The
last time through the loop, $val is 3. When $val equals 3, the condition statement evaluates to
false and the loop exits.

You can accomplish all the basic iterative patterns using the while loop, but PowerShell provides
several other looping statements for common cases. Let’s look at those next.

5.2.2. do-while loop

The other while loop variant in PowerShell is the do-while loop. This is a bottom-tested variant of
the while loop—it always executes the statement list at least once before checking the condition.

(165)

The while loop from the previous section becomes

$val = 0

do

{

 $val++

 Write-Host "The number is $val"

} while ($val -ne 3)

The do-while loop is effectively equivalent to

<statementList>

while (<pipeLine>)

{

 <statementList>

}

where the two statement lists are identical. The final variation of the while loop is the do-until
statement. It’s identical to the do-while loop except that the sense of the test is inverted and the
statement will loop until the condition is true instead of while it’s true. Our example becomes

$val = 0

do {

 $val++

 Write-Host "The number is $val"

} until ($val -ge 3)

In this case, the statement loops until $val is greater than or equal to 3. Notice the difference in
the way the condition is written, because it’s the termination of the condition, not its
continuation.

Having covered the two variations of the while loop, we’ll look at the for and foreach loops next.

5.2.3. for loop

The for loop is the basic counting loop in PowerShell. It’s typically used to step through a
collection of objects. It’s not used often in PowerShell because there are usually better ways for
processing a collection. But the for loop is useful when you need to know explicitly which
element in the collection you’re working with. The canonical example is

PS> for ($i=0; $i -lt 5; $i++) { $i }

Notice the three pipelines in the parentheses are general pipelines. Conventionally, the
initialization pipeline initializes the loop counter variable, the test pipeline tests this variable
against some condition, and the increment pipeline increments the loop counter. But because
these are arbitrary pipelines, they can do anything. (Note if initialization and increment pipelines
produce output, it’s discarded by the interpreter.) Here’s an example where the condition test is
used to generate a side effect that’s then used in the statement list body:

PS> for ($i=0; $($y = $i*2; $i -lt 5); $i++) { $y }

0

2

4

6

8

In this example, the pipeline to be tested is a subexpression that first sets $y to be twice the
current value of $i and then compares $i to 5. In the loop body, you use the value in $y to emit
the current loop counter times 2. A more practical example would be initializing two values in

(166)

the initialization pipeline:

PS> for ($($result=@(); $i=0); $i -lt 5; $i++) {$result += $i }

PS> "$result"

0 1 2 3 4

Here you use a subexpression in the initialization pipeline to set $result to the empty array and
the counter variable $i to 0. Then the loop counts up to 5, adding each value to the result array.

Using the for loop is straightforward, but managing the loop counter becomes annoying because
it involves writing more code than other loop structures. The foreach loop, by comparison, lets
the loop counter count take care of itself, so let’s move on.

5.2.4. foreach loop

The whole point of using a scripting language for automation is so you can operate on more than
one object at a time. PowerShell provides many ways of operating on collections. Perhaps the
most straightforward of these mechanisms is the foreach loop.

Note

To reiterate, when the word “foreach” is used at the beginning of a statement, it’s recognized as
the foreach keyword. When it appears in the middle of a pipeline, it’s treated as the name of a
command (ForEach-Object). When used as a method name, it’s treated as the fallback .foreach()
method. Of all the looping constructs, the foreach construct will be the one you use most often.

This statement is syntactically identical to the C# foreach loop except that you don’t, and can’t,
declare the type of the loop variable. This example loops over all the text files (.txt extension) in
the current directory, calculating the total size of all the files:

PS> $l = 0; foreach ($f in Get-ChildItem *.txt) { $l += $f.length }

First you set the variable that will hold the total length to 0. Then, in the foreach loop, you use the
Get-ChildItem command to get a list of the text files in the current directory. The foreach
statement assigns elements from this list one at a time to the loop variable $f and then executes
the statement list with this variable set. At the end of the statement, $f will retain the last value
that was assigned to it, which is the last value in the list. Compare this example to the for loop
examples in the previous section. Because you don’t have to manually deal with the loop counter
and explicit indexing, this example is significantly simpler.

Note

In C#, the foreach loop variable is local to the body of the loop and is undefined outside the loop.
This isn’t the case in PowerShell; the loop variable is another variable in the current scope. After
the loop has finished executing, the variable is still visible and accessible outside the loop and
will be set to the last element in the list. If you want to have a locally scoped variable, you can do
this with scriptblocks, which are discussed in detail in chapter 7.

(167)

Evaluation order in the foreach loop

It’s important to note that a foreach loop doesn’t stream the results of the pipeline. The pipeline
to loop over is run to completion, and only then does the loop body begin executing. Let’s take a
second to compare this behavior with the way the ForEach-Object cmdlet works. Using the
ForEach-Object cmdlet, this statement would look like

PS> Get-ChildItem *.txt | ForEach-Object { $l += $_.length }

In the case of the ForEach-Object, the statement body is executed as soon as each object is
produced. In the foreach statement, all the objects are collected before the loop body begins to
execute. This has two implications.

First, because in the foreach statement case all the objects are gathered at once, you need to have
enough memory to hold all these objects. In the ForEach-Object case, only one object is read at a
time, so less storage is required. From this, you’d think ForEach-Object should always be
preferred. In the bulk-read case, though, there are some optimizations that the foreach statement
does which allow it to perform significantly faster than the ForEach-Object cmdlet. The result is a
classic speed versus space trade-off. In practice, you rarely need to consider these issues, so use
whichever seems most appropriate to the solution at hand.

Note

The ForEach-Object cmdlet is covered later in this chapter. For Ruby language fans, ForEach-
Object is effectively equivalent to the .map() operator.

Second, in the ForEach-Object case, the execution of the pipeline element generating the object is
interleaved with the execution of the ForEach-Object cmdlet. The command generates one object
at a time and then passes it to foreach for processing before generating the next element. This
means the statement list can affect how subsequent pipeline input objects are generated.

Note

Unlike traditional shells where each command is run in a separate process and can therefore run
at the same time, in PowerShell they’re alternating—the command on the left runs and produces
an object, and then the command on the right runs.

Using the $foreach loop enumerator in the foreach statement

Executing the foreach statement also defines a special variable for the duration of the loop. This
is the $foreach variable, and it’s bound to the loop enumerator. An enumerator is a .NET object
that captures the current position in a sequence of objects. The foreach statement keeps track of
where it is in the collection through the loop enumerator. By manipulating the loop enumerator,

(168)

you can skip forward in the loop. Here’s an example:

PS> foreach ($i in 1..10)

{ [void] $foreach.MoveNext(); $i + $foreach.Current }

3

7

11

15

19

In this example, the foreach loop iterates over the collection of numbers from 1 to 10. In the body
of the loop, the enumerator is used to advance the loop to the next element. It does this by calling
the $foreach.MoveNext() method and then retrieving the next value using $foreach.Current. This
lets you sum up each pair of numbers—(1,2), (3,4), and so on—as the loop iterates.

Note

The foreach statement can iterate over anything PowerShell considers enumerable—anything that
implements the .NET IEnumerable interface. PowerShell adapts that slightly. There are some
classes that implement IEnumerable that PowerShell doesn’t consider enumerable including
strings and hashtables. Because PowerShell unravels collections freely, you don’t want a string
to suddenly be turned into a stream of characters or a hashtable to be shredded into a sequence of
key-value pairs. Hashtables in particular are commonly used as lightweight, typeless objects in
the PowerShell environment, so you need to preserve their scalar nature.

The value stored in $foreach is an instance of an object that implements the
[System.Collections.IEnumerator] interface. Here’s an example that shows how to look at the
members that are available on this object:

PS> [System.Collections.IEnumerator].Getmembers()|foreach{"$_"}

Boolean MoveNext()

System.Object get_Current()

Void Reset()

System.Object Current

The output of this statement shows the Current and MoveNext() members you’ve used. There’s
also a Reset() member that will reset the enumerator to the start of the collection.

Finally, you need to know how the foreach statement treats scalar objects. Because of the way
pipelines work, you don’t know ahead of time if the pipeline will return a collection or a single
scalar object. In particular, if the pipeline returns a single object, you can’t tell if it’s returning a
scalar or a collection consisting of one object. You can use the @(...) construction described in
chapter 4 to force an array interpretation, but this ambiguity is common enough that the foreach
statement takes care of this by itself. A scalar object in the foreach statement is automatically
treated as a one-element collection:

PS> foreach ($i in "hi") {$i }

hi

In this example, the value to iterate over is the scalar string “hi”. The loop executes exactly once,
printing hi. This usually works great, but null values can cause some problems.

(169)

The foreach loop and $null

What happens if the value to iterate over is $null? Let’s find out:

PS> foreach ($i in $null) { "executing" }

Nothing happens. This will be a change if you used PowerShell v2 where $null was treated as a
scalar value so the loop would run once.

Note

$null is treated as an empty collection in PowerShell v3 and later. In effect, you can’t iterate over
any collection that’s empty (no elements).

If you pass in an array of nulls

PS> foreach ($i in $null, $null, $null) {"hi"}

the statement prints hi three times because there were three elements in the array, even though
the values of those elements are null.

On that note, let’s move on to a slightly different topic and talk about break, continue, and using
labeled loops to exit nested loop statements.

(170)

5.3. Labels, break, and continue

The loops you saw in the previous section performed a structured exit in that they ran until
meeting the criteria established for terminating the loop. There are many occasions when you
need to perform an unstructured exit from a loop. Your code may be, for example, periodically
testing connectivity to a remote machine after it’s been rebooted and you want to exit the loop
when connectivity is established. In this section, we’ll discuss how to do non-structured exits
from the various looping statements using the break and continue statements shown in figure 5.4.
We’ll also cover labeled loops and how they work with break and continue.

Figure 5.4. The PowerShell break and continue statements, which may optionally take a label indicating which
loop statement to break to.

Let’s look at some simple examples. Here’s a while loop that stops counting at 5:

PS> $i=0; while ($true) { if ($i++ -ge 5) { break } $i }

Notice in this example that the while loop condition is $true. This loop would run forever were it
not for the break statement. As soon as $i hits 5, the break statement is executed and the loop
terminates. Now let’s look at the continue statement. In this example, you have a foreach loop
that loops over the numbers from 1 to 10:

PS> foreach ($i in 1..10)

{

 if ($i % 2)

 {

 continue

 }

 $i

}

2

4

6

8

10

If the number isn’t evenly divisible by 2, then the continue statement is executed (remember that
0 will evaluate to $false in the if condition). Where the break statement immediately terminates
the loop, the continue statement causes the flow of execution to jump back to the beginning of the
loop and move on to the next iteration. The end result is only even numbers are emitted. The
continue statement skips the line that would have printed the odd numbers.

So, the basic break and continue statements can handle flow control in a single loop. But what
about nested loops? This is where labels come in. Before the initial keyword on any of
PowerShell’s loop statements, you can add a label naming that statement. Then you can use the
break and continue keywords to jump to that statement. Here’s a simple example:

:outer while (1)

{

(171)

 while(1)

 {

 break outer;

 }

}

In this example, without the break statement, the loop would repeat forever. Instead, the break
will take you out of both the inner and outer loops.

Note

In PowerShell, labeled break and continue statements have one rather unusual but occasionally
useful characteristic: They’ll continue to search up the call stack until a matching label is found.
This search will even cross script and function call boundaries. This means a break inside a
function inside a script can transfer control to an enclosing loop in the calling script. This allows
for wide-ranging transfer of control. This will make more sense when you get to chapter 6, where
functions are introduced.

One last thing to know about the break and continue statements: the name of the label to jump to
is an expression, not a constant value. You could, for example, use a variable to name the target
of the statement. Let’s try this out. First set up a variable to hold the target name:

PS> $target = 'foo'

Now use it in a loop. In this loop, if the least significant bit in the value stored in $i is 1 (yet
another way to test for odd numbers), you skip to the next iteration of the loop named by $target:

PS> :foo foreach ($i in 1..10) {

 if ($i -band 1) { continue $target } $i

}

This produces a list of the even numbers in the range 1..10.

At this point, we’ve covered all of the basic PowerShell flow-control statements, as well as using
labels and break and continue to do nonlocal flow-control transfers. Now let’s move on to the
switch statement, which in PowerShell combines both looping and branching capabilities.

(172)

5.4. switch statement

The if statement in section 5.1 is usually used to test a single criterion with flow branching
depending on the result. When you need to test multiple criteria it’s possible to write multiple if
statements (or many elseif statements), but using a switch statement gives you more options for
less code. The switch statement, shown in figure 5.5, is the most powerful statement in the
PowerShell language: It combines pattern matching, branching, and iteration into a single control
structure. This is why it gets its own section.

Figure 5.5. PowerShell switch statement syntax

At the most basic level, the switch statement in PowerShell is a way of selecting an action based
on a particular value. But the PowerShell switch statement has a number of additional
capabilities. It can be used as a looping construct where it processes a collection of objects
instead of a single object. It supports the advanced pattern-matching features that you’ve seen
with the -match and -like operators. (How the pattern is matched depends on the flags specified
to the switch statement.) It can be used to efficiently process an entire file in a single statement.

5.4.1. Basic use of the switch statement

Let’s begin by exploring the basic functions of the switch statement:

PS> switch (1) { 1 { 'One' } 2 { 'Two' } }

One

The value to switch on is in the parentheses after the switch keyword. In this example, it’s the
number 1. That value is matched against the pattern in each clause, and all matching actions are
taken. You’ll see how to change this in a second.

In this example, the switch value matches 1, so that clause emits the string “One”. If you change
the switch value to 2, you get two as the result.

What if you have two clauses that match the switch value?

PS> switch (2) { 1 { 'One' } 2 { 'Two' } 2 {'another 2'} }

Two

another 2

You can see both actions are executed. As we stated earlier, the switch statement executes all
clauses that match the switch value. If you want to stop at the first match, you use the break
statement:

PS> switch (2) {1 {'One'} 2 {'Two'; break} 2 {'another 2'}}

Two

This causes the matching process to stop after the first matching statement was executed. But
what happens if no statements match? Well, the statement quietly returns nothing. A default

(173)

action can be used as a safety net in this case using the default clause:

PS> switch (3) { 1 { 'One' } 2 { 'Two' } default {'default'} }

default

In this example, when the switch value is 3, no clause matches and the default clause is run. But
when there’s a match, the default isn’t run, as it’s not considered a match.

This covers the basic mode of operation. Now let’s move on to more advanced features.

5.4.2. Using wildcard patterns with the switch statement

By default, the matching clauses make an equivalence comparison against the object in the
clause. If the matching object is a string, the check is done in a case-insensitive way, as you see
in the next example:

PS> switch ('abc') {'abc' {'one'} 'ABC' {'two'}}

one

two

The switch value 'abc' in this example was matched by both 'abc' and 'ABC'. You can change
this behavior by specifying the -CaseSensitive option:

PS> switch -case ('abc') {'abc' {'one'} 'ABC' {'two'}}

one

Now the match occurs only when the case of the elements match.

Note

We only used -case instead of the full name of -CaseSensitive. Parameters can be abbreviated
provided ambiguous resolution to two, or more, parameter names is avoided.

Next, let’s discuss the next switch option, -wildcard. When -wildcard is specified, the switch
value is converted into a string, and the tests are conducted using the wildcard pattern. This is
shown here:

PS> switch -wildcard ('abc') {a* {'astar'} *c {'starc'}}

astar

starc

In the example, the pattern a* matches anything that begins with the letter “a,” and the pattern *c
matches anything that ends with the letter “c.” Again, all matching clauses are executed.

There’s one more element to mention at this point. When a clause is matched, the element that
matched is always assigned to the variable $_ before running the clause (you can use $psitem
instead of $_ in PowerShell v3 and later). When matching on patterns, it’s much more useful to
be able to get at the object that matched. If you’re matching against filename extensions, for
example, you’d want to get at the full filename to do any processing on that file. Here’s a basic
example that shows how to use $_ in your code:

PS> switch -wildcard ('abc') {a* {"a*: $_"} *c {"*c: $_"}}

a*: abc

(174)

*c: abc

The results show $_ was replaced by the full string of the switch value.

5.4.3. Using regular expressions with the switch statement

As we discussed in chapter 3, the wildcard patterns, though useful, have limited capabilities. For
more sophisticated pattern matching, you use regular expressions. Regular expressions are
available in the switch statement through the -regex flag. Let’s rewrite the previous example
using regular expressions instead of wildcards:

PS> switch -regex ('abc') {^a {"a*: $_"} 'c$' {"*c: $_"}}

a*: abc

*c: abc

As you see, $_ is still bound to the entire matching key. But one of the most powerful features of
regular expressions is submatches. A submatch, or capture, is a portion of the regular expression
that’s enclosed in parentheses, as discussed in chapter 3 with the -match operator. The $matches
variable provides access to the submatches from the switch statement. The next example shows
how this works:

PS> switch -regex ('abc') {'(^a)(.*$)' {$matches}}

Key Value

--- -----

2 bc

1 a

0 abc

In the result shown here, $matches[0] is the overall key; $matches[1] is the first submatch, in this
case the leading a; and $matches[2] is the remainder of the string. As always, matching is case-
insensitive by default, but you can specify the -case option to make it case-sensitive, as shown
here:

PS> switch -regex ('abc') {'(^A)(.*$)' {$matches}}

Key Value

--- -----

2 bc

1 a

0 abc

PS> switch -regex -case ('abc') {'(^A)(.*$)' {$matches}}

In the first command, you changed the match pattern from a to A, and the match still succeeded
because case was ignored. In the second command, you added the -case flag, and this time the
match didn’t succeed.

What if you need something a bit more sophisticated than a simple pattern match? You may want
to split the range of possible values into groups so you’ll need to test if the switch value is greater
than or less than (or both) particular values. The switch statement lets you handle this by
specifying an expression in braces instead of a pattern. In the next example, you specify two
expressions that check against the switch value. Again, the switch value is made available
through the variable $_:

PS> switch (8) {

 {$_ -gt 3} {'greater than three'}

 {$_ -gt 7} {'greater than 7'}

}

(175)

greater than three

greater than 7

Both clauses fired as they both match. You can use these matching clauses with any of the other
three matching modes:

PS> switch (8) {

 {$_ -gt 3} {'greater than three'}

 8 {"Was $_"}

}

greater than three

Was 8

The first expression, {$_ -gt 3}, evaluated to true, so “greater than three” was printed, and the
switch value matched 8 so “Was 8” also printed (where $_ was replaced by the matching value).

Now you have exact matches, pattern matches, conditional matches, and the default clause. But
what about the switch value itself? So far, all the examples have been simple scalar values. What
happens if you specify a collection of values? This is where the switch statement acts like a form
of loop.

Note

switch works like the other looping statements in that the expression in the parentheses is fully
evaluated before it starts iterating over the individual values.

Let’s look at another example where you specify an array of values:

PS> switch(1,2,3,4,5,6) {

 {$_ % 2} {"Odd $_"; continue}

 4 {'FOUR'}

 default {"Even $_"}

}

Odd 1

Even 2

Odd 3

FOUR

Odd 5

Even 6

In this example, the switch value is 1,2,3,4,5,6 (you could use the range operator and simplify to
1..6). The switch statement loops over the collection, testing each element against all the clauses.
The first clause returns “Odd $_” if the current switch element isn’t evenly divisible by 2. The
next clause prints out “FOUR” if the value is 4. The default clause prints out “Even $_” if the
number is even. Note the use of continue in the first clause. This tells the switch statement to stop
matching any further clauses and move on to the next element in the collection. In this instance,
the switch statement is working in the same way that the continue statement works in the other
loops. It skips the remainder of the body of the loop and continues on with the next loop
iteration. What happens if you used break instead of continue?

As with the other loops, break doesn’t skip the remainder of the current iteration; it terminates the
overall loop processing.

(176)

Iterating over a fixed collection isn’t that interesting. In fact, you can use a pipeline in the switch
value, as the next example shows. In this example, you want to count the number of DLLs, text
files, and log files in the directory c:\windows. First you initialize the counter variables:

PS> $dll=$txt=$log=0

Now you run the switch statement. This switch statement uses wildcard patterns to match the
extensions on the filenames. The associated actions increment a variable for each extension type:

PS> switch -wildcard (Get-ChildItem c:\windows) {

 *.dll {$dll++}

 *.txt {$txt++}

 *.log {$log++}

}

Once you have the totals, display them:

PS> "dlls: $dll text files: $txt log files: $log"

dlls: 6 text files: 9 log files: 120

Note in this example the pipeline element is being matched against every clause. Because a file
can’t have more than one extension, this doesn’t affect the output, but it does affect performance
somewhat.

Note

It’s faster to include a continue statement after each clause so the matching process stops as soon
as the first match succeeds.

Here’s something else we glossed over earlier in our discussion of $_—it always contains the
object that it was matched against. This is important to understand when you’re using the
pattern-matching modes of the switch statement. The pattern matches create a string
representation of the object to match against, but $_ is still bound to the original object. Here’s an
example that illustrates this point. This is the same as the previous example, but this time, instead
of counting the number of files, you want to calculate the total size of all the files having a
particular extension. Here are the revised commands:

PS> $dll=$txt=$log=0

PS> switch -wildcard (Get-ChildItem c:\windows) {

 *.dll {$dll += $_.length; continue}

 *.txt {$txt += $_.length; continue}

 *.log {$log += $_.length; continue}

}

PS> "dlls: $dll text files: $txt log files: $log"

dlls: 166913 text files: 1866711 log files: 6669437

Notice how you’re using $_.length to get the length of the matching file object. If $_ were bound
to the matching string, you’d be counting the lengths of the filenames instead of the lengths of
the files.

5.4.4. Processing files with the switch statement

There’s one last mode of operation for the switch statement to discuss: the -file option. Instead
of specifying an expression to iterate over as the switch value, the -file option allows you to

(177)

name a file to process. Here’s an example that processes the files in your Temp folder. Start by
creating the file:

PS> Get-ChildItem $env:TEMP -File |

Select-Object -ExpandProperty Name |

Out-File $env:TEMP\files.txt

Again, start by initializing the counter variables. Use the -regex and -file options to access and
scan the file and check for particular extensions:

PS> $lg=$tm=$cr=0

PS> switch -regex -file $env:TEMP\files.txt {

 '\.log$' {$lg++}

 '\.tmp$' {$tm++}

 '\.cvr$' {$cr++}

}

PS> "log:$lg tmp:$tm cvr:$cr"

log:0 tmp:5 cvr:0

Now it’s possible to do the same thing by using Get-Content or even the file system name trick
you learned in chapter 4:

PS> $lg=$tm=$cr=0

PS> switch -regex (${c:\temp\files.txt}) {

 '\.log$' {$lg++}

 '\.tmp$' {$tm++}

 '\.cvr$' {$cr++}

}

PS> "log:$lg tmp:$tm cvr:$cr"

This code uses ${c:\temp\files.txt} to access the file content instead of -file. Why have the -
file option? There are two reasons.

The -file operation reads one line at a time, so it uses less memory than the Get-Content cmdlet,
which has to read the entire file into memory before processing. Also, because -file option is
part of the PowerShell language, the interpreter can do some optimizations, which gives -file
performance advantages.

So, overall, the -file option can potentially give you both speed and space advantages in some
cases (the space advantage typically being the more significant, and therefore the more important
of the two). When your task involves processing a lot of text files, the -file switch can be a
useful tool.

5.4.5. Using the $switch loop enumerator in the switch statement

One more point: As the foreach loop used $foreach to hold the loop enumerator, the switch
statement uses $switch to hold the switch loop enumerator. This is useful in a common pattern—
processing a list of options. Say you have a list of options where the option -b takes an argument
and -a, -c, and -d don’t. You’ll write a switch statement to process a list of these arguments. First
set up a list of test options. For convenience, start with a string and then use the -split operator
to break it into an array of elements:

PS> $options= -split '-a -b Hello -c'

Next initialize the set of variables that will correspond to the flags:

PS> $a=$c=$d=$false

PS> $b=$null

(178)

Now you can write your switch statement. The interesting clause is the one that handles -b. This
clause uses the enumerator stored in $switch to advance the item being processed to the next
element in the list. Use a cast to [void] to discard the return value from the call to
$switch.MoveNext()(more on that later). Then use $switch.Current to retrieve the next value and
store it in $b. The loop continues processing the remaining arguments in the list, as follows:

PS> switch ($options){

 '-a' { $a=$true }

 '-b' { [void] $switch.MoveNext(); $b= $switch.Current }

 '-c' { $c=$true }

 '-d' { $d=$true }

}

The last step in this example is to print the arguments in the list to make sure they were all set
properly:

PS> "a=$a b=$b c=$c d=$d"

a=True b=Hello c=True d=False

You see $a and $c are true, $b contains the argument “Hello”, and $d is still false because it
wasn’t in your list of test options. The option list has been processed correctly.

Note

This isn’t a robust example because it’s missing all error handling. In a complete example, you’d
have a default clause that generated errors for unexpected options. Also, in the clause that
processes the argument for -b, rather than discarding the result of MoveNext() it should check the
result and generate an error if it returns false. This would indicate that there are no more
elements in the collection, so -b would be missing its mandatory argument.

This finishes the last of the flow-control statements in the PowerShell language. In the next
section, we’ll go over a couple of the cmdlets that let you control the flow of your script in a
manner similar to the flow-control statements.

(179)

5.5. Flow control using cmdlets

PowerShell’s control statements are part of the language proper, but there are also cmdlets,
shown in figure 5.6, that can be used to accomplish similar operations.

Figure 5.6. Flow-control cmdlets

These cmdlets use blocks of PowerShell script enclosed in braces to provide the “body” of the
control statement. These pieces of script are called scriptblocks and are described in detail in
chapter 8. The two most frequent flow-control cmdlets that you’ll encounter are ForEach-Object
and Where-Object.

5.5.1. ForEach-Object cmdlet

There are two ways to construct a ForEach-Object (aliased as foreach) command. The first, which
has always been present in PowerShell, uses a scriptblock to specify the operation. The examples
you’ve seen so far follow this model. In PowerShell v3 it became possible to create an operation
statement that specifies a property value or method name. We’ll start with the scriptblock
version.

ForEach-Object with scriptblock

The ForEach-Object cmdlet operates on each object in a pipeline in much the same way that the
foreach statement operates on the set of values that are provided to it. For example, here’s a
foreach statement that prints the size of each text file in the current directory:

PS> foreach ($f in Get-ChildItem *.txt) { $f.length }

Using the ForEach-Object cmdlet, the same task can be accomplished this way:

PS> Get-ChildItem *.txt | foreach-object {$_.length}

The results are the same, so what’s the difference? One obvious difference is you don’t have to
create a new variable name to hold the loop value. The automatic variable $_ is used as the loop
variable. In PowerShell v3 and later, $psitem can be used as an alternative loop variable.

Note

Automatic variables are common in scripting languages. These variables aren’t directly assigned
in scripts. Instead, they’re set as the side effect of an operation. Perl inspired the use of $_ in
PowerShell. $psitem was introduced to resolve some of the confusion around $_. Automatic

(180)

variables can help reduce the size of a script, but they can also make a script hard to read and
difficult to reuse because your use of automatics may collide with ours. From a design
perspective, our approach with automatic variables follows the salt curve. A little salt makes
everything taste better. Too much salt makes food inedible. The language design team tried to
keep the use of automatics in PowerShell at the “just right” level. This is always a subjective
judgment. Some people really like salt.

A subtler difference, as discussed previously, is that the loop is processed one object at a time. In
a normal foreach loop, the entire list of values is generated before a single value is processed. In
the ForEach-Object pipeline, each object is generated and then passed to the cmdlet for
processing.

You’ll end up using the ForEach-Object cmdlet a lot in command lines to perform simple
transformations on objects. Given the frequency of use, there are two standard aliases for this
cmdlet. The first one is (obviously) foreach.

Note

When foreach is the first word in a statement, it’s a keyword; otherwise it’s the name of a
command.

Now let’s look at the second alias. Even though foreach is significantly shorter than ForEach-
Object, there have still been times when users wanted it to be even shorter.

Note

Users wanted to get rid of this notation entirely and have foreach be implied by an open brace
following the pipe symbol. This would have made about half of PowerShell users happy.
Unfortunately, the other half was adamant that the implied operation be Where-Object instead of
ForEach-Object.

Where extreme brevity is required, there’s a second built-in alias that’s the percent sign (%). Now
readers are saying, “You told us the percent sign is the modulus operator!” Well, that’s true, but
only when it’s used as a binary operator. If it appears as the first symbol in a statement, it has no
special meaning, so you can use it as an alias for ForEach-Object. As with keywords, operators are
also context-sensitive.

The % alias results in concise, but hard-to-read, statements such as the following, which prints the
numbers from 1 to 5, times 2:

PS> 1..5|%{$_*2}

Clearly this construction is great for interactive use where brevity is important, but it shouldn’t
be used when writing scripts.

(181)

The last thing to know about the ForEach-Object cmdlet is it can take multiple scriptblocks. If
three scriptblocks are specified, the first one is run before any objects are processed, the second
is run once for each object, and the last is run after all objects have been processed. This is good
for conducting accumulation-type operations. Here’s another variation that sums the number of
handles used by the service host svchost processes:

PS> gps svchost | %{$t=0}{$t+=$_.handles}{$t}

6322

The standard alias for Get-Process is gps. This is used to get a list of processes where the process
name matches svchost. These process objects are then piped into ForEach -Object, where the
handle counts are summed up in $t and then emitted in the last scriptblock. This example uses
the % alias to show how concise these expressions can be. In an interactive environment, brevity
is important. The full (more readable) version of this code would be

PS> Get-Process -Name svchost |

foreach -Begin {$t=0} -Process {$t+=$_.handles} -End {$t}

And here’s something to keep in mind when using ForEach-Object. The ForEach-Object cmdlet
works like all cmdlets: if the output object is a collection, it gets unraveled. One way to suppress
this behavior is to use the unary comma operator. For example, in the following, you assign $a an
array of two elements, the second of which is a nested array:

PS> $a = 1,(2,3)

When you run it through ForEach-Object, you’ll find that the length of the result is now 3, and the
second element in the result is the number 2:

PS> $b = $a | foreach { $_ }

PS> $b.length

3

PS> $b[1]

2

In effect, the result has been “flattened.” But if you use the unary comma operator before the $_
variable, the result has the same structure as the original array:

PS> $b = $a | foreach { , $_ }

PS> $b.length

2

PS> $b[1]

2

3

When chaining foreach cmdlets, you need to repeat the pattern at each stage:

PS> $b = $a | foreach { , $_ } | foreach { , $_ }

Why don’t you preserve the structure as you pass the elements through instead of unraveling by
default? Well, both behaviors are, in fact, useful. Consider the following example, which returns
a list of loaded module names:

PS> Get-Process | foreach {$_.modules} | sort -unique modulename

Here the unraveling is exactly what you want. When we were designing PowerShell, we
considered both cases; and in applications, on average, unraveling by default was usually what
we needed. Unfortunately, it does present something of a cognitive bump that surprises users

(182)

learning to use PowerShell.

Using the return statement with ForEach-Object

Although the ForEach-Object cmdlet looks like a PowerShell statement, remember it’s in fact a
command, and the body of code it executes is a scriptblock, also known as an anonymous
function. (By anonymous, we mean we haven’t given it a name. We cover this in detail in section
10.1.)

The important thing to know is the return statement (see chapter 6), when used in the scriptblock
argument to ForEach-Object, exits only from the ForEach-Object scriptblock, not from the function
or script that’s calling ForEach-Object. If you want to return out of a function or script in a foreach
loop, either use the foreach statement where the return will work as desired, or use the nonlocal
labeled break statement discussed earlier in this chapter.

How ForEach-Object processes its arguments

Let’s talk about how the ForEach-Object cmdlet processes its argument scriptblocks. A reader of
the first edition of this book observed what he thought was an inconsistency between how the
cmdlet is documented and how the following example behaves:

$words | ForEach-Object {$h=@{}} {$h[$_] += 1}

The help text for the cmdlet (use help ForEach-Object -Full to see this text) says that the -Process
parameter is the only positional parameter in the parameter set for the scriptblock ForEach-Object
option and that it’s in position 1. Therefore, according to the help file, because the -Begin
parameter isn’t positional, the example shouldn’t work. This led the reader to assume that either
there was an error in the help file or that he misunderstood the idea of positional parameters.

In fact, the help file is correct (because the cmdlet information is extracted from the code), but
the way it works is tricky.

If you look at the signature of the -Process parameter, you’ll see that, yes, it’s positional, but it
also takes a collection of scriptblocks and receives all remaining unbound arguments. In the case
of

PS> Get-ChildItem | foreach {$sum=0} {$sum++} {$sum}

the -Process parameter is getting an array of three scriptblocks, whereas -Begin and -End are
empty. Now here’s the trick. If -Begin is empty and -Process has more than two scriptblocks in
the collection, then the first one is treated as the -Begin scriptblock and the second one is treated
as the -Process scriptblock. If -Begin is specified but -End isn’t and there are two scriptblocks, then
the first one is treated as the Process clause and the second one is the End clause. If both -Begin
and -End are specified, the remaining arguments will be treated as multiple Process clauses. This
allows

PS> Get-ChildItem | foreach {$sum=0} {$sum++} {$sum}

PS> Get-ChildItem | foreach -begin {$sum=0} {$sum++} {$sum}

PS> Get-ChildItem | foreach {$sum=0} {$sum++} -end {$sum}

PS> Get-ChildItem | foreach -begin {$sum=0} {$sum++} -end {$sum}

PS> Get-ChildItem | foreach -begin {$sum=0} -process {$sum++} -end {$sum}

to work as expected and deliver the same result.

(183)

Note

Using the parameters to explicitly assign scriptblocks to -begin, -process, and -end, as in the last
example, is the best practice as it’s much easier to understand when you look at the code a long
time after writing.

On that note, we’re finished with our discussion of ForEach-Object using a scriptblock. Now, it’s
time to look at the newer option—using an operation statement.

ForEach-Object with operation statement

PowerShell v3 introduced a more natural language version of ForEach-Object that uses an
operational statement rather than a scriptblock. As an example, consider the following:

PS> Get-Process | ForEach-Object {$psitem.ProcessName}

This displays the process name for each process on the system. Using an operation statement,
this becomes

PS> Get-Process | ForEach-Object ProcessName

or

PS> Get-Process | ForEach-Object -MemberName ProcessName

if the parameter name is used.

You can only access a single property in this manner. This will fail:

PS> Get-Process | ForEach-Object ProcessName, Handles

Using methods on the pipeline objects is similar. For instance:

PS> 'test', 'strings' | foreach {$_.ToUpper()}

can be written as

PS> 'test', 'strings' | foreach ToUpper

if the method you’re using requires arguments:

PS> 'test', 'strings' | foreach Replace -ArgumentList 'st', 'AB'

As with the property name option, you can only use a single method using this approach.

We’ll touch on ForEach-Object again in chapter 7 when we discuss scriptblocks, but for now, let’s
move on to the other flow-control cmdlet commonly used in PowerShell (which, by the way, also
uses scriptblocks—you may detect a theme here).

5.5.2. Where-Object cmdlet

(184)

The other common flow-control cmdlet is Where-Object which is used to select objects from a
stream. The Where-Object cmdlet works in one of two ways. The first way is it takes each pipeline
element it receives as input, executes its scriptblock (see!) argument, passing in the current
pipeline element as $_, and then, if the scriptblock evaluates to true, the element is written to the
pipeline. The second way involves testing an individual property against a given value with a
specific operator. We’ll come to that version in a minute but first we’ll look at using a
scriptblock.

As an example, here’s yet another way to select even numbers from a sequence of integers:

PS> 1..10 | where {-not ($_ -band 1)}

The scriptblock enclosed in the braces receives each pipeline element, one after another. If the
least significant bit in the element is 1, then the scriptblock returns the logical complement of
that value ($false) and that element is discarded. If the least significant bit is 0, the logical
complement of that is $true and the element is written to the output pipeline. Notice the common
alias for Where-Object is where. And, as with ForEach-Object, because this construction is so
commonly used interactively, there’s an additional alias, which is the question mark (?). This
allows the previous example to be written as

PS> 1..10|?{!($_-band 1)}

Again, this is brief, but it looks like the cat walked across the keyboard (trust us on this one).
Although this is fine for interactive use, don’t use it in scripts because it’s hard to understand and
maintain.

As another, more compelling example of “software by cats,” here’s a pathological example that
combines elements from the last few chapters—type casts, operators, and the flow-control
cmdlets—to generate a list of strings of even-numbered letters in the alphabet, where the length
of the string matches the ordinal number in the alphabet (“A” is 1, “B” is 2, and so on):

PS> 1..26|?{!($_-band 1)}|%{[string][char]([int][char]'A'+$_-1)*$_}

BB

DDDD

...

XXXXXXXXXXXXXXXXXXXXXXXX

ZZZZZZZZZZZZZZZZZZZZZZZZZZ

The output is fairly self-explanatory, but the code isn’t. Figuring out how this works is left as an
exercise to the reader and as a cautionary tale not to foist this sort of rubbish on unsuspecting
coworkers. They know where you live.

Where-Object and Get-Content’s -ReadCount parameter

On occasion, a question comes up about the Get-Content (alias gc) cmdlet and how its -ReadCount
parameter works. This can be an issue particularly when using this cmdlet and parameter with
Where-Object to filter the output of Get-Content. The issue comes up when the read count is greater
than 1. This causes PowerShell to act as if some of the objects returned from Get-Content are
being skipped and affects both ForEach-Object and Where-Object. After all, these cmdlets are
supposed to process or filter the input one object at a time, and this isn’t what appears to be
happening.

Here’s what’s going on. Unfortunately, the -ReadCount parameter has a confusing name. From the
PowerShell user’s perspective, it has nothing to do with reading. What it does is control the

(185)

number for records written to the next pipeline element, in this case Where-Object or ForEach-
Object. The following examples illustrate how this works. In these examples, you’ll use a simple
text file named test.txt, which contains ten lines of text and the ForEach-Object cmdlet (through its
alias %) to count the length of each object being passed down the pipeline. You’ll use the @(...)
construct to guarantee that you’re always treating $_ as an array. Here are the examples with
different -ReadCount values:

PS> gc test.txt -ReadCount 1 | % { @($_).count } | select -first 1

1

PS> gc test.txt -ReadCount 4 | % { @($_).count } | select -first 1

4

When -ReadCount is greater than 1, the variable $_ is set to a collection of objects where the object
count of that collection is equivalent to the value specified by -ReadCount. In another example,
you’ll use ForEach-Object to filter the pipeline:

PS> gc test.txt -read 5 | ? {$_ -like '*'} | % { $_.count }

5

5

You can see the filter result contains two collections of 5 objects each written to the pipeline for
a total of 10 objects. Now use ForEach-Object and the if statement to filter the list:

PS> (gc test.txt -read 10 | foreach {if ($_ -match '.') {$_}} |

Measure-Object).count

10

This time you see a count of 10 because the value of $_ in the ForEach-Object cmdlet is unraveled
when written to the output pipe. And now let’s look at one final example using Where-Object:

PS> (gc test.txt -read 4 | foreach {$_} | where {$_ -like '*'} |

Measure-Object).count

10

Here you’ve inserted one more ForEach-Object command between the gc and the Where-Object,
which unravels the collections in $_ and so you again see a count of 10.

Note

Here’s the annoying thing: From the Get-Content developer’s perspective, it is doing a read of -
ReadCount objects from the provider. Get-Content reads -ReadCount objects and then writes them as
a single object to the pipeline instead of unraveling them. (This is probably a bug that’s turned
into a feature.) Anyway, the name makes perfect sense to the developer and absolutely no sense
to the user. This is why developers always have to be aware of the user’s perspective even if it
doesn’t precisely match the implementation details.

In summary, whenever -ReadCount is set to a value greater than 1, usually for performance
reasons, object collections are sent through the pipeline to Where-Object instead of individual
objects. As a result, you have to take extra steps to deal with unraveling the batched collections
of objects.

Where-Object simplified

(186)

PowerShell v3 introduced a simplified syntax for a single comparison statement. So far, you’ve
seen Where-Object used like this:

PS> Get-Process | where {$_.Handles -gt 1000}

The simplified syntax modifies this to

PS> Get-Process | where Handles -gt 1000

If you use the parameter names rather than positional parameters, it becomes

PS> Get-Process | where -Property Handles -gt -Value 1000

The important point is what looks like an operator is a parameter! Table 5.1 compares the two
ways of constructing a filter with Where-Object.

Table 5.1. Comparison of syntax styles for Where-Object

Syntax style Property Value Comment Multiple
comparisons

Old $_.Handles -gt 1000 -gt is operator Yes
New Handles -gt 1000 -gt is parameter No

Remember, you can only use a single comparison in the newer style syntax. If you need to
perform multiple comparisons, then revert to the old style.

Just because you can doesn’t mean you should

There are many ways of doing things in PowerShell. When writing your code, you shouldn’t do
something merely because you can. As an example of what we mean, consider

PS> Get-Process | where Handles -gt 1000

Remember –gt isn’t an operator, it’s a parameter. If you look at the Where-Object help file you’ll
see most of the common operators have been implemented as parameters for this syntax. This
means you can do this:

PS> Get-Process | where -Property Handles -Value 1000 –gt

The –Property and –Value parameters are positional parameters, so you could do this:

PS> Get-Process | where Handles 1000 -gt

Although asking a candidate to explain this would be a great interview question, it isn’t the way
we’d recommend you write your code as it’s more difficult to understand than

PS> Get-Process | where Handles -gt 1000

Thinking about code maintainability as you write your code will make your life easier in the
future.

(187)

At this point we’ve covered the two main flow-control cmdlets in detail. Now, let’s look at one
final feature of the PowerShell language: the ability to use all these statements we’ve been
talking about as expressions that return values.

(188)

5.6. Statements as values

Let’s return to the difference between statements and expressions (see chapter 4). In general,
statements don’t return values, but if they’re used as part of a subexpression (or a function or
script as you’ll see later on), they do return a result. This is best illustrated with an example.
Assume you didn’t have the range operator and wanted to generate an array of numbers from 1 to
10. Here’s the traditional approach you might use in a language such as C#:

PS> $result = New-Object -TypeName System.Collections.ArrayList

PS> for ($i=1; $i -le 10; $i++) { $result.Add($i) }

PS> "$($result.ToArray())"

1 2 3 4 5 6 7 8 9 10

First you create an instance of System.Collections.ArrayList to hold the result. Then you use a for
loop to step through the numbers, adding each number to the result’s ArrayList. Finally, you
convert the ArrayList to an array and display the result. This is a straightforward approach to
creating the array, but requires several steps. Using loops in subexpressions, you can simplify it
quite a bit. From PowerShell v2 onward, the ability to assign the output of a flow-control
statement has been simplified so you can directly assign the output to a variable. The example
you saw earlier can be simplified to

PS> $result = for ($i=1; $i -le 10; $i++) {$i}

PS> "$result"

1 2 3 4 5 6 7 8 9 10

Used judiciously, the fact that statements can be used as value expressions can simplify your
code in many circumstances. By eliminating temporary variables and extra initializations,
creating collections is greatly simplified. Conversely, it’s entirely possible to use this statement-
as-expression capability to produce scripts that are hard to read. You should always keep that in
mind when using these features in scripts. The other thing to keep in mind when you use
statements is the performance of your scripts. Let’s dig into this in a bit more detail.

(189)

5.7. A word about performance

Now that we’ve covered loops in PowerShell, this is a good time to talk about performance.
PowerShell is an interpreted language, which has performance implications. Tasks with a lot of
small repetitive actions can take a long time to execute. Anything with a loop statement can be a
performance hotspot for this reason. Identifying these hotspots and rewriting them can have a
huge impact on script performance. Let’s look at an example.

This script processes a collection of events, extracting events having a specific name and ID and
placing them into a new collection. The script looks something like this:

$results = @()

for ($i=0; $i -lt $EventList.length ; $i++)

{

 $name = [string] $Events[$i].ProviderName

 $id = [long] $Events[$i].Id

 if ($name -ne "My-Provider-Name")

 {

 continue

 }

 if ($id -ne 3005) {

 continue

 }

 $results += $Events[$i]

}

This script indexes through the collection of events using the for statement and then uses the
continue statement to skip to the next event if the current event doesn’t match the desired criteria.
If the event does match the criteria, it’s appended to the result collection. Although this works
correctly, for large collections of events it takes several minutes to execute. Let’s look at some
ways to speed it up and make it smaller.

First, consider how you’re indexing through the collection. This requires a lot of index
operations, variable retrievals, and increments that aren’t the most efficient operations in an
interpreted language like PowerShell. Instead, PowerShell has a number of constructs that let you
iterate through a collection automatically. Given that the task is to select events where some
condition is true, the Where-Object cmdlet is an obvious choice. The second optimization is how
the result list is built. The original code manually adds each element to the result array. If you
remember our discussion on how array concatenation works, this means the array has to be
copied each time an element is added. The alternative approach, as we discussed, is to let the
pipeline do the collection for you. With these design changes, the new script looks like this:

$BranchCache3005Events = $events | where {

 $_.Id -eq 3005 -and $_.ProviderName -eq "My-Provider-Name"}

The revised script is both hundreds of times faster and significantly shorter and clearer.

Note

The preceding code assumes you’ve already collected the list of events into the $events variable
for other purposes. If you’re only performing the single action, it’s more efficient to make

(190)

gathering the events list part of the pipeline operation.

The rule for writing efficient PowerShell scripts is to let the system do the work for you. Use
foreach instead of explicit indexing with for if you can. If you ever find yourself doing
concatenation in a loop to build up a string or collection, look at using the pipeline instead. You
can also take advantage of the fact all PowerShell statements return values, so an even faster (but
less obvious or simple) way to do this is to use the foreach statement:

$BranchCache3005Events = @(foreach ($e in $events) {

 if ($e.Id -eq 3005 -or

 $e.ProviderName -eq "Microsoft-Windows-BranchCacheSMB") {$e}})

The key here is still letting the system implicitly build the result array instead of constructing it
manually with +=. Likewise, for string concatenation

$s = -join $(foreach ($i in 1..40kb) { "a" })

is faster than

$s = ""; foreach ($i in 1..40kb) { $s += "a" }

Following the guidelines, scripts are shorter, faster and frequently simpler and clearer (though
not always).

(191)

5.8. Summary

PowerShell allows you to use pipelines where other languages only allow expressions.
There are two ways of handling flow control in PowerShell. The first is to use the language
flow-control statements such as while and foreach. But when performing pipelined
operations, the alternative mechanism—the flow-control cmdlets ForEach-Object and Where-
Object—can be more natural and efficient.
When iterating over collections, keep in mind the trade-offs between the foreach statement
and the ForEach-Object cmdlet.
Any statement can be used as a value expression when nested in a subexpression, but keep
in mind the potential complexity that this kind of nested statement can introduce.
The PowerShell switch statement has powerful pattern-matching capabilities, going well
beyond what similar statements in other languages can do. And, along with the pattern
matching, it can be used as a looping construct for selecting and processing objects from a
collection or lines read from a file.
The choice of statements and how you use them can have a significant effect on the
performance of your scripts. This is something to keep in mind, but remember: worry only
about performance if it becomes a problem. Otherwise, try to focus on making things as
clear as possible.

You can perform a vast array of work interactively using the variables, operators, and flow-
control statements you’ve seen so far. In the next chapter, we’ll introduce functions that enable
you to create reusable code.

(192)

Chapter 6. PowerShell functions
This chapter covers

Fundamentals of PowerShell functions
Function parameters and return values
Functions in the pipeline
Variable scoping

Porcupine quills. We’ve always done it with porcupine quills.

Dilbert

In this chapter we’ll begin looking at how to create reusable commands by combining the
features from the previous chapters. Functions and scripts are the two command types that can be
written in the PowerShell language. (Cmdlets and external commands are written in a language
such as C# that can be compiled.) We’ll start with functions because they’re simpler. In the next
chapter, we’ll cover scripts as well as introduce advanced programming features available to
both functions and scripts.

Note

The functions you’ll see in this chapter are simple functions. Chapter 7 discusses advanced
functions, including how to turn a simple function into an advanced function. These two chapters
are the foundation for modules that we discuss in chapters 8 and 9.

Prior programming experience can be both a blessing and a curse when learning to program in
PowerShell. Most of the time, what you already know makes it easier. The syntax and most of
the concepts will probably be familiar. Unfortunately, similar isn’t identical, and this is where
prior experience can trip you up. You’ll expect PowerShell to work like your favorite language,
and it won’t work quite the same way. We’ll call out these issues as we encounter them, so put
away your porcupine quills and let’s get started.

(193)

6.1. Fundamentals of PowerShell functions

In this section we’ll cover the basic concepts and features of PowerShell functions. Functions are
the most lightweight form of PowerShell command. They exist in memory only for the duration
of a session. When you exit the shell session, the functions are gone. They’re also simple enough
that you can create useful functions in a single line of code.

Functions and scriptblocks

A function, at its simplest, is defined as follows:

function <name> {<statement list>}

A scriptblock, at its simplest, is defined like this:

{<statement list>}

In both cases the braces contain a list of PowerShell statements that are executed when the
function or scriptblock is invoked. You’ve seen scriptblocks used with Where-Object and Foreach-
Object or the looping and conditional statements in previous chapters. Scriptblocks are covered in
more detail in chapter 10.

Looking at the two, you can describe a function as a named scriptblock or a scriptblock as an
anonymous function—we prefer the latter.

We’ll start by working through a number of examples showing you how to create simple
functions. Take a look at our first example:

PS> function hello { 'Hello world' }

In this example, hello is a function because it’s preceded by the function keyword. This function
should emit the string “Hello world”. Execute it to verify this:

PS> hello

Hello world

Yes, it works exactly as expected. You’ve created your first command.

Okay, that was easy. Now you know how to write a simple PowerShell function. The syntax is
shown in figure 6.1.

Figure 6.1. The simplest form of a function definition in PowerShell

(194)

A function that writes only “Hello world” isn’t too useful. Let’s see how to personalize this
function by allowing an argument to be passed in.

6.1.1. Passing arguments using $args

The ability to pass values into a function is called parameterizing the function. In most
languages, this means modifying the function to declare the parameters to process. For simple
PowerShell functions, you don’t have to do this because there’s a default argument array that
contains all the values passed to the function. This default array is available in the variable $args.
Here’s the previous hello example modified to use $args to receive arguments:

PS> function hello { "Hello there $args, how are you?" }

PS> hello Bob

Hello there Bob, how are you?

String expansion inserts the value stored in $args into the string that’s emitted from the hello
function. Now let’s see what happens with multiple arguments:

PS> hello Bob Alice Ted Carol

Hello there Bob Alice Ted Carol, how are you?

Following the string expansion rules described in chapter 2, the values stored in $args get
interpolated into the output string with each value separated by a space or, more specifically,
separated by whatever is stored in the $OFS variable.

Note

Both $args and $OFS are described in the help file about_Automatic_Variables.

So, let’s take one last variation on this example. We’ll set $OFS in the function body with the aim
of producing a more palatable output:

PS> function hello

{

$ofs=","

"Hello there $args and how are you?"

}

PS> hello Bob Carol Ted Alice

Hello there Bob,Carol,Ted,Alice and how are you?

(195)

That’s better. Now at least you have commas between the names. Let’s try it again, with commas
between the arguments:

PS> hello Bob,Carol,Ted,Alice

Hello there System.Object[] and how are you?

This isn’t the result you were looking for. What happened? Let’s define a new function:

PS> function count-args {

 "`$args.count=" + $args.count

 "`$args[0].count=" + $args[0].count

}

This function will display the number of arguments passed to it as well as the number of
elements in the first argument. First, you use it with three scalar arguments:

PS> count-args 1 2 3

$args.count=3

$args[0].count=1

As expected, it shows that you passed three arguments. It shows a value of 1 for the Count
property on $args[0] because $args[0] is a scalar (the number 1) which has a Count property of 1
by default. Try it with a comma between each of the arguments:

PS> Count-Args 1,2,3

$args.count=1

$args[0].count=3

Now you see that the function received one argument, which is an array of three elements.
Finally, try it with two sets of comma-separated numbers:

PS> count-args 1,2,3 4,5,6,7

$args.count=2

$args[0].count=3

The results show that the function received two arguments, both of which are arrays. The first
argument is an array of three elements and the second is an array with four elements. The comma
here works like the binary comma operator in expressions, as discussed in chapter 4.

Two values on the command line with a comma between them will be passed to the command as
a single argument. The value of that argument is an array of those elements. This applies to any
command, not only functions. Now let’s look at a couple of examples where $args enables
simple but powerful scenarios.

6.1.2. Example functions: ql and qs

$args works straightforwardly and allows you to write pretty slick commands. Here are two
functions that aren’t in the PowerShell base:

PS> function ql { $args }

PS> function qs { "$args" }

They may not look like much, but they can significantly streamline a number of tasks. The first
function is ql, which stands for quote list. This is a Perl-ism. Say you want to build a list of the
colors. To do this with the normal comma operator, you’d do the following, which requires lots
of quotes and commas:

PS> $col = "black","brown","red","orange","yellow","green",

(196)

 "blue","violet","gray","white"

With the ql function, you could write it this way:

PS> $col = ql black brown red orange yellow green blue violet gray white

That’s much shorter and requires less typing. Remember that elastic syntax concept? When
you’re trying to fit a complex expression onto one line, things like ql can help. What about the
other function, qs? It does approximately the same thing but uses string concatenation to return
its arguments as a single string instead of an array:

PS> $string = qs This is a string

PS> $string

This is a string

Note that the arguments are concatenated with a single space between them. The original spacing
on the command line has been lost, but that usually doesn’t matter.

Parameter syntax

Parameters can be passed into a number of PowerShell structures:

Functions
Scripts (chapter 7)
Scriptblocks (chapter 10)

Functions can define their parameters in two ways:

function <name> (<parameter list>) {<statement list>}

or

function <name>{param (<parameter list>) <statement list>}

Scripts and scriptblocks use the second format with a param block inside the braces. We’ll show
the first, simpler way in this chapter and discuss the second method in more detail in the next
chapter when we discuss advanced functions. Using a param block is the recommended technique
as it gives a consistent approach.

(197)

6.2. Declaring formal parameters for a function

Using $args works, as you’ve seen, but a much better way would be to declare function
parameters using names instead of indexes into an array. The high-level syntax for this is shown
in figure 6.2.

Figure 6.2. The syntax for defining a function with explicit parameters in PowerShell. The parameter list is
optional: you can either have empty parentheses or omit them, as you saw in figure 6.1.

Here’s a simple example of what this looks like in a real function:

PS> function subtract ($from, $count) { $from - $count }

In this function definition, there are two formal parameters: $from and $count. When the function
is called, each argument will be bound to the corresponding formal parameter, either by position
or by name. What does that mean? Well, binding by position is obvious:

PS> subtract 5 3

2

In this case, the first argument, 5, is bound to the first formal parameter, $from, and the second
argument is bound to the second parameter, $count. Now let’s look at using the parameter names
as keywords:

PS> subtract -from 5 -count 2

3

PS> subtract -from 4 -count 7

-3

If you try to use the same parameter twice, you’ll receive an error message that the parameter
name can be used only once. You now know that there are two ways to match formal parameters
with arguments. Can you mix and match? Let’s try it:

PS> subtract -from 5 6

-1

You see that it did work as you’d expect. $from is set to 5, $count is set to 6, and you know that 5
minus 6 is –1. Now change which parameter is named:

PS> subtract -count 5 6

1

(198)

Now $count is set to 5 and $from is set to 6. This may seem a bit odd. Let’s dig into the details of
how it works next.

6.2.1. Mixing named and positional parameters

The rules for binding parameters to named and positional parameters are simple:

Any named parameters are bound and then removed from the list of parameters that still
need to be bound.
Any remaining parameters are then bound by position.

Now let’s go back to the example function:

PS> function subtract ($from, $count) { $from - $count }

When calling this function, if no named parameters are specified, then $from is position 0 and
$count is position 1.

If you specify –from, then $from is bound by name and removed from the list of things that need to
be bound positionally. This means that $count, which is normally in position 2, is now in position
1. Got all that? Probably not; we have a hard time following it ourselves.

All you need to think about is whether you’re using named parameters or positional ones. Try to
avoid mixing and matching if possible. If you do want to mix and match, always put the
parameters that you want to specify by name at the end of the parameter list; put them at the end
of the param statement or the function argument list. That way, they don’t affect the order of the
parameters you want to bind by position. (In chapter 7, you’ll learn a better way to control how
parameters are processed.)

Functions as commands

The way functions are called in PowerShell often causes people with prior programming
experience to make a common error. They see the word function and try to call a PowerShell
function the way they would in whatever other language they’re used to. Instead of calling it like
a command (which is what functions are), they try to call it by doing something like this:

subtract(1,2)

PowerShell will happily accept this because there’s nothing syntactically wrong with it. The
problem is that the statement is totally wrong semantically.

Functions (as opposed to methods on objects) in PowerShell are commands like any other
commands.

Arguments to commands are separated by spaces. If you want to provide multivalued arguments
for a single command, then you must separate those multiple values with commas (more on this
later). Also, parentheses are needed only if you want the argument to be evaluated as an
expression (see chapter 1 on parsing modes). What this “function call” is doing is passing a
single argument, which is an array of two values. And that’s wrong. Consider yourself warned.
Really. This has tripped up some smart people. If you remember this discussion, then someday,
somewhere, you’ll be able to lord this bit of trivia over your coworkers, crushing their spirits like
—oh—wait—sorry—it’s that darned inner voice leaking out again.

(199)

So far, all your work has been with type-less parameters, and this has its advantages. It means
that your functions can typically work with a wider variety of data types. But sometimes you
want to make sure that the parameters are of a particular type (or are at least convertible to that
type). Although you could do this the hard way and write a bunch of type-checking code,
PowerShell is all about making life easier for the user, so let’s talk about a better way to do this
by specifying typed parameters.

6.2.2. Adding type constraints to parameters

You don’t have to specify types for PowerShell function parameters (most scripting languages
don’t allow it), but sometimes it can be quite useful. It allows you to catch type mismatches in
function calls earlier and provide better error messages. Adding type constraints to parameters is
what we’ll cover in this section.

To type-constrain a parameter, you provide a type literal before the variable name in the
parameter list. Figure 6.3 shows what this looks like.

Figure 6.3. How type constraints are added to some of the parameters of a function. Type constraints aren’t
required for all parameters; in this case, $p3 is left unconstrained.

Let’s work through an example. Define a function nadd that takes two parameters that you’ll
constrain to be integers:

PS> function nadd ([int] $x, [int] $y) {$x + $y}

Now use this function to add two numbers:

PS> nadd 1 2

3

Adding 1 and 2 gives 3. No surprise there. Now add two strings:

PS> nadd '1' '2'

3

The answer is still 3. Because of the type constraints on the parameters, numeric addition is
performed even though you passed in two strings. In effect, the type constraints on function
parameters are casts and follow the type-conversion rules described in chapter 2. Now let’s see
what happens when you pass in something that can’t be converted to a number:

PS> nadd @{a=1;b=2} '2'

nadd : Cannot process argument transformation on parameter 'x'.

Cannot convert the "System.Collections.Hashtable" value of type "System.

 Collections.Hashtable" to type "System.Int32".

At line:1 char:6

+ nadd @{a=1;b=2} '2'

+ ~~~~~~~~~~

 + CategoryInfo : InvalidData: (:) [nadd],

ParameterBindingArgumentTransformationException

 + FullyQualifiedErrorId : ParameterArgumentTransformationError,nadd

You get an error message mentioning where the function was used and why it failed. Now define
another function that doesn’t have the type constraints:

(200)

PS> function add ($x, $y) {$x + $y}

Call this function with a hashtable argument:

PS> add @{a=1;b=2} '2'

A hash table can only be added to another hash table.

At line:1 char:24

+ function add ($x, $y) {$x + $y}

+ ~~~~~~~

 + CategoryInfo : InvalidOperation: (:) [], RuntimeException

 + FullyQualifiedErrorId : AddHashTableToNonHashTable

You still get an error, but notice where the error message is reported. Because it happened in the
body of the function, the error message is reported in the function itself, not where the function
was called as it was in the previous function. It’s much more useful for the user of the function to
know where the call that failed was rather than knowing where in the function it failed.

PowerShell and overloading

If you’re used to traditional object-oriented languages, you might expect to be able to create
overloads for a particular function name by specifying different signatures, but overloading isn’t
supported in PowerShell. If you define function a as

function a ([int] $b) { }

and later define function a as

function a ([string] $b) { }

then the new definition will replace the old definition rather than adding a new overload.

You can still use $args to specify a variable number of arguments to a function even when you
have a formal parameter list.

6.2.3. Handling variable numbers of arguments

By default, any remaining arguments that don’t match formal arguments will be captured in
$args. The following example function illustrates this:

PS> function a ($x, $y) {

 "x is $x"

 "y is $y"

 "args is $args"

}

Now let’s use it with a single argument:

PS> a 1

x is 1

y is

args is

The single argument is bound to $x. $y is initialized to $null and $args has zero elements in it.
Now try it with two arguments:

PS> a 1 2

x is 1

(201)

y is 2

args is

This time $x and $y are bound, but $args is still empty. Next, try it with three arguments:

PS> a 1 2 3

x is 1

y is 2

args is 3

Any and all extra arguments end up in $args.

This automatic handling of excess arguments is useful behavior, but in many cases, you prefer
that extra arguments be treated as an error. One way to make sure that no extra arguments are
passed to your function is to check whether $args.length is 0 in the function body. If it’s not 0,
some arguments were passed. This is, however, a bit awkward. In chapter 7, we’ll look at a much
better way to handle this.

Earlier we mentioned that formal parameters that don’t have corresponding arguments are
initialized to $null. Although this is a handy default, it would be more useful to have a way of
initializing the parameters to specific values.

6.2.4. Initializing function parameters with default values

In this section we’ll show you how to initialize the values of function parameters. By using
initialization, the user of the function doesn’t have to specify all possible parameters on the
command line. The ones that aren’t specified will get the default values. You can reduce typing
when using the function if you set default values to match your most common usage pattern.
Alternatively, you can set the defaults to safe values that won’t cause problems if you forget to
use a parameter. The syntax for creating default parameter values is shown in figure 6.4.

Figure 6.4. The more complex function definition syntax where initializer expressions are provided for each
variable. Note that the initializers are constrained to be expressions, but using the subexpression notation you
can put anything here.

Let’s move right into an example:

PS> function add ($x=1, $y=2) { $x + $y }

This function initializes the formal parameters $x to 1 and $y to 2 if no parameters are specified.
When you use it with no arguments

PS> add

(202)

3

it returns 3. With one argument

PS> add 5

7

it returns the argument plus 2, which in this case is 7. And finally, with two arguments

PS> add 5 5

10

it returns the result of adding them. From this example, it’s obvious that you can initialize the
variable to a constant value. What about something more complex? The initialization sequence
as shown in figure 6.4 says that an initializer can be an expression. If you remember from chapter
4, an expression can be a subexpression, which can contain any PowerShell construct. An
initializer can do anything: calculate a value, execute a pipeline, reformat your hard drive (not
recommended), or send out for snacks from Tahiti by carrier pigeon (we’ve not had much luck
with that one, though).

Let’s try this feature out. Define a function that returns the day of the week for a particular date:

PS> function dow ([datetime] $d = $(Get-Date)) {

 $d.dayofweek

}

This function takes one argument, $d, that’s constrained to be something that matches a date or
time. If no argument is specified, it’s initialized to the result of executing the Get-Date cmdlet
(which returns today’s date). Now let’s try it out. First, run it with no arguments:

PS> dow

Tuesday

It prints out what day today is. Then run it with a specific date:

PS> dow 'oct 10, 2017'

Tuesday

You see that one of us has a birthday on a Tuesday in 2017. This is a simple example of using a
subexpression to initialize a variable.

In most shell languages, you often provide only the name of a parameter without arguments to
control a command’s behavior—traditionally called flags or switches. Let’s see how this is
handled in PowerShell.

6.2.5. Using switch parameters to define command switches

In this section we’re going to cover how to specify switch parameters, but before we do that,
let’s talk a bit more about parameter processing in general. In all shell environments, commands
typically have three kinds of parameters, as shown in table 6.1.

Table 6.1. Typical classifications of parameter types found in all command shells

Parameter type Description

(203)

Switches Switches are present or absent, such as Get-
ChildItem –Recurse.

Options Options take an argument value, such as
Get-ChildItem -Filter *.cs.

Arguments These are positional and don’t have a name
associated with them.

This pattern holds true for most shells, including cmd.exe and Bash, although the specific details of
the syntax may vary. The PowerShell team canonicalized things a bit more because they used
formal terms for each of these, as shown in table 6.2.

Table 6.2. Formal names for parameter types in PowerShell

Parameter type Formal name in PowerShell

Switches Switch parameters
Options Parameters
Arguments Positional parameters

Arguments are positional parameters because they’re always associated with a parameter name.
But you can leave out the name, and the interpreter will figure out what parameter it is from its
position on the command line. For example, in the Get-ChildItem command, the -Path parameter
is a positional parameter with position 0.

Switch parameters are the opposite; you specify the parameter but the argument is left out. The
interpreter assigns the parameter a value based on whether the parameter is present or absent.
The -Recurse parameter for Get-ChildItem is a good example. If it’s present, you’ll get a recursive
directory listing starting at the current directory.

So how do you indicate that something should be a switch parameter? PowerShell uses types to
control behavior, so a switch parameter is marked with the type [switch]. This is illustrated in
figure 6.5.

Figure 6.5. Marking a parameter as a switch or flag by adding the [switch] type constraint to it

Initializing switches is neither necessary nor recommended because the value of a switch is
highly constrained. Here’s an example function that uses a switch parameter:

(204)

PS> function get-soup (

 [switch] $please,

 [string] $soup= 'chicken noodle'

)

{

 if ($please) {

 "Here's your $soup soup"

 }

 else

 {

 'No soup for you!'

 }

}

Try out this function:

PS> get-soup

No soup for you!

PS> get-soup -please

Here's your chicken noodle soup

PS> get-soup -please tomato

Here's your tomato soup

So, if you say “please,” you get soup. If not, no soup for you!

Soup or no soup, we’re going to move on with our exploration of switch parameters and look at a
feature that seems almost contradictory.

Specifying arguments to switch parameters

By definition, switch parameters don’t take arguments, but there’s one important scenario where
you do need to do exactly this: when you need to pass the value of a switch parameter on one
function to a switch parameter on another function. Consider a function foo that has a switch
parameter -s. From function bar, you want to call

PS> foo

sometimes and

PS> foo -s

other times, and this will be controlled by a switch parameter on the bar function. You could use
if statements to handle this, but even if you need to pass only one parameter through this way,
you significantly complicate your code. And if you have more than one—well, let’s just say it
gets ugly quickly. To avoid that, you can use a feature in PowerShell designed with exactly this
scenario in mind. Here’s how it works. Although switch parameters don’t require arguments,
they can take one if you specify the parameter with a trailing colon:

PS> Get-ChildItem -Recurse: $true

Here’s an example. You’ll define a bar function that passes its $x switch parameter to the -s
switch parameter on function foo. First, define the foo function:

PS> function foo ([switch] $s) { "s is $s" }

PS> foo -s

s is True

PS> foo

s is False

(205)

Now define function bar, in which we’ll call foo as discussed previously:

PS> function bar ([switch] $x) { "x is $x"; foo -s: $x }

Call bar without passing -x,

PS bar

x is False

s is False

and you see that $s emitted from foo is false. Now call bar again, but specify -x this time,

PS> bar -x

x is True

s is True

and you see that specifying -x has caused -s to be set to true as well.

This functions-calling-functions pattern is pretty much the only time you should ever have to
pass an argument to a switch function.

Note

A script author should never have to write a function, script, or cmdlet where a switch parameter
is initialized to $true because it makes the commands hard to use.

Switch parameters are designed so that they need only be present or absent to get the desired
effect. If you have a situation where you’re considering initializing a switch to $true, you
probably should be using a Boolean parameter instead of a switch parameter.

6.2.6. Switch parameters vs. Boolean parameters

Having both Boolean and switch parameters in PowerShell may seem redundant, but they’re
used to solve two quite different problems. To reiterate, the important difference between the two
is that switch parameters don’t require an argument. Booleans do. Specifying a switch parameter
on the command line is sufficient for PowerShell to know that the parameter should be set to
true.

For Boolean parameters (identified with the [bool] type accelerator), an argument must be
specified each time the parameter is present. This is illustrated in the following example:

PS> function tb ([bool] $x) { [bool] $x }

PS> tb

False

PS> tb -x

tb : Missing an argument for parameter 'x'. Specify a parameter of type 'System.Boolean' and

try again.

At line:1 char:4

+ tb -x

+ ~~

 + CategoryInfo : InvalidArgument: (:) [tb], ParameterBindingException

 + FullyQualifiedErrorId : MissingArgument,tb

PS> tb -x $true

True

(206)

PS> tb -x $false

False

With the tb function, if -x isn’t present, the return value is $false. If it’s present but no argument
is specified, an error occurs. If it’s present and a Boolean value is provided as the argument, the
return value is the same as the argument.

Boolean type conversions for [bool] parameters

You need to be aware of a characteristic in how Boolean type conversions work for [bool]
parameters. The argument to a [bool] parameter must be either a Boolean value ($true, $false, or
the result of an expression that returns a Boolean) or a number where 0 is treated as $false and
positive non-zero is treated as $true. A negative number generates an error. This is a departure
from how objects are converted to Boolean elsewhere in PowerShell. This inconsistency was
introduced deliberately because new PowerShell users would try commands like Get-Something -
boolParameter false and be surprised when -boolParameter ended up being true, not false.
(Remember, non-zero-length strings are considered true everywhere else in the system.) The
cognitive dissonance resulting from having "false" evaluate to $true was a stumbling block for
some new users. To mitigate this, PowerShell makes passing anything other than a number or a
Boolean value an error condition. This seems to be the least inconsistent solution because the
new behavior is a proper subset of normal type conversion.

You use Boolean parameters when you’re writing a command to change the value of some of the
properties on the object passing through the pipeline. This is part of the common Get/Update/Set
pattern where you get an object from a store, change some properties on that object, and then
pass it to an update command. In this pattern, you want to change the value of the property only
if there’s a corresponding parameter on the command line.

If the parameter is present, you want to set the property on the pipeline object to be the value
passed to the parameter. If the parameter is absent, you don’t want to change it. We’ll dig into
this a bit more in the next section, but first we’ll digress to investigate a common configuration
management pattern and how you deal with it in PowerShell.

A digression: the Get/Update/Set pattern

A lot of management data is contained in database-like remote stores. Microsoft Exchange and
Active Directory are two examples. The characteristic usage pattern for working with these
stores is:

1. Get a record from the remote store.
2. Modify some property or properties on this object.
3. Send the modified object back to the store where the changes are recorded.

For example, when managing Exchange mailboxes, the mailbox objects are retrieved from the
server, modified, and then sent back to the server to update the database. It’s an important
enough pattern that we’re going to work through a somewhat extended example illustrating this
approach in PowerShell. The following listing implements a simple database that contains
information about familiar characters from the comic strips.

(207)

Listing 6.1. The Get-Character function

$characterData = @{ 1

 'Linus' = @{ age = 8; human = $true}

 'Lucy' = @{ age = 8; human = $true}

 'Snoopy' = @{ age = 2; human = $true}

}

function Get-Character ($name = '*')

{

 foreach ($entry in $characterData.GetEnumerator() | Write-Output) 2

 {

 if ($entry.Key -like $name)

 {

 $properties = @{ 'Name' = $entry.Key } + 3

 $entry.Value

 New-Object PSCustomObject -Property $properties 4

 }

 }

}

function Set-Character { 5

 process {

 $characterData[$_.name] =

 @{

 age = $_.age

 human = $_.human

 }

 }

}

function Update-Character (

 [string] $name = '*',

 [int] $age,

 [bool] $human

)

{

 begin

 {

 if ($PSBoundParameters.'name')

 {

 $name = $PSBoundParameters.name

 [void] $PSBoundParameters.Remove('name')

 }

 }

 process

 {

 if ($_.name -like $name)

 {

 foreach ($p in $PSBoundParameters.GetEnumerator())

 {

 $_.($p.Key) = $p.value 6

 }

 }

 $_

 }

}

1 Stores character data in hashtable of hashtables
2 Gets data from table
3 Builds merged hashtable
4 Emits character record
5 Processes record, updates character entry
6 Updates properties on object

Note

(208)

To make this example work, you need to use a few features that we haven’t covered yet: the
process keyword used in Update-Character, custom objects, and the $PSBoundParameters automatic
variable. We’ll cover the process keyword later in this chapter and the $PSBoundParameters
variable in chapter 7. This variable is key to making this example work because it lets you see
which parameters were specified on the command line. Creating custom objects using the New-
Object command is explored in chapter 10. Of these features, only the process keyword is
available in PowerShell v1. The others are available only in PowerShell v2 and later.

In this example, the character data is stored in nested hashtables, making it easy to access by
name. The Get-Character function retrieves characters from the table and emits custom objects for
each character. The Set-Character data reverses this process and uses the inbound records to
update the character table. The Update-Character function is where you see the use case for
Boolean parameters mentioned in the previous section. Let’s apply this code to manage your
character database. First, you’ll get a listing of all the characters in the table:

PS> Get-Character

Name age human

---- --- -----

Snoopy 2 True

Lucy 8 True

Linus 8 True

Immediately you see that there’s a problem with this data. It lists Snoopy as being human even
though you know he’s a dog (well, at least if you’re a Peanuts fan). You’ll need to use the
Update-Character function to fix this:

PS> Get-Character |

 Update-Character -name snoopy -human $false |

 Format-Table -AutoSize

Name age human

---- --- -----

Snoopy 2 False

Lucy 8 True

Linus 8 True

Note that you haven’t updated the table—you’re only looking at how the updated table will look.
You can verify the data hasn’t changed by calling Get-Character again. Now do the Set part of
Get/Update/Set:

PS> Get-Character |

 Update-Character -name snoopy -human $false |

 Set-Character

Then dump the table to verify that change:

PS> Get-Character

Name age human

---- --- -----

Snoopy 2 False

Lucy 8 True

Linus 8 True

Now Snoopy is no longer marked as human. But there’s something else you want to check on.
You’ll dump the records that show the data for characters whose names begin with L:

PS> Get-Character L*

(209)

Name age human

---- --- -----

Lucy 8 True

Linus 8 True

And there’s the problem: the table lists Lucy and Linus as being the same age. Because Linus is
Lucy’s younger brother, you know the current age property must be wrong. Again, you’ll use
Update-Character piped to Set-Character to update the data, correcting the character’s age:

PS> Get-Character Linus |

 Update-Character -age 7 |

 Set-Character

PS> Get-Character | Format-Table -AutoSize

Name age human

---- --- -----

Snoopy 2 False

Lucy 8 True

Linus 7 True

Now the table is correct.

In this extended example, you looked at a common pattern for working with management data—
Get/Update/Set—which you’re likely to run into many times doing systems management. In the
process, we demonstrated the reason for Boolean parameters being distinct from switch
parameters: They address two quite different usage patterns.

By now, you’ve probably had enough discussion on how stuff gets passed into functions. Let’s
talk about how stuff comes out of functions instead.

(210)

6.3. Returning values from functions

Now it’s time to talk about returning values from functions. We’ve been doing this all along, but
there’s something we need to highlight. Because PowerShell is a shell, it doesn’t return results—
it writes output or emits objects. As you’ve seen, the result of any expression or pipeline is to
emit the result object to the caller. At the command line, if you type three expressions separated
by semicolons, the results of all three statements are output:

PS> 2+2; 9/3; [math]::sqrt(27)

Let’s put this into a function:

PS> function numbers { 2+2; 9/3; [math]::sqrt(27) }

Now run that function:

PS> numbers

4

3

5.19615242270663

Just as when you typed it on the command line, three numbers are output. Now assign the results
to a variable:

PS> $result = numbers

Then check the content of that variable:

PS> $result.length

3

PS> $result[0]

4

PS> $result[1]

3

PS> $result[2]

5.19615242270663

From the output, you can see that $result contains an array with three values in it. Here’s what
happened. As each statement in the function was executed, the result of that statement was
captured in an array, which was then was stored in $result. The easiest way to understand this is
to imagine variable assignments working like redirection, except the result is stored in a variable
instead of in a file.

Let’s try something more complex. The goal here is twofold. First, you want to increase your
understanding of how function output works. Second, you want to see how to take advantage of
this feature to simplify your scripts and improve performance.

Let’s redefine the function numbers to use a while loop that generates the numbers 1 to 10:

PS> function numbers{

 $i=1

 while ($i -le 10)

 {

 $i

 $i++

 }

(211)

}

Capture the results in a variable:

PS> $result = numbers

What ended up in the variable? First, check the type

PS> $result.GetType().FullName

System.Object[]

and the length

PS> $result.length

10

The output of the function ended up in an array of elements, even though you never mentioned
an array anywhere. The PowerShell runtime will spontaneously create a collection when needed,
as discussed in chapter 4.

In a traditional language, you have to initialize a result variable, $result, to hold the array being
produced, add each element to the array, and then emit the array. This code is significantly more
complex: You have to manage two variables in the function now instead of one. If you were
writing in a language that didn’t automatically extend the size of the array, it would be even
more complicated, because you’d have to add code to resize the array manually. And even
though PowerShell will automatically resize the array, it’s not efficient compared to capturing
the streamed output.

Note

The point is to make you think about how you can use the facilities that PowerShell offers to
improve your code. If you find yourself writing code that explicitly constructs arrays, consider
looking at it to see if it can be rewritten to take advantage of streaming instead.

Then again, every silver lining has a cloud. As wonderful as all this automatic collecting of
output is, there are potential pitfalls. Sometimes you’ll find things in the output collection that
you didn’t expect and have no idea how they got there. That can be hard (and frustrating) to
figure out. In the next section, we’ll explore the reasons why this might happen and you’ll learn
how to go about debugging the problem if you encounter it.

6.3.1. Debugging problems in function output

When writing a function, you need to keep in mind something that’s specific to shell
environments: The result of all statements executed will appear in the output of the function.
This means that if you add debug message statements that write to the output stream of your
function, this debug output will be mixed into the output of the function.

Note

(212)

In text-based shells, the usual way to work around mixing debug information with output is to
write the debug messages to the error stream (stderr). This works fine when the error stream is
simple text, but in PowerShell, the error stream is composed of error objects. All the extra
information in these objects, while great for errors, makes them unpalatable for writing simple
debug messages. There are better ways of handling this, as you’ll see in chapter 15 when we talk
about debugging.

Here’s an example function where we’ve added a couple of debug statements:

PS> function my-func ($x) {

 "Getting the date"

 $x = get-date

 "Date was $x, now getting the day"

 $day = $x.day

 "Returning the day"

 $day

}

Let’s run the function:

PS> my-func

Getting the date

Date was 04/07/2017 12:50:47, now getting the day

Returning the day

7

You see the debug output as well as the result. That’s fine—that’s the point of debugging
messages. But now let’s capture the output of the function into a variable:

PS> $x = my-func

This time you see no output, which is expected, but neither do you see the debugging messages,
and that wasn’t expected or desired. If you look at what ended up in $x, you’ll see that everything
is there: output and debug, all mixed together. This is a trivial example, and we’re sure it feels
like we’re beating the issue to death, but this is the kind of thing that leads to those head-slapping
how-could-I-be-so-dumb moments in which you’ll be writing a complex script and wonder why
the output looks funny. Then you’ll remember that debugging statement you forgot to take out.
“Duh!” you’ll cry. “How could I be so dumb!”

Note

This issue isn’t exclusive to PowerShell. Back before the advent of good debuggers, people
would do printf debugging (named after the printf output function in C). It wasn’t uncommon to
see stray output in programs because of this. Now, with good debuggers, stray output is pretty
infrequent. PowerShell provides debugging features (which we’ll cover in chapter 15) that you
can use instead of printf debugging. In particular, the Integrated Scripting Environment (ISE)
included with PowerShell has a built-in graphical debugger for scripts.

Another thing to be careful about is operations that emit objects when you don’t expect them to.
This is particularly important to keep in mind if you use a lot of .NET methods in your scripts.
The problem is that many of these methods return values that you don’t need or care about. This
isn’t an issue with languages like C# because the default behavior in these languages is to discard

(213)

the result of an expression. In PowerShell, though, the default is to always emit the result of an
expression; consequently, these method results unexpectedly appear in your output. You’ll most
often encounter this problem when using the System.Collections.ArrayList class. The Add()
method on this class helpfully returns the index of the object that was added by the call to Add()
(we’re aware of no real use for this feature—it probably seemed like a good idea at the time).
This behavior looks like this:

PS> $al = New-Object -TypeName System.Collections.ArrayList

PS> $al.count

0

PS> $al.add(1)

0

PS> $al.add(2)

1

Every time you call Add(), a number displaying the index of the added element is emitted. Now
say you write a function that copies its arguments into an ArrayList. This might look like

PS> function addArgsToArrayList {

 $al = New-Object -TypeName System.Collections.ArrayList

 $args | foreach { $al.add($_) }

}

It’s a pretty simple function, but what happens when you run it? Take a look:

PS> addArgsToArrayList a b c d

0

1

2

3

As you can see, every time you call Add(), a number gets returned. That’s not helpful. To make it
work properly, you need to discard this undesired output. Let’s fix this. Here’s the revised
function definition:

PS> function addArgsToArrayList {

 $al = New-Object -TypeName System.Collections.ArrayList

 $args | foreach { [void] $al.add($_) }

}

It looks exactly like the previous one except for the cast to void in the third line. Now let’s try it
out:

PS> addArgsToArrayList a b c d

This time you don’t see any output, as desired. Keep this tip in mind when working with .NET
classes in functions.

6.3.2. The return statement

Now that you’ve debugged and cleaned up your output, let’s talk about PowerShell’s return
statement. Yes, PowerShell does have a return statement, and yes, it’s similar to the return
statement in other languages. But remember—similar isn’t the same.

Remember we talked about how functions in PowerShell are best described as writing output
rather than returning results? Why, then, does PowerShell need a return statement? The answer,
at this stage, is flow control.

(214)

Note

When we discuss PowerShell classes in chapter 19 you’ll see that the return statement is required
for outputting from methods. This difference can trip people up, so be aware.

Sometimes you want to exit a function early. Without a return statement, you’d have to write
complex conditional statements to get the flow of control to reach the end. In effect, the return
statement is like the break statement we covered in chapter 5—it “breaks” to the end of the
function.

The next question is: Is it possible to “return” a value from a function using the return statement?
Yes, it is. This looks like

return 2+2

which is shorthand for

Write-Output (2+2) ; return

The return statement is included in PowerShell because it’s a common pattern that programmers
expect to have. Unfortunately, it can sometimes lead to confusion for new users and
nonprogrammers. They forget that because PowerShell is a shell, every statement emits values
into the output stream. Using the return statement can make this somewhat less obvious.

Because of this potential for confusion, you should generally avoid using the return statement in
functions and scripts unless you need it to simplify your logic. Even then, you should probably
avoid using it to return a value. The one circumstance where it makes sense is in a “pure”
function where you’re returning only a single value.

(215)

6.4. Using simple functions in a pipeline

So far, we’ve only talked about using functions as standalone statements. But what about using
functions in pipelines? After all, PowerShell is all about pipelines, so shouldn’t you be able to
use functions in pipelines? The answer is yes, with some considerations that need to be taken into
account.

Note

The best way of creating simple functions to use on the pipeline is shown in section 6.4.2. The
examples earlier in this section should be thought of as a lead in to that discussion.

The nature of a function is to take a set of inputs, process it, and produce a result. How do you
make the stream of objects from the pipeline available in a function? This is accomplished
through the $input variable. When a function is used in a pipeline, a special variable, $input, is
available that contains an enumerator that allows you to process through the input collection.
Let’s see how this works:

PS> function sum {

 $total=0;

 foreach ($n in $input) { $total += $n }

 $total

}

A function sum is defined that takes no arguments but has one implied argument, which is $input.
It will add each of the elements in $input to $total and then return $total. It will return the sum
of all the input objects.

We said that $input is an enumerator. You may remember our discussion of enumerators from
chapter 5 when we talked about the $foreach and $switch variables. The same principles apply
here. You move the enumerator to the next element using the MoveNext() method and get the
current element using the Current property. This is important in remoting, as you’ll see in chapter
11. Here’s the sum function rewritten using the enumerator members directly:

PS> function sum2 {

 $total=0

 while ($input.MoveNext()){

 $total += $input.Current

 }

 $total

}

Now you need to write a variation of this that works with something other than numbers. This
time you’ll write a function that has a formal parameter and also processes input. The parameter
will be the name of the property on the input object to sum up. Here’s the function definition:

PS> function sum3 ($p){

 $total=0

 while ($input.MoveNext()){

 $total += $input.Current.$p

 }

 $total

}

(216)

In line 6 of the function, you can see the expression $input.Current.$p. This expression returns
the value of the property named by $p on the current object in the enumeration. Use this function
to sum the lengths of the files in the current directory:

PS> Get-ChildItem | sum3 length

9111

You invoke the function passing in the string “length” as the name of the property to sum. The
result is the total of the lengths of all of the files in the current directory.

Remember that $input is an enumerator. That means you can use it only once. When you’ve read
to the end, you can’t cycle back and reuse it. If you do need to reuse the contents of $input, then
you need to convert the contents to an array. You can’t use $input in advanced functions but
you’ll see alternative approaches in the next chapter.

This shows that it’s pretty easy to write functions that you can use in a pipeline, but there’s one
thing we haven’t touched on. Because functions run all at once, they can’t do streaming
processing. In the previous example, where you piped the output of Get -ChildItem into the
function, what happened was that the Get-ChildItem cmdlet ran to completion and the
accumulated results from that were passed as a collection to the function. How can you use
functions more effectively in a pipeline? That’s what we’ll cover next.

6.4.1. Functions with begin, process, and end blocks

It would be nice if you could write user-defined cmdlets that can initialize some state at the
beginning of the pipeline, process each object as it’s received, and then do cleanup work at the
end of the pipeline. And you can. The full structure of a function cmdlet is shown in figure 6.6.

Figure 6.6. The complete function definition syntax for a function in PowerShell that will have cmdlet-like
behavior

In figure 6.6 you see that you can define a clause for each phase of the cmdlet processing. This is
exactly like the phases used in a compiled cmdlet, as mentioned in chapter 1. The begin keyword
specifies the clause to run before the first pipeline object is available. The process clause is

(217)

executed once for each object in the pipeline, and the end clause is run once when all the objects
have been processed.

Note

Using the Filter keyword, instead of function as shown here, you can create a type of function
known as a filter. It can be used on the pipeline, running once for each input object coming from
the pipeline. You can think of a filter as function with only a process block. Using a function
with begin/process/end blocks produces a better solution and is the recommended way to
proceed. Filters are a restricted option that was required only in PowerShell v1.

The current pipeline object is available in the process clause in the special variable $_ (or
$psitem). As always, an example is the best way to illustrate this:

PS> function my-cmdlet ($x) {

 begin {$c=0; "In Begin, c is $c, x is $x"}

 process {$c++; "In Process, c is $c, x is $x, `$_ is $_"}

 end {"In End, c is $c, x is $x"}

}

You define all three clauses in this function. Each clause reports what it is and then prints out the
values of some variables. The variable $x comes from the command line; the variable $c is
defined in the begin clause, incremented in the process clause, and displayed again in the end
clause. The process clause also displays the value of the current pipeline object. Now let’s run it:

PS> 1,2,3 | my-cmdlet 22

In Begin, c is 0, x is 22

In Process, c is 1, x is 22, $_ is 1

In Process, c is 2, x is 22, $_ is 2

In Process, c is 3, x is 22, $_ is 3

In End, c is 3, x is 22

As you can see, the argument 22 is available in all three clauses, and the value of $c is also
maintained across all three clauses. What happens if there’s no pipeline input? Let’s try it:

PS> my-cmdlet 33

In Begin, c is 0, x is 33

In Process, c is 1, x is 33, $_ is

In End, c is 1, x is 33

Even if there’s no pipeline input, the process clause is still run exactly once. You don’t have to
specify all three of the clauses. If you specify only the process clause, you might as well use the
filter keyword, because the two are identical.

If you’ve been following along with the examples in this chapter, by now you’ll have created
quite a number of functions. Care to guess how to find out what you’ve defined?

(218)

6.5. Managing function definitions in a session

Because it’s easy to create functions in PowerShell, it also needs to be easy to manage those
functions. Rather than provide a custom set of commands (or worse yet, a set of keywords) to
manage functions, you can take advantage of the namespace capabilities in PowerShell and use
the function drive. Because it’s mapped as a drive, you can get a list of functions the same way
you get a list of the contents of any other drive. Let’s use Get-ChildItem to find out about the
mkdir function:

PS> Get-ChildItem –Path function:\mkdir

CommandType Name Version Source

----------- ---- ------- ------

Function mkdir

By using Get-ChildItem on the path function:\mkdir, you can see mkdir exists and is a function.
Wildcards can be used, so Get-ChildItem function:\mk* is allowed.

And, if you use Get-ChildItem on the function drive, you’ll get a complete list of all functions.
Let’s do this but get a count of the number of functions:

 PS> (Get-ChildItem function:\).count

78

Our test environment has 78 functions defined. Now let’s create a new one:

PS> function clippy { "I see you're writing a function." }

Now check for the function itself:

PS> Get-ChildItem function:\clippy

CommandType Name Version Source

----------- ---- ------- ------

Function clippy

Running Get-ChildItem on function:clippy doesn’t give you the function definition entry for this
function in PowerShell v3 and later. You can view the definition:

PS> Get-ChildItem function:\clippy |

Format-Table CommandType, Name, Definition -AutoSize -Wrap

CommandType Name Definition

----------- ---- ----------

 Function clippy "I see you're writing a function."

The –Wrap parameter on Format-table will ensure that multiline function definitions are displayed
correctly. Try displaying the definition of the sum3 function from section 6.4 to see the difference.

Now that you know how to add functions to your session, let’s see how to remove them. You’ll
remove the clippy function you just created. Because you’re removing an item from the function:
drive, you’ll remove the function the same way you’d remove a file from a file system drive with
the Remove-Item command:

PS> Remove-Item function:/clippy

And make sure it’s gone:

(219)

 PS> (Get-ChildItem function:/).count

78

PS> Get-ChildItem function:clippy

Get-ChildItem : Cannot find path 'clippy' because it does not exist.

At line:1 char:1

+ dir function:\clippy

+ ~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo :

 ObjectNotFound: (clippy:String) [Get-ChildItem],

 ItemNotFoundException

 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.GetChildItemCommand

Yes! You’ve removed clippy from the system.

Note

Longtime Microsoft Office users will no doubt be feeling an intense burst of satisfaction with
this last example. We’ve all longed to eradicate that annoying paperclip “assistant,” and at last
we have the pleasure, if in name only. And, even more amusing, Microsoft Word doesn’t even
recognize “clippy”—it keeps trying to autocorrect to “clippie.” Some unresolved issues, perhaps?

The techniques we’ve covered in this section allow you to manipulate the functions defined in
your current session. As with any drive, you can list the functions, create them, delete them, and
rename them. But regardless, all these functions will disappear when the session ends when you
exit PowerShell. What about “permanent” functions? How can you define functions that are
always available? This is where scripts come in, as you’ll see in chapter 7. In the meantime,
there’s one more topic that impacts how functions work: variable scoping and lifetime. We’ve
ignored it so far, but we do need to cover it in some depth. Let’s begin now.

(220)

6.6. Variable scoping in functions

So far, we’ve ignored when variables are created, but there are specific rules that cover that.
These rules govern when variables come into existence and where they’re visible. The set of
rules that covers variable lifetime and visibility is called the scoping rules of the language.

First, let’s introduce some terminology for our discussion. In programming language design,
there are two general approaches to scoping—lexical and dynamic. Most programming
languages and many scripting languages are lexically scoped. In a lexically scoped language, it’s
where the name of something is defined that matters. Names are visible in the block they’re
defined in and in any nested blocks but aren’t visible outside the enclosing block unless they’re
explicitly exported in some way. Because where they’re defined controls the visibility for the
variable, this is determined at compile time and is therefore called lexical (or sometimes static)
scoping.

Dynamic scoping involves when the variable is defined. The visibility of the variable is
controlled by the runtime or dynamic behavior of the program, not the compile-time or static
behavior (hence the term dynamic).

Note

For the language folks in the audience, PowerShell uses a variation on traditional dynamic
scoping: hygienic dynamic scoping. This has also been called dynamic scoping with implicit let
binding (if you care). The significant difference is in how assignment is done. In traditional
dynamic scoping, if a variable exists in an outer scope, it will be assigned to the current scope. In
PowerShell, even if there’s an existing variable in an outer scope, a new local variable will be
created on first assignment. This guarantees that a function, in the absence of scope modifiers,
won’t mess up the calling scopes (hence the term hygienic).

6.6.1. Declaring variables

Ignoring function parameters (which are a form of declaration), PowerShell has no variable
declaration statement—a variable simply comes into existence on first assignment. We discussed
this in chapter 4, but it’s more important now.

Note

You’ll see more developer-orientated semantics when we look at PowerShell classes in chapter
19.

Figure 6.7 shows a diagram of how variable names are resolved in PowerShell.

Figure 6.7. How variables are resolved across different scopes. They’re resolved first in the local scope, then in

(221)

the immediate caller’s scope, and so on until the global scope is reached. In this case, lookup of $x resolves to 22
in the scope for function one. Lookup of $y resolves to 2 in the global scope, resulting in the output string “x is 22
y is 2”.

Let’s look at an example. First, define two simple functions, one and two:

PS> function one { "x is $x" }

PS> function two { $x = 22; one }

Function one prints out a string displaying the value of $x. Function two sets the variable $x to a
particular value and then calls function one. Now let’s try them out. Before you work with the
functions, set $x to 7 interactively, to help illustrate how scoping works:

PS> $x=7

Now call function one:

PS> one

x is 7

As expected, it prints x is 7. Now call function two:

PS> two

x is 22

Not surprisingly, because two sets $x to 22 before calling one, you see x is 22 returned. What
happened to $x? Let’s check:

PS> $x

7

(222)

It’s still 7! Now call one again:

PS> one

x is 7

It prints x is 7. What exactly happened here? When you first assigned 7 to $x, you created a new
global variable, $x. When you called function one the first time, it looked for a variable $x, found
the global definition, and used that to print the message.

When you called function two, it defined a new local variable called $x before calling one. This
variable is local—it didn’t change the value of the global $x, but it did put a new $x on the scope
stack. When it called one, this function searched up the scope stack looking for $x, found the new
variable created by function two, and used that to print x is 22.

On return from function two, the scope containing its definition of $x was discarded. The next
time you called function one, it found the top-level definition of $x. Now let’s compare this to a
language that’s lexically scoped. We happen to have Python installed on a computer, so from
PowerShell, we’ll start the Python interpreter:

python

Python 2.2.3 (#42, May 30 2003, 18:12:08) [MSC 32 bit (Intel)] on

 win32Type "help", "copyright", "credits" or "license" for more information.

Now let’s set the global variable x to 7. (Note: even if you aren’t familiar with Python, these
examples are simple, so you shouldn’t have a problem following them.)

x=7

Now print x to make sure it was properly set:

print x

7

You see that it is, in fact, 7. Now define a Python function one:

def one():

 print "x is " + str(x)

And now define another function two that sets x to 22 and then calls one:

def two():

 x=22

 one()

As with the PowerShell example, one prints x is 7.

one()

x is 7

Now call two:

two()

x is 7

Even though two defines x to be 22, when it calls one, one still prints 7. That’s because the local
variable x isn’t lexically visible to one—it will always use the value of the global x, which you
can see hasn’t changed:

print x

(223)

7

At this point, we hope you have a basic understanding of how variables are looked up in
PowerShell. Sometimes, though, you want to be able to override the default lookup behavior.
We’ll discuss this in the next section.

Note

UNIX shells used dynamic scoping because they didn’t have a choice. Each script is executed in
its own process and receives a copy of the parent’s environment. Any environment variables that
a script defines will then be inherited by any child scripts that it, in turn, calls. The process-based
nature of the UNIX shells predetermines how scoping can work. The interesting thing is that
these semantics are pretty much what PowerShell uses, even though the PowerShell team wasn’t
limited by the process boundary. The team tried a number of different schemes, and the only one
that was satisfactory was the one that most closely mimicked traditional shell semantics. We
suppose this shouldn’t be a surprise—it’s worked well for several decades now.

6.6.2. Using variable scope modifiers

We’ve now arrived at the subject of variable scope modifiers. In the previous section, we
discussed scope and the default PowerShell lookup algorithm. Now you’ll see that you can
override the default lookup by using a scope modifier. These modifiers look like the namespace
qualifiers mentioned in chapter 5. To access a global variable $var, you’d write

PS> $global:var

Let’s revisit the functions from the previous section:

PS> function one { "x is $global:x" }

This time, in the function one, you’ll use the scope modifier to explicitly reference the global $x:

PS> function two { $x = 22; one }

The definition of function two is unchanged. Now set the global $x to 7 (commands at the top
level always set global variables, so you don’t need to use the global modifier):

PS> $x=7

Now run the functions:

PS> one

x is 7

PS> two

x is 7

This time, because you told one to bypass searching the scope change for $x and go directly to the
global variable, calls to both one and two return the same result, x is 7.

When we look at scripts in chapter 8, you’ll see additional scoping rules and qualifiers, but for
now, you have all you need to work with functions.

(224)

In the next chapter, you’ll extend your PowerShell programming knowledge to include writing
scripts. We’ll also look at some of the advanced features in PowerShell.

(225)

6.7. Summary

PowerShell programming can be done with either functions or scripts, though in this
chapter we focused only on basic functions.
Functions are created using the function keyword.
The simplest form of function uses $args to receive parameters automatically.
More sophisticated parameter handling for functions requires the use of parameter
declarations. This can be done by placing the parameter names in parentheses after the
name of the function or in the body of the function using the param keyword.
PowerShell uses dynamic scoping for variables. You can modify how a variable name is
resolved by using the scope modifiers in the variable names.
Functions stream their output. They return the results of every statement executed as
though it were written to the output stream. This feature means you almost never have to
write your own code to accumulate results.
Because of the differences between how functions work in PowerShell and how they work
in more conventional languages, you may receive some unexpected results when creating
your functions, so you picked up some tips on debugging these problems.
Functions can specify begin, process, and end blocks in the function body.
The function: drive is used to manage the functions defined in your session. This means
you use the same commands you use for managing files to manage functions.

Now that you understand the basics, it’s time to get more advanced. In the next chapter, we’ll
apply what you’ve learned about functions to scripts, see the differences, and show you how to
create advanced functions.

(226)

Chapter 7. Advanced functions and scripts
This chapter covers

PowerShell scripts
Writing advanced functions and scripts
Dynamic parameters
Default parameters
Documenting functions and scripts

And now for something completely different . . .

Monty Python

In chapter 6 we introduced the basic elements needed for programming in PowerShell when we
looked at PowerShell functions. In this chapter, we’re going to expand your repertoire by
introducing PowerShell scripts.

Note

If you skipped chapter 6, you should probably go back and read it before proceeding. Why?
Because all the material we covered on functions also applies to scripts.

Once we’re finished with the basics of scripts (which won’t take long), we’ll move on to
PowerShell’s advanced production scripting features, which enable you to write full-featured
applications complete with proper documentation. By the end of this chapter, you should be well
on your way to becoming an expert PowerShell programmer.

(227)

7.1. PowerShell scripts

Let’s dig into scripts to see what they have in common with functions and what additional
features you need to be aware of. We’ll begin by looking at the execution policy that controls
what scripts can be run. Then you’ll see how parameters and the exit statement work in scripts.
We’ll also spend time on the additional scoping rules that scripts introduce. Finally, you’ll learn
ways you can apply and manage the scripts you write.

Note

A PowerShell script is a file with a .ps1 extension that contains PowerShell commands.

For your first script, we’ll re-create the “Hello world” program from chapter 1. You can do it
from the command line using redirection to write the script text to a file called hello.ps1:

PS> '"Hello world"' > hello.ps1

Note the double quotes in the example. You want the script to contain "Hello world" with the
quotes intact. Now execute the script:

PS> ./hello.ps1

Hello world

You see that the file executed and returned the expected phrase.

Note

In this example, even though hello.ps1 is in the current directory, you had to insert ./ in front of
it to run it. That’s because PowerShell doesn’t execute commands out of the current directory by
default. This prevents accidental execution of the wrong command.

7.1.1. Script execution policy

There’s a possibility that instead of getting the expected output, you received a nasty error
message that looked something like this:

PS> ./hello.ps1

The file C:\Documents and Settings\brucepay\hello.ps1 cannot be loaded. The

 file C:\Documents and Settings\brucepay\hello.ps1 is not digitally signed.

 The script will not execute on the system

. Please see "get-help about_signing" for more details.

At line:1 char:11

+ ./hello.ps1 <<<<

This PowerShell feature helps prevent running possibly malicious scripts. By default, PowerShell
prevents any scripts from running, including your profile (if you have one). The mechanism that
controls this is called the execution policy. By setting the execution policy, you can control what

(228)

kind of scripts can be run. You should be aware that the execution policy is not a security feature
like an ACL—you can always get around it. Instead, it’s a kind of safety belt that helps keep you
from possibly doing the wrong thing. For example, the default setting is intended to prevent virus
attacks like the infamous ILOVEYOU virus from many years back, where users were being
tricked into accidentally executing code mailed to them.

Note

On client operating systems the default is to block script execution. On Windows Server 2012 R2
and later server operating systems, the default execution policy allows scripts to run locally using
the RemoteSigned setting.

A scripting tool is no good if you can’t script, so there’s a cmdlet called Set-ExecutionPolicy that
you can use to change the execution policy. If you got the error when you tried to execute the
script, you should run the following command as Administrator:

PS> Set-ExecutionPolicy remotesigned

After the command has run successfully, you should be able to run hello.ps1:

PS> ./hello.ps1

Hello world

Note

Changing the execution policy to RemoteSigned will allow you to execute local scripts that you
create yourself while still protecting you from accidentally running scripts from remote sources
such as email or a website, unless they’re signed (see about_Signing for details on how to sign a
script). Of course, for this check to work, the mail tool or the web browser used to download the
script must set the Zone Identifier stream to indicate where the file came from. Internet Explorer
and Microsoft Outlook set this properly. At a minimum, we recommend you use the RemoteSigned
policy.

If you can’t run Set-ExecutionPolicy with the necessary administrator privileges but have
PowerShell v2 or later, you can use the -Scope parameter on the cmdlet to set the execution
policy for just the current session (the current process). This looks like

Set-ExecutionPolicy -Scope process remotesigned

You’ll be prompted to confirm this operation. You reply Y to tell the system to proceed to make
the change. Now when you try to run scripts they’ll work—but remember, you changed the
execution policy for only this session. The next time you start PowerShell, you’ll have to rerun
the command.

Okay, now that you have your basic script running, let’s start adding functionality to it.

(229)

Running elevated

Running elevated is a term used on Windows Vista or later that has to do with the User Access
Control (UAC) feature added in Vista. It means you’re running with administrative privileges.
This can be done only when starting a process. Interactively, you can start an elevated
PowerShell session by right-clicking the PowerShell icon and selecting Run as Administrator.
You then get the UAC prompt asking if you want to allow this action.

If you want to run a single command elevated in a script, you can do so with the Start-Process
cmdlet and the –Verb parameter. For example, you can run Set-ExecutionPolicy in an elevated
PowerShell session as follows:

Start-Process –Verb runas –FilePath powershell.exe

–ArgumentList 'Set-ExecutionPolicy –ExecutionPolicy RemoteSigned'

When this command is run, you’re prompted to allow the action. If you say yes, a new console
window appears, the command executes, and the newly created console window closes after the
command is complete.

7.1.2. Passing arguments to scripts

Passing those arguments to scripts is pretty much like passing them to basic functions. We’ll start
with the $args variable and look at a modified version of the basic script. Using redirection, this
version overwrites the old version of the script:

PS> '"Hello $args"' > hello.ps1

Run it with an argument:

PS> ./hello Bruce

Hello Bruce

Great—hello, PowerShell! But if you don’t supply an argument

PS> ./hello

Hello

you get an impersonal greeting.

Note

You don’t have to specify the .ps1 extension when running the script. PowerShell adds this
automatically when looking for a script file.

You can take advantage of a here-string to generate a slightly longer script:

PS> @'

if ($args) { $name = "$args" } else { $name = "world" }

"Hello $name!"

'@ > hello.ps1

(230)

This script has two lines. The first sets a local variable $name to the value of $args if it’s defined.
If it’s not defined, it sets $name to world. If you run the script with no arguments, you get the
generic greeting:

PS> ./hello

Hello world!

If you run it with an argument, you get a specific greeting:

PS> ./hello Bruce

Hello Bruce!

These are the same basic things you did with functions, and they have some limitations. It would
be much more useful to have named, typed parameters, as was the case with functions.
Obviously, the external definition of parameters isn’t going to work with scripts because there’s
no “external.” Consequently, there’s only one way to define formal parameters for a script:
through the param statement.

Note

The internal param statement has become the de facto best practice for functions over the external
definition of parameters. The param statement is a comma-delimited list of parameters. Forgetting
the comma is a very common typing error!

The param statement must be the first executable line in the script or function. Only comments
and empty lines may precede it. Let’s visit the “Hello world” example one more time. Again,
you’ll use a here-string and redirection to create the script. The here-string makes it easy to
define a multiline script:

PS> @'

param($name="world")

"Hello $name!"

'@ > hello.ps1

Here you’re adding a second line to the script to declare the script parameter. When you run the
script, you find the expected results, first with no arguments

PS> ./hello

Hello world!

and then with a name argument:

PS> ./hello Bruce

Hello Bruce!

The script could be written as a single line because there’s no need for any kind of separator after
the param statement for the script to be valid. Because PowerShell lends itself to one-liner type
solutions, this can be handy.

Obviously, scripts must have additional characteristics that you don’t find with functions. Let’s
explore those now.

7.1.3. Exiting scripts and the exit statement

(231)

As was the case with functions, you can return from scripts simply by getting to the end of the
script or by using the return statement (section 6.3.2). The return statement will let you return
from a script but only if it’s called from the top level of a script. If you call return from a
function inside the script, it will return only from that function and not from the script.

But what happens when you want to cause a script to exit from within a function defined in that
script? PowerShell has the exit statement to do exactly this. So far, you’ve been using this
statement to exit a PowerShell session. But when exit is used inside a script, it exits that script.
This is true even when called from a function in that script. Here’s what that looks like:

PS> @'

function callExit { "calling exit from callExit"; exit}

CallExit

"Done my-script"

'@ > my-script.ps1

The function CallExit defined in this script calls exit. The function is called before the line that
emits "Done my-script", so you shouldn’t see that text emitted. Let’s run it:

PS> ./my-script.ps1

calling exit from CallExit

You see that the script was correctly terminated by the call to exit in the function CallExit.

The exit statement is also how you set the exit code for the PowerShell process when calling
PowerShell.exe from another program. Here’s an example that shows how this works. From
within cmd.exe, run PowerShell.exe, passing it a string to execute. This script will emit the
message “Hi there” and then call exit with an exit code of 17:

C:\>powershell "'Hi there'; exit 17"

Hi there

And now you’re back at the cmd.exe prompt. cmd.exe makes the exit code of a program it’s run
available in the variable ERRORLEVEL, so check that variable:

C:\> echo %ERRORLEVEL%

17

You see that it’s 17 as expected.

In the next section, we’ll look at another feature of scripts: variable scoping.

7.1.4. Scopes and scripts

In chapter 6, we covered the scoping rules for functions. These same general rules also apply to
scripts:

Variables are created when they’re first assigned.
Variable are always created in the current scope, so a variable with the same name in an
outer (or global) scope isn’t affected.
In both scripts and functions, you can use the $global:name scope modifier to explicitly
modify a global variable.

Now let’s see what’s added for scripts.

Scripts introduce a new named scope called the script scope, indicated by using the $script:

(232)

scope modifier. This scope modifier is intended to allow functions defined in a script to affect the
global state of the script without affecting the overall global state of the interpreter. This is
shown in figure 7.1.

Figure 7.1. How variables are resolved across different scopes when scripts are involved.

Variables prefixed with the $script: modifier resolve in the script scope. Variable references
with no scope modifier resolve using the normal lookup rules. In figure 7.1, the user calls script
s1, which creates a new script scope. s1 calls function one, which causes a new function scope to
be created. one calls function two, creating a second function scope and resulting in a total of four
scopes in the scope chain. In function two, $a resolves in the global scope, $script:b resolves in
the script scope (skipping the function one scope because of the $script: modifier), $c resolves in
the function one scope, and $d resolves in the function two scope ($d is local to two).

Let’s look at an example. First, set a global variable $x to 1:

PS> $x = 1

Then create a script called my-script. In this script, you’ll create a function called lfunc. The
lfunc function will define a function-scoped variable $x to be 100 and a script-scoped variable $x
to be 10. The script itself will run this function and then print the script-scoped variable $x. Use a
here-string and redirection to create the script interactively:

PS> @'

function lfunc { $x = 100; $script:x = 10 ; "lfunc: x = $x"}

lfunc

(233)

"my-script:x = $x"

'@ > my-script.ps1

Now run the script:

PS> ./my-script.ps1

lfunc: x = 100

my-script:x = 10

You see that the function-scoped variable $x was 100; the script-scoped $x was 10

PS> "global: x = $x"

global: x = 1

and the global $x is still 1.

Simple libraries: including one script from another

As you build libraries of useful functions, you need to have a mechanism to include one script
inside another (or to run in the global environment) to make these library functions available.
PowerShell allows you to do this through a feature called dot-sourcing a script or function.

Note

The dot-sourcing mechanism (sometimes called dotting) was the only way to build libraries in
PowerShell v1. In PowerShell v2 and later, dot-sourcing is still used for configuration, but the
modules feature (chapters 8 and 9) is the recommended way to create script libraries.

So far in our discussions, you’ve usually focused on the results of a function and wanted all the
local variables when the script or function exits. This is why scripts and functions get their own
scope. But sometimes you do care about all the intermediate by-products. This is typically the
case when you want to create a library of functions or variable definitions. In this situation, you
want the script to run in the current scope.

So how do you dot-source a script? By putting a dot or period in front of the name when you
execute it. Note that there has to be a space between the dot and the name; otherwise, it will be
considered part of the name. Let’s look at an example. First, create a script that sets $x to 22

PS> @'

"Setting x to 22"

$x = 22

'@ > my-script.ps1

and test it. Set $x to a known value and then run the script as you would normally. Checking $x,
you see that it is (correctly) unchanged. Now dot-source the script:

PS> . ./my-script

Setting x to 22

PS> $x

22

This time, $x is changed. What follows the . isn’t limited to a simple filename; it could be a
variable or expression.

(234)

The last thing to note is that dot-sourcing works for both scripts and functions. Define a function
to show this:

Ps> function set-x ($x) {$x = $x}

PS . set-x 3

Ps> $x

3

In this example, you’ve defined the function set-x and dotted it, passing in the value 3. The result
is that the global variable $x is set to 3. This covers how scoping works with scripts and
functions. When we look at modules in chapter 8, you’ll see another variation on scoping.

Now that you know how to build simple script libraries, we’ll show you how to manage all these
scripts you’re writing.

7.1.5. Managing your scripts

Earlier we looked at managing functions using the function drive. Because scripts live in the file
system, there’s no need to have a special drive for them—the file system drives are sufficient.
But this does require that you understand how scripts are found in the file system. Like most
shells, PowerShell uses the PATH environment variable to find scripts. You can look at the
contents of this variable using the environment variable provider $ENV:PATH.

Note

The results may be easier to read if you use $env:Path -split ';'.

The other thing to know (and we mentioned it previously but people still forget it) is that
PowerShell doesn’t run scripts out of the current directory (at least not by default). If you want to
run a script out of the current directory, you can either add that directory to the path or prefix
your command with ./, as in ./mycmd.ps1 or simply ./mycmd. The script search algorithm will look
for a command with the .ps1 extension if there isn’t one on the command. A common approach
is to have a scripts directory where all your personal scripts are placed and a network share for
when multiple users need to access the same scripts. Scripts are just text, so using a version
control system like RCS or Subversion will work well for managing your scripts.

Now let’s look at one more variation on scripting. So far, you’ve been running PowerShell
scripts only from within a PowerShell console. There are times when you need to run a
PowerShell script from a non-PowerShell application like cmd.exe or when creating shortcuts that
launch PowerShell scripts because PowerShell.exe isn’t the default file association for a .ps1 file
(security strikes again—this prevents accidental execution of scripts).

7.1.6. Running PowerShell scripts from other applications

Let’s look at what’s involved in using PowerShell.exe to run a script and go over a few issues that
exist.

Here’s something that can trip people up when using PowerShell.exe to execute a script. The
PowerShell interpreter has two parameters that let you run PowerShell code when PowerShell is

(235)

started. These parameters are -Command and –File, as shown in figure 7.2.

Figure 7.2. How the command line is processed when using the -Command parameter (top) versus the -File
parameter (bottom). With -Command, the first argument is parsed into two tokens. With -File, the entire first
argument is treated as the name of a script to run.

If you use the -Command parameter, the arguments to PowerShell.exe are accumulated and then
treated as a script to execute. This is important to remember when you try to run a script using
PowerShell from cmd.exe using this parameter. Here’s the problem people run into: Because the
arguments to PowerShell.exe are a script to execute, not the name of a file to run, if the path to
that script has a space in it, you’ll get an error because PowerShell treats the spaces as delimiters.
Consider a script called my script .ps1. When you try to run this

powershell "./my script.ps1"

PowerShell will complain about my being an unrecognized command. It treats my as a command
name and script.ps1 as an argument to that command. To execute a script with a space in the
name, you need to do the same thing you’d do at the PowerShell command prompt: put the name
in quotes and use the call (&) operator:

powershell.exe "& './my script.ps1'"

Now the script will be run properly. This is one of the areas where having two types of quotes
comes in handy. Also note that you still have to use the relative path to find the script even if it’s
in the current directory.

To address this problem PowerShell.exe now has a second parameter that makes this easier: the -
File parameter. This parameter takes the first argument after the parameter as the name of the file
to run, and the remaining arguments are passed to the script. The example now simplifies to

powershell -File "my script.ps1"

This is clearly much simpler than the v1 example.

There’s one more advantage to using -File. When you run a script using -Command, the exit
keyword will exit the script but not the PowerShell session (though usually it looks like it did).
This is because the arguments to -Command are treated the same way commands typed interactively
into PowerShell work. You wouldn’t want a script you’re running to cause your session to exit
accidentally. If you use -File instead of –Command, calling exit in the script will cause the
PowerShell.exe process to exit. This is because -File treats the entire contents of the script as the

(236)

command to execute instead of executing a command that names the script file.

Now let’s see why this is important. It matters if you’re depending on the exit code of the
PowerShell process to decide some condition in the calling script. If you use -Command, the exit
code of the script is set, but the process will still exit with 0. If you use -File, PowerShell.exe will
exit with the correct exit code.

This concludes our coverage of the basic information needed to run PowerShell scripts. If you’ve
used other scripting languages, little of what you’ve seen so far should seem unfamiliar. In the
next few sections we’re going to look at features that are rather more advanced.

(237)

7.2. Writing advanced functions and scripts

The scripts and functions you’ve seen so far don’t have all the features of compiled cmdlets. You
need a way to write production-quality scripts complete with integrated help and so on. In this
section, we’ll introduce features that enable your commands, written in the PowerShell language,
to have all the capabilities available to cmdlets. We’ll be using functions for all the examples just
for simplicity’s sake. Everything in the rest of this chapter that applies to functions applies
equally to scripts.

All these new features are enabled by adding metadata to the function or script parameters.
Metadata is information about information, and you use it in PowerShell to declaratively control
the behavior of functions and scripts. What this means is that you’re telling PowerShell what you
want to do but not how to do it; for example, you can tell a parameter that it can accept values
only from a predefined set. When you run the function, the value for that parameter will be
checked to determine if it’s a member of the set. If it is a member, the function runs. If it isn’t a
member of the approved set of values, an error is thrown. All you do is define the metadata—the
set of approved values—and PowerShell takes care of the checking and subsequent actions.

Note

One of the most frequent mistakes we see people make is creating code to perform the actions
they can get the metadata to perform. Don’t reinvent the wheel. Use your time to develop code
that benefits your organization.

We’re ready to dive in now, but first a warning. There’s a lot of material here, and some of it is a
bit complex, so taking your time and experimenting with the features is recommended.

Note

This stuff is much more complex than the PowerShell team wanted. Could it have been simpler?
Maybe, but the team hasn’t figured out a way to do it yet. The upside of the way these features
are implemented is that they match how things are done in compiled cmdlets. This way, the time
invested in learning this material will be of benefit if you want to learn to write cmdlets at some
point. And at the same time, if you know how to write cmdlets, then all this stuff will be pretty
familiar.

7.2.1. Specifying script and function attributes

In this section, we’ll look at the features you can control through metadata attributes on the
function or script definition (as opposed to on parameters, which we’ll get to in a minute). Figure
7.3 shows how the metadata attributes are used when defining a function, including attributes
that affect the function as well as individual parameters on that function.

(238)

Figure 7.3. Attributes that apply to the entire function appear before the param statement, and attributes for an
individual parameter appear before the parameter declaration.

Notice that there are two places where the attributes can be added to functions: to the function
itself and to the individual parameters. With scripts, the metadata attribute has to appear before
the param statement, though the param has to be the first non-comment line. The metadata
attributes are considered part of the param statement.

The CmdletBinding attribute is used to add metadata to the function, specifying behaviors that
apply to all parameters and the return type of the function, for instance. The attribute syntax
where the attribute names are enclosed in brackets is similar to the way you specify types. This is
because attributes are implemented using .NET types. The important distinction is that an
attribute must have parentheses after the name. As you can see in figure 7.3, you can place
properties on the attribute in the parentheses. But even if you’re specifying no attributes, the
parentheses must still be there so the interpreter can distinguish between a type literal and an
attribute. Now let’s look at the most important attribute: CmdletBinding.

7.2.2. The CmdletBinding attribute

The CmdletBinding attribute is used to specify properties that apply to the whole function or script.
You also get a number of common parameters such as –Debug and –Verbose added to your function
for no extra work!

Implicit metadata

The CmdletBinding attribute adds the common parameters to a function. Let’s start with a simple
function:

PS> function x {1+1}

PS> Get-Command x -Syntax

x

Using [CmdletBinding()] explicitly creates an advanced function:

PS> function x {[CmdletBinding()] param() 1+1}

PS> Get-Command x -Syntax

x [<CommonParameters>]

(239)

You can implicitly create an advanced function by using the Parameter attribute:

PS> function x {param([Parameter()][int]$x) $x+1}

PS> Get-Command x -Syntax

x [[-x] <int>] [<CommonParameters>]

This is legal PowerShell and documented in the about_Functions_Advanced_Parameters help file:
“All attributes are optional. But if you omit the CmdletBinding attribute, then to be recognized as
an advanced function, the function must include the Parameter attribute.”

The implicit approach works, but we recommend that you use the explicit approach and the
CmdletBinding attribute.

Simply having the attribute in the definition changes how excess parameters are handled. If the
function is defined without this attribute, the arguments for which there are no formal parameters
are simply added to the $args variable. As discussed earlier, although this can be useful, it’s
usually better to generate an error for this situation.

You can check for this case and see if $args.Count is greater than 0, but it’s easier to handle this
declaratively by adding the metadata attribute, as shown here:

PS> function x {[CmdletBinding()] param($a, $b)

"a=$a b=$b args=$args"}

When you run the command with extra arguments

PS> x 1 2 3 4

x : A positional parameter cannot be found that accepts argument '3'.

At line:1 char:1

+ x 1 2 3 4

+ ~~~~~~~~~

 + CategoryInfo : InvalidArgument: (:) [x], ParameterBindingException

 + FullyQualifiedErrorId : PositionalParameterNotFound,x

the system catches this and generates the error message. You get standard, complete, and
consistent error messages that are already set up to display in many languages with minimal
effort on your part!

Now let’s look at the properties that can be specified for the CmdletBinding attribute. These
properties are shown in table 7.1.

Table 7.1. Properties available on the CmdletBinding attribute

Name Possible values

ConfirmImpact Low, Medium, High, None

DefaultParameterSetName Name of default parameter set defined in
function

HelpURI URI of online help for function
SupportPaging $true, $false
SupportsShouldProcess $true, $false
PositionalBinding $true, $false

(240)

We’ll describe what each of these properties does and how to use them in the next few
subsections.

The ConfirmImpact property

Not all commands have the same consequences, and sometimes you need to ask the user to
confirm an action. You have a way to indicate this with this property. The ConfirmImpact property
specifies when the action of the function should be confirmed by calling the ShouldProcess()
method.

The call to the ShouldProcess() method displays a confirmation prompt only when the
ConfirmImpact argument is equal to or greater than the value of the $ConfirmPreference preference
variable. (The default value of the argument is Medium.) Obviously, this property should be used
only when SupportsShouldProcess is also specified.

The DefaultParameterSetName property

The DefaultParameterSetName property specifies the name of the parameter set that the runtime
will use if it can’t figure out the parameter set from the specified parameters. We’ll look at this a
bit more when we cover the parameter metadata in section 7.2.4.

The HelpUri property

The HelpURI property specifies the internet address (Uniform Resource Identifier (URI)) of the
online version of the help file associated with the function. The online help is used when the –
Online parameter is used with Get-Help. The address must include the http or https part of the
URI. This value is returned by Get-Command:

PS> Get-Command Get-Service | Format-List help*

HelpUri : http://go.microsoft.com/fwlink/?LinkID=113332

HelpFile : Microsoft.PowerShell.Commands.Management.dll-Help.xml

If a URI is specified, an external help file or comment-based help will override the value
supplied through the HelpUri property of CmdletBinding.

The SupportsPaging property

The SupportsPaging property adds three parameters to the function, as shown in table 7.2.

Table 7.2. Parameters added to a function by the SupportsPaging property

Name Purpose

First Gets first n objects only.

Skip Ignores first n objects and then gets remaining
objects.

IncludeTotalCount

Reports number of objects in the data set,
followed by objects. Unknown total count is
returned if number of objects can’t be

(241)

determined.

The use of this property is best demonstrated by an example:

function test-paging {

 [CmdletBinding(SupportsPaging=$true)]

 param()

 $firstnumber =

 [math]::Min($pscmdlet.PagingParameters.Skip, 20)

 $lastnumber =

 [math]::Min($pscmdlet.PagingParameters.First +

 $firstnumber -1, 20)

 if ($pscmdlet.PagingParameters.IncludeTotalCount){

 $totalcountaccuracy = 1.0

 $totalcount =

 $pscmdlet.PagingParameters.NewTotalCount(20,

 $totalcountaccuracy)

 Write-Output $totalcount

 }

 $firstnumber..$lastnumber | Write-Output

}

The function will return a collection of consecutive numbers. The first number in the collection
is a minimum of 20 and the value of the Skip parameter, which defaults to 0. The last number is
the minimum of 20 and the sum of the value of the First parameter plus the value of the first
number in the collection minus 1.

If the IncludeTotalCount parameter is used, the NewTotalCount method is invoked. The
$totalcountaccuracy variable determines the accuracy of the count:

Accuracy = 1 implies the exact number of results are known.
Accuracy > 0 but < 1 implies the count of the items is only an estimate. The accuracy of
the estimate improves as the value approaches 1.
Accuracy = 0 implies the number of items is unknown.

Sample results of using the test-paging function are shown in table 7.3.

Table 7.3. Results of using test-paging function

Test Result

test-paging Displays 0–20
test-paging -Skip 5 Displays 5–20
test-paging -First 5 Displays 0–4
test-paging -First 5 -Skip 2 Displays 2–6

test-paging -First 5 -Skip 2 -IncludeTotalCount Displays Total count:20 and
numbers 2–6

The SupportsShouldProcess property

(242)

When the SupportsShouldProcess property is set to true, it tells the runtime to enable the -Confirm
and -WhatIf standard parameters. The function uses the ShouldProcess() method to ask the user
for feedback before proceeding with the operation or to show what the operation might have
done to the system. The $PSCmdlet variable is an automatic variable that provides the callback
mechanisms which the function needs to make the expected calls. We’ll cover the $PSCmdlet
variable in more detail at the end of this section.

Let’s write an example function that shows how it all works. The purpose of this function is to
allow the user to stop processes on the system. Because stopping the wrong process could have
undesirable consequences, you want to be able to use the -Confirm and –WhatIf parameters.

This function uses the Win32_Process WMI class to get objects representing processes on the
system. (See chapter 16 for more information about WMI.) You filter the set of processes using
the Where-Object cmdlet and then call the Terminate() method on the process object.

Obviously this is a potentially destructive operation, so you want to call the ShouldProcess()
method before proceeding with the action (you saw this behavior with the Set-ExecutionPolicy
cmdlet). You call this method passing two [string] arguments. The first argument is used to tell
the user what object you’re going to operate on. The second argument describes the operation to
be performed—an operation caption. If this method returns true, you call Terminate() to end the
process. Let’s try it. First, define the function:

function Stop-ProcessUsingWMI

{

 [CmdletBinding(SupportsShouldProcess=$True)]

 param(

 [parameter(mandatory=$true)] [regex] $pattern

)

 foreach ($process in Get-WmiObject Win32_Process |

 where { $_.Name -match $pattern })

 {

 if ($PSCmdlet.ShouldProcess(

 "process $($process.Name) " +

 " (id: $($process.ProcessId))" ,

 "Stop Process"))

 {

 $process.Terminate()

 }

 }

}

Next, start a Notepad process:

PS> notepad

Now call Stop-ProcessUsingWMI, specifying the -WhatIf parameter:

PS> Stop-ProcessUsingWMI notepad -Whatif

What if: Performing operation "Stop Process" on Target

"process notepad.exe (id: 6748)".

You see a description of the operation that would be performed. The -WhatIf option was only
supposed to show what it would have done, but not do it, so you’ll use Get -Process to verify that
the command is still running:

Get-Process notepad | Format-Table name,id -auto

Name Id

---- --

notepad 6748

(243)

Let’s perform the operation again but this time use the -Confirm flag. This requests that you be
prompted for confirmation before executing the operation. When you get the prompt, you’ll
respond y to continue with the operation:

PS> Stop-ProcessUsingWMI notepad -Confirm

Confirm

Are you sure you want to perform this action?

Performing operation "Stop Process" on Target

"process notepad.exe (id: 6748)".

[Y] Yes [A] Yes to All [N] No [L] No to All

[S] Suspend[?] Help (default is "Y"): y

And the operation was performed. Use Get-Process to confirm that the Notepad process no longer
exists—you’ll get an error saying the process can’t be found.

Using the ShouldProcess mechanism in your scripts and functions when they’ll perform
destructive operations is a scripting best practice. Although it requires a bit of effort on the script
author’s part, it adds tremendous value for the script user.

The $PSCmdlet variable

As mentioned earlier, the $PSCmdlet variable gives the script or function author the necessary
callbacks and properties needed to be able to take advantage of all the advanced function
features. As well as being able to call ShouldProcess(), you get access to the parameter set name
through the $PSCmdlet.ParameterSetName property. It allows you to halt a pipeline containing this
command by calling the $PSCmdlet.ThrowTerminatingError() method. It makes all the features
available to compiled cmdlet writers available to script and function authors. Refer to the
PowerShell SDK documentation to get complete details on the features available through
$PSCmdlet.

The PositionalBinding Property

The PositionalBinding property determines whether parameters are positional by default. Its
default value is $true, so PowerShell will always assign position numbers to the function’s
parameters in the order in which they are declared in the param statement of the function. If you
don’t want your function to use positional parameters, set the property’s value to $false. If an
individual parameter has a Position argument, that value will take precedence over the setting in
the PositionalBinding property.

This completes our discussion of the CmdletBinding attribute and the properties that apply to the
function or script as a whole. Next, we’ll explore the other attribute that can be applied to a
function or script: OutputType.

7.2.3. The OutputType attribute

The OutputType attribute allows you to declare the expected return type of a function or script.
Like the CmdletBinding attribute, this attribute applies to the whole function. It doesn’t affect the
output type and isn’t checked by the runtime at any point. What it does do is allow you to
document the expected return type in such a way that tools such as editors can use it to do things
like provide IntelliSense for the next cmdlet to add to a pipeline. In this scenario, the editor
would show the list of cmdlets that take the previous output type as an input.

(244)

Specifying the return type sounds like it should be easy, but functions may return more than one
type. In fact, some cmdlets, like Where-Object, can return any type because they return only what
they were passed. A more common and manageable case occurs when you have different types
of objects being returned when different parameters sets are used, as shown here.

Listing 7.1. Testing output type

function Test-OutputType

 {

 [CmdletBinding(DefaultParameterSetName = '1nt')]

 [OutputType('asInt', [int])]

 [OutputType('asString', [string])]

 [OutputType('asDouble', ([double], [single]))]

 [OutputType('lie', [int])]

 param (

 [parameter(ParameterSetName='asInt')] [switch] $asInt,

 [parameter(ParameterSetName='asString')] [switch] $asString,

 [parameter(ParameterSetName='asDouble')] [switch] $asDouble,

 [parameter(ParameterSetName='lie')] [switch] $lie

)

 Write-Host "Parameter set: $($PSCmdlet.ParameterSetName)"

 switch ($PSCmdlet.ParameterSetName) {

 'asInt' { 1 ; break }

 'asString' { '1' ; break }

 'asDouble' { 1.0 ; break }

 'lie' { 'Hello there'; break } }

 }

Now let’s try out some of the different switches:

PS> (Test-OutputType -asString).GetType().FullName

Parameter set: asString

System.String

PS> (Test-OutputType -asInt).GetType().FullName

Parameter set: asInt

System.Int32

Okay—everything is as expected; in each case the correct type was returned. Now use the -lie
parameter:

PS> (Test-OutputType -lie).GetType().FullName

Parameter set: lie

System.String

Even though you specified the OutputType to be [int], the function returned a string. As we said,
the attribute is only documentation—it doesn’t enforce the type.

Note

The return type in PowerShell class methods is normative (enforced). We’ll cover this in greater
detail in chapter 19.

You can discover the output types using the OutputType property produced by Get-Command:

PS> (Get-Command Test-OutputType).OutputType

Name Type

---- ----

asInt

(245)

int System.Int32

asString

string System.String

asDouble

System.Double System.Single System.Double

lie

int System.Int32

The Name property shows the parameter set name, if appropriate, and then the name and type of
the OutputType. There will be one set of entries per OutputType defined in the function.

This also works for cmdlets:

PS> (Get-Command Get-Service).OutputType | Format-List

Name : System.ServiceProcess.ServiceController

Type : System.ServiceProcess.ServiceController

At this point, you might be saying, “Why bother to specify this?” The answer is that good scripts
will last beyond any individual release of PowerShell.

Note

One of us has scripts written over 10 years ago when PowerShell v1 was still in beta and known
as Monad!

This information is somewhat useful now and will probably be much more useful in the future.
As a best practice, it’s strongly recommended that this information be included in scripts that you
want to share with others.

Something we skipped over in the OutputType example was the Parameter attribute. We used it but
didn’t talk about what it does. We’ll remedy that in the next section.

7.2.4. Specifying parameter attributes

We specify additional information on parameters using the Parameter attribute. This information
is used to control how the parameter is processed. The attribute is placed before the parameter
definition, as shown in figure 7.4.

Figure 7.4. This figure shows how the Parameter attribute is used when declaring a variable. The attribute must
appear before that variable name and its optional initializer expression. The figure includes all the properties
that can be set on the parameter.

(246)

As was the case with the CmdletBinding attribute, specific behaviors are controlled through a set
of properties provided as arguments to the attribute. Although figure 7.4 shows all the properties
that can be specified, you only have to provide the ones you want to set to something other than
the default value.

Note

A common error is to provide all of the properties and give them their default values. This is a
waste of your time and will most likely introduce typing mistakes.

Let’s look at an example and then go through each of the properties.

The following example shows a parameter declaration that defines the -Path parameter. Say you
want the parameter to have the following characteristics:

It’s mandatory; that is, the user must specify it or an error is generated.
It takes input from the pipeline.
It requires its argument to be convertible to an array of strings.

The parameter declaration needed to do all that looks like this:

param (

 [parameter(Mandatory=$true,

 ValueFromPipeline=$true)]

 [string[]] $Parameter

)

The result is fairly simple because you need to specify only the things you want to change. All
other properties keep their default values. In the next few sections, we’ll look at each of the
possible properties, what each does, and how it can be used.

The Mandatory property

By default, all function and script parameters are optional, which means that the caller of the

(247)

command doesn’t have to specify them. If you want to require that the parameter be specified,
set the Mandatory property in the Parameter attribute to $true; if the property is absent or set to
$false, the parameter is optional.

Note

We see a lot of functions where people write Mandatory=$false on all their parameters. This is not
needed and is a waste of effort. Also, default values are ignored when the parameter is made
mandatory. You can use Mandatory without the value but we recommend the full syntax for
clarity.

The following example shows the declaration of a parameter that’s required when the function is
run:

function Test-Mandatory

{

 param ([Parameter(Mandatory=$true)] $myParam)

 $myParam

}

Now run this function without a parameter:

PS> Test-Mandatory

cmdlet Test-Mandatory at command pipeline position 1

Supply values for the following parameters:

myParam: HELLO THERE

HELLO THERE

The PowerShell runtime notices that a mandatory parameter wasn’t specified on the command
line, so it prompts the user to specify it, which we do. Now the function can run to completion.

The Position property

You saw earlier in this chapter that all parameters are both positional and named by default.
When using advanced parameter specification metadata, either adding the CmdletBinding attribute
to the whole function or specifying an individual Parameter attribute, parameters remain
positional by default, until you specify a position for at least one of them.

Once you start formally specifying positions, all parameters default to non-positional unless the
Position property for that parameter is set. The following example shows a function with two
parameters, neither one having Position set:

function Test-Position

{

 param (

 [parameter()] $p1 = 'p1 unset',

 $p2 = 'p2 unset'

)

 "p1 = '$p1' p2='$p2'"

}

Now when you run it with positional parameters

PS> Test-Position one two

(248)

p1 = 'one' p2='two'

the arguments are bound by position and there’s no error.

Replace

[parameter()] $p1 = 'p1 unset',

with

[parameter(Position=0)] $p1 = 'p1 unset',

and run it again with two positional parameters:

PS> Test-Position one two

Test-Position : A positional parameter cannot be found that accepts argument 'two'.

At line:1 char:1

+ Test-Position one two

+ ~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : InvalidArgument: (:) [Test-Position], ParameterBindingException

 + FullyQualifiedErrorId : PositionalParameterNotFound,Test-Position

This time you get an error. Although there’s a second parameter, it’s no longer positional. If you
run the function again specifying the second parameter by name,

PS> Test-Position one -p2 two

p1 = 'one' p2='two'

it all works.

The ParameterSetName property

The ParameterSetName property allows you to specify the parameter set or sets that a parameter
belongs to. If no parameter set is specified, the parameter belongs to all the parameter sets
defined by the function. The following listing shows the parameter declaration of two parameters
that belong to two different parameter sets.

Listing 7.2. Testing parameter sets

function Test-ParameterSets

{

 param (

 [parameter(ParameterSetName='s1')] $p1='p1 unset',

 [parameter(ParameterSetName='s2')] $p2='p2 unset',

 [parameter(ParameterSetName='s1')]

 [parameter(ParameterSetName='s2',Mandatory=$true)]

 $p3='p3 unset',

 $p4='p4 unset'

)

 'Parameter set = ' + $PSCmdlet.ParameterSetName

 "p1=$p1 p2=$p2 p3=$p3 p4=$p4"

 }

You can view the parameter sets available on a command—cmdlet, function, or script:

PS> Get-Command Test-ParameterSets -Syntax

Test-ParameterSets [-p1 <Object>] [-p3 <Object>]

[-p4 <Object>] [<CommonParameters>]

Test-ParameterSets -p3 <Object> [-p2 <Object>]

[-p4 <Object>] [<CommonParameters>]

(249)

Notice the difference in the way -p3 is shown between the parameter sets. The lack of [] in the
second parameter set indicates that it’s mandatory. Modifying the parameter behavior between
parameter sets like this is a common question on forums.

Note

The ability to modify the parameter behavior by parameter set is very powerful, but as with all
options the more complicated you make things, the harder they are to maintain.

Let’s try it. First, call the function, specifying -p1 and -p4:

PS> Test-ParameterSets -p1 one -p4 four

Parameter set = s1

p1=one p2= p3=p3 unset p4=four

The parameter binder resolves to parameter set s1, where the -p3 parameter isn’t mandatory. Next
specify -p1, -p3, and -p4:

PS> Test-ParameterSets -p1 one -p3 three -p4 four

Parameter set = s1

p1=one p2=p2 unset p3=three p4=four

You still resolve to parameter set s1 but this time -p3 is bound. Now let’s look at the other
parameter set. Because you’re specifying -p2 instead of -p1, the second parameter set, s2, is used,
as you can see in the output:

PS> Test-ParameterSets -p2 two -p3 three

Parameter set = s2

p1=p1 unset p2=two p3=three p4=p4 unset

Now in parameter set s2, the parameter -p3 is mandatory. Try running the function without
specifying it:

PS> Test-ParameterSets -p2 two

cmdlet Test-ParameterSets at command pipeline position 1

Supply values for the following parameters:

p3: THREE

Parameter set = s2

p1=p1 unset p2=two p3=THREE p4=p4 unset

The runtime will prompt for the missing parameter. You provide the missing value at the prompt,
and the function completes successfully.

Let’s verify that the parameter -p4 is allowed in both parameter sets. You run the following
command specifying -p4:

PS> Test-ParameterSets -p2 two -p3 three -p4 four

Parameter set = s2

p1=p1 unset p2=two p3=three p4=four

This works properly. Now try specifying all four of the parameters in the same command; this
shouldn’t work because -p1 and -p2 are in different parameter sets, so the parameter binder can’t
resolve to a single parameter set:

PS> Test-ParameterSets -p1 one -p2 two -p3 three `

(250)

 -p4 four

Test-ParameterSets : Parameter set cannot be resolved using the specified named parameters.

At line:1 char:1

+ Test-ParameterSets -p1 one -p2 two -p3 three -p4 four

+ ~~~

 + CategoryInfo : InvalidArgument: (:)

 [Test-ParameterSets], ParameterBindingException

 + FullyQualifiedErrorId : AmbiguousParameterSet,Test-ParameterSets

As expected, the system responds with an error.

The ValueFromPipeline property

You saw earlier how to use $_ in the process block to handle pipeline objects. This approach
works but makes it difficult to handle both pipeline and command-line bindings.

The ValueFromPipeline property enables parameters to take values from the command line and the
pipeline. Here’s an example:

function Test-ValueFromPipeline

{

 param([Parameter(ValueFromPipeline = $true)] $x)

 process { $x }

}

Now try it with the command line

PS> Test-ValueFromPipeline 123

123

and it works properly. Now try a pipelined value:

PS> 123 | Test-ValueFromPipeline

123

This also works properly. And because you’re using the process block, you can handle a
collection of values as well as single values.

The ValueFromPipeline property allows you to tell the runtime to bind the entire object to the
parameter. But sometimes you only want a property on the object. This is what the
ValueFromPipelineByPropertyName attribute is for, as you’ll see next.

The ValueFromPipelineByPropertyName property

Whereas ValueFromPipeline caused the entire pipeline object to be bound to the parameter, the
ValueFromPipelineByPropertyName property tells the runtime to use a property on the object instead
of the whole object when binding the parameter. The name of the property to use comes from the
parameter name. Let’s modify the previous example to illustrate this:

function Test-ValueFromPipelineByPropertyName

{

 param(

 [Parameter(ValueFromPipelineByPropertyName=$true)]

 $DayOfWeek

)

 process { $DayOfWeek }

}

This function has one parameter, named DayOfWeek, that’s bound from the pipeline by property
name. Notice that you haven’t added a type constraint to this property, so any type of value will

(251)

work. Let’s use the Get-Date cmdlet to emit an object with a DayOfWeek property:

PS> Get-Date | Test-ValueFromPipelineByPropertyName

Saturday

This returns Saturday (the day we wrote this), so binding from the pipeline works fine. What
happens when you bind from the command line?

PS> Test-ValueFromPipelineByPropertyName (Get-Date)

15 April 2017 21:23:03

This time you get the entire DateTime object. Normal command-line binding isn’t affected by the
attribute. To get the same result, you have to extract the property yourself:

PS> Test-ValueFromPipelineByPropertyName `

 ((Get-Date).DayOfWeek)

Saturday

That takes care of the single-value case. For multiple objects, each inbound pipeline object is
bound to the parameter by property name one at a time. Next, we’ll show how to handle variable
numbers of arguments when using command metadata.

The ValueFromRemainingArguments property

You saw earlier that when you didn’t use any of the metadata annotations, excess arguments
ended up in the $args variable. But once you add the metadata, the presence of excess arguments
results in an error. Because it’s sometimes useful to allow a variable number of parameters,
PowerShell provides the ValueFromRemainingArguments property, which tells the runtime to bind all
excess arguments to this parameter. The following example shows a function with two
parameters. The first argument goes into the -First parameter and the remaining arguments are
bound to -Rest:

function vfraExample

{

 param (

 $First,

 [parameter(ValueFromRemainingArguments=$true)]

 $Rest

)

 "First is $first rest is $rest"

}

Let’s run the function with four arguments:

PS> vfraExample 1 2 3 4

First is 1 rest is 2 3 4

The first ends up in $first with the remaining placed in $rest. Now try using -Rest as a named
parameter:

PS> vfraExample 1 -Rest 2 3 4

vfraExample : A positional parameter cannot be found that accepts argument '3'.

At line:1 char:1

+ vfraExample 1 -Rest 2 3 4

+ ~~~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : InvalidArgument: (:)

[vfraExample], ParameterBindingException

 + FullyQualifiedErrorId : PositionalParameterNotFound,vfraExample

This fails. When the parameter is specified by name, it won’t receive the excess arguments and

(252)

you’ll get an error. If you use the parameter by name, you’ll have to pass the remaining
arguments explicitly as a list, as shown here:

PS> vfraExample 1 -Rest 2,3,4

First is 1 rest is 2 3 4

The HelpMessage property

The HelpMessage property allows you to attach a short help message to the parameter. This
message is displayed only when prompting for a missing mandatory parameter.

First, you need a function that has a mandatory parameter so the runtime will prompt if you don’t
supply it. Also, make it an array so you can specify more than one object when prompted. Here’s
the function:

function helpMessageExample

{

 param (

 [parameter(Mandatory=$true,

 HelpMessage='An array of path names.')]

 [string[]]

 $Path

)

 "Path: $path"

}

Now run it with no arguments so the system will prompt for the missing value:

PS> helpMessageExample

cmdlet helpMessageExample at command pipeline position 1

Supply values for the following parameters:

(Type !? for Help.)

Path[0]: !?

An array of path names.

Path[0]: foo

Path[1]: bar

Path[2]:

Path: foo bar

When prompted, you can enter !? to see the help message, giving you more information about
the type of thing you’re supposed to enter.

Note

A common error is that users forget that the parameters in the param() block are a comma-
separated list. Forgetting the comma after the parameter definition is easy to do and can cause
you to lose a lot of time tracking down the error. You’ve been warned.

And with that, we’re finished with our discussion of the Parameter attribute and its properties. But
we’re not finished with parameter attributes quite yet. The next thing to look at is the Alias
attribute. This is a pretty simple feature, but it has a couple of important uses.

7.2.5. Creating parameter aliases with the Alias attribute

(253)

The Alias attribute allows you to specify alternate names for a parameter. It’s typically used to
add a well-defined shortcut for that parameter. If you’ll recall our parameter discussion in
chapter 1, we said that you only have to specify enough of a parameter name to uniquely identify
it. Unfortunately, if you add a new parameter to a command that has the same prefix as an
existing parameter, you now need a longer prefix to distinguish the name.

Any scripts that used the old short prefix would fail because they’d be unable to distinguish
which parameter to use. This is where the Alias attribute comes in. It can be used to add
distinctive and mnemonic short forms for parameters.

Let’s look at an example. The following function defines a single parameter: -ComputerName.
You’ll give this parameter an alias: -CN. Here’s the function definition:

function Test-ParameterAlias

{

 param (

 [alias('CN')]

 $ComputerName

)

 "The computer name is $ComputerName"

}

These options all work as expected:

PS> Test-ParameterAlias -ComputerName foo

PS> Test-ParameterAlias -CN foo

PS> Test-ParameterAlias -com foo

Next, create a new version of the command. Add a new parameter: -Compare. Here’s the new
function definition:

function Test-ParameterAlias

{

 param (

 [alias('CN')]

 $ComputerName,

 [switch] $Compare

)

 "The computer name is $ComputerName,

 compare=$compare"

}

Try running the command with the parameter prefix -Com again:

PS> Test-ParameterAlias -Com foo

Test-ParameterAlias : Parameter cannot be processed because the parameter

 name 'com' is ambiguous. Possible matches include: -ComputerName -Compare.

At line:1 char:21

+ Test-ParameterAlias -com foo

+ ~~~~

 + CategoryInfo : InvalidArgument: (:) [Test-ParameterAlias],

ParameterBindingException

 + FullyQualifiedErrorId : AmbiguousParameter,

Test-ParameterAlias

This time you get an error because -Com could refer to either parameter. But if you use the -CN
alias

PS> Test-ParameterAlias -CN foo

The computer name is foo,

 compare=False

it works.

(254)

Another scenario where you might add an alias is when you’re also using the
ValueFromPipelineByPropertyName property on the Parameter attribute. There are a number of places
where the objects you’re working with have similar parameters with different names. For
example, the file system objects returned by Get-ChildItem have a Name property, whereas the
objects returned by Get-Process have a ProcessName property. If you wanted to create a function
that worked with both of these types, you could have a parameter named Name with an alias
ProcessName. How about also working with services? The objects returned from Get-Service have
a ServiceName property. No problem—just add another alias for ServiceName. In practice, there’s
no limit to the number of aliases that can be assigned to a parameter.

Now let’s look at the last type of parameter metadata: the validation attributes that let you
constrain the parameter values in much more interesting ways than just by type.

7.2.6. Parameter validation attributes

The last class of parameter attributes we’ll cover are the parameter validation attributes. You
already know how to add a type constraint to a parameter where you require that the argument be
of a particular type. The parameter validation attributes allow you to specify additional
constraints on the argument to a parameter. The available parameter validation attributes are
shown in figure 7.5.

Figure 7.5. The validation attributes can be applied to script and function parameters to specify additional
parameter checks to perform when binding arguments.

In many cases these constraints seem like trivial functions (and mostly they are), but they’re
valuable for a couple of reasons:

They declare the parameter contract. This means that by inspecting the parameter
declaration, you can see what constraints are present. This also means that other tools can
work with this information as well to drive IntelliSense-like features.
You don’t have to write any error-handling code. By specifying the attribute, you’re
declaring the constraint, and the runtime takes care of doing the work of checking the
value for you. Because the PowerShell runtime does the check, it can generate

(255)

standardized error messages, translated into whatever language the user’s environment is
configured for. It’s a nifty feature.

Note

A very common error is for users to write line after line of code, testing and validating their input
parameters. Don’t! Use these validation attributes instead.

The other interesting thing is that the set of attributes isn’t fixed; a .NET programmer can create
new attributes by deriving from the existing base classes. Although this isn’t yet possible in the
PowerShell language, you do have ValidateScript, which lets you do similar things. We’ll get to
that once we cover the other available attributes.

Validation attribute: AllowNull

The AllowNull attribute should make sense only if the associated parameter is marked as
mandatory. This is because, by default, mandatory parameters don’t allow you to pass $null to
them. If this attribute is specified, the check is suppressed and $null can be passed to the
parameter. For example:

function allowNullExample

{

 param

 (

 [parameter(Mandatory=$true)]

 [AllowNull()]

 $objectToTest

)

 $objectToTest -eq $null

}

Validation attribute: AllowEmptyString

The AllowEmptyString attribute is a variation on the AllowNull attribute. Mandatory parameters
won’t permit empty strings to be passed either. You should specify this attribute if, for some
unknown reason, you want to allow your function or script to deal with empty strings in
mandatory parameters.

Note

It’s hard to think of a good case where you want to allow $null or an empty argument to be
passed to a function. If you do this but don’t have correct code in your function or script
implementation, your users may find themselves having to debug NullReference exceptions—not
a nice thing to do to your users.

Validation attribute: AllowEmptyCollection

(256)

This is the last variation on the attributes that are used with mandatory parameters to disable
some of the default checks. The AllowEmptyCollection attribute allows an empty collection as the
argument of a mandatory parameter.

Note

In cases that follow an error is thrown if the validation attempt fails. This has the benefit of
preventing any processing by the function.

Validation attribute: ValidateNotNull

The ValidateNotNull attribute is the opposite of AllowNull. This attribute turns on the check for
$null if the parameter isn’t mandatory:

function validateNotNullExample

{

 param

 (

 [ValidateNotNull()]

 $objectToTest

)

 $objectToTest -eq $null

}

Validation attribute: ValidateNotNullOrEmpty

The ValidateNotNullOrEmpty attribute specifies that the argument of the parameter isn’t permitted
to be set to $null, an empty string, or an empty array.

Validation attribute: ValidateCount

The ValidateCount attribute specifies the minimum and maximum numbers of values that can be
passed to an array parameter. The runtime generates an error if the number of elements in the
argument is outside the range. In the following example, one parameter, $pair, requires exactly
two values:

function validateCountExample

{

 param (

 [int[]] [ValidateCount(2,2)] $pair

)

 "pair: $pair"

}

Try the function with one argument:

PS> validateCountExample 1

validateCountExample : Cannot validate argument on parameter 'pair'. The

 number of provided arguments (1) is fewer than the minimum number of

 allowed arguments (2). Provide more than 2 arguments, and then try

the command again.

At line:1 char:22

+ validateCountExample 1

+ ~

 + CategoryInfo : InvalidData: (:) [validateCountExample],

ParameterBindingValidationException

(257)

 + FullyQualifiedErrorId : ParameterArgumentValidationError,validateCountExample

You get the expected error. Next, pass in a pair of numbers:

PS> validateCountExample 1,2

pair: 1 2

That works. Finally, pass in three numbers:

PS> validateCountExample 1,2,3

validateCountExample : Cannot validate argument on parameter 'pair'. The

 number of provided arguments, (3), exceeds the maximum number of allowed

arguments (2). Provide fewer than 2 arguments, and then try the command

 again.

At line:1 char:22

+ validateCountExample 1,2,3

+ ~~~~~

 + CategoryInfo : InvalidData: (:) [validateCountExample],

ParameterBindingValidationException

 + FullyQualifiedErrorId : ParameterArgumentValidationError,validateCountExample

Again, you get an error.

Validation attribute: ValidateLength

The ValidateLength attribute can be used only with strings or arrays of strings. It allows you to
specify the minimum and maximum lengths of the argument strings. If the argument is an array
of strings, each element of the array will be checked. In the following example, the specified user
names must have 8 to 10 characters:

function validateLengthExample

{

 param (

 [string][ValidateLength(8,10)] $username

)

 $userName

}

Validation attribute: ValidatePattern

The ValidatePattern attribute allows you to specify a regular expression to use to validate the
argument string. For example, the $hostName parameter in the following function must start with a
letter from a to z followed by one to seven digits:

function validatePatternExample

{

 param (

 [ValidatePattern('^[a-z][0-9]{1,7}$')]

 [string] $hostName

)

 $hostName

}

Try it with a valid string:

PS> validatePatternExample b123

b123

It returns the argument with no error. Now try an invalid argument that has too many numbers:

PS> validatePatternExample c123456789

validatePatternExample : Cannot validate argument on parameter 'hostName'.

 The argument "c123456789" does not match the "^[a-z][0-9]{1,7}$" pattern.

(258)

 Supply an argument that matches "^[a-z][0-9]{1,7}$" and try the command

 again.

At line:1 char:24

+ validatePatternExample c123456789

+ ~~~~~~~~~~

 + CategoryInfo : InvalidData: (:) [validatePatternExample],

ParameterBindingValidationException

 + FullyQualifiedErrorId : ParameterArgumentValidationError,validatePatternExample

You get an error as expected. Unfortunately, the error message isn’t completely helpful—all it
reports is the pattern that failed but not why it failed or what the intent of the pattern was. This
limits the usefulness of this attribute somewhat.

Validation attribute: ValidateRange

The ValidateRange attribute allows you to constrain the range of a numeric argument. This means
that instead of saying the argument must be an integer, you can say that it must be an integer in
the range 1 through 10, as shown here:

function validateRangeExample

{

 param (

 [int[]][ValidateRange(1,10)] $count

)

 $count

}

As you saw with the ValidateLength attribute for strings, this attribute can be applied to a
collection, in which case it will validate each member of the collection. If a member is outside
the range

PS> validateRangeExample 1,2,3,22,4

validateRangeExample : Cannot validate argument on parameter 'count'. The

 22 argument is greater than the maximum allowed range of 10. Supply an

 argument that is less than or equal to 10 and then try the command again.

At line:1 char:22

+ validateRangeExample 1,2,3,22,4

+ ~~~~~~~~~~

 + CategoryInfo : InvalidData: (:) [validateRangeExample],

ParameterBindingValidationException

 + FullyQualifiedErrorId : ParameterArgumentValidationError,validateRangeExample

it fails, indicating the value that couldn’t be processed and why.

Validation attribute: ValidateSet

The ValidateSet attribute ensures that the argument is a member of the specific set of values
passed to the attribute. In the following example, the argument to the $color parameter can
contain only the values red, blue, or green:

function validateSetExample

{

 param (

 [ValidateSet('red', 'blue', 'green')]

 [ConsoleColor] $color

)

 $color

}

Try it with a valid argument

PS> validateSetExample red

Red

(259)

and an invalid argument:

PS> validateSetExample cyan

validateSetExample : Cannot validate argument on parameter 'color'. The

 argument "Cyan" does not belong to the set "red,blue,green" specified by

 the ValidateSet attribute. Supply an argument that

is in the set and then try the command again.

At line:1 char:20

+ validateSetExample cyan

+ ~~~~

 + CategoryInfo : InvalidData: (:) [validateSetExample],

ParameterBindingValidationException

 + FullyQualifiedErrorId : ParameterArgumentValidationError,validateSet Example

Note that the error message contains the list of valid values. Notice that you passed an array of
arguments to the parameter, but the type of the parameter is [ConsoleColor], not [ConsoleColor[]]
—it’s not an array parameter. This works because [ConsoleColor] is a .NET enum type where
multiple values can be combined to produce a new value in the set. The PowerShell runtime
understands this and combines the arguments to produce a single result.

Validation attribute: ValidateScript

As promised, we’ve saved the best (or at least the most powerful) for last. The ValidateScript
attribute allows you to specify a chunk of PowerShell script to use to validate the argument. This
means it can do anything. The argument to test is passed in as $_ to the code fragment, which
should return $true or $false. In the following example, the attribute is used to verify that the
argument is an even number:

function validateScriptExample

{

 param (

 [int] [ValidateScript({$_ % 2 -eq 0})] $number

)

 $number

}

This succeeds for 2

PS> validateScriptExample 2

2

and fails for 3:

PS> validateScriptExample 3

validateScriptExample : Cannot validate argument on parameter 'number'. The

 "$_ % 2 -eq 0" validation script for the argument with value "3" did not

return a result of True. Determine why the validation script failed, and then try

 the command again.

At line:1 char:23

+ validateScriptExample 3

+ ~

 + CategoryInfo : InvalidData: (:) [validateScriptExample],

ParameterBindingValidationException

 + FullyQualifiedErrorId : ParameterArgumentValidationError,validateScript Example

As with the ValidatePattern attribute, the error message doesn’t provide the best user experience,
limiting the value of this attribute for validation. On the other hand, it can also be used for things
like logging and tracing, counting the number of times the parameter was used, and so on simply
by taking the appropriate action and then returning $true.

Now that we’ve covered all the things you can do with explicit parameters, we’re going to
investigate an alternate mechanism for parameter specification. This alternate mechanism allows

(260)

you to write scripts and functions that can dynamically adapt their parameter signatures to the
environment.

(261)

7.3. Dynamic parameters and dynamicParam

Explicit or static parameters are defined as part of the source code for a script or function and are
fixed when that script or function is compiled. But a script or function can also define parameters
at runtime. These new parameters are added dynamically based on runtime conditions instead of
statically at parse time. This allows you to write functions to specialize their interface (that is,
their parameters) based on ambient conditions. The best example of this is a cmdlet like Set-
Content. When Set-Content is used in a file system drive, it lets you specify file-specific
parameters like -Encoding. In other providers where this parameter doesn’t make sense, it isn’t
present in the cmdlet signature. Because these parameters are defined dynamically, they’re called
(no surprise, we’re sure) dynamic parameters. Cmdlets have always had this capability, but
PowerShell v2 made the facility available for scripts and functions as well.

If you want your scripts and functions to have dynamic parameters, you have to use the
dynamicParam keyword. The syntax for this keyword is

dynamicParam { <statement-list> }

Let’s work through the steps needed to implement dynamic parameters.

Warning

This isn’t for the faint of heart, but it’s a powerful technique that, when needed, allows you to
deliver the best experience for the users of your scripts.

7.3.1. Steps for adding a dynamic parameter

In this section, we’ll walk you through the steps necessary to define dynamic parameters in a
function. First, you’ll specify a dynamicParam block in your function. Then, in the body of the
dynamicParam block, you’ll use an if statement to specify the conditions under which the
parameter is to be available. To define the parameters you want to expose, you need to use the
New-Object cmdlet to create an instance of the type:

System.Management.Automation.RuntimeDefinedParameter

You’ll use this object to define your dynamic parameter and, at a minimum, you’ll have to
specify its name. If you need to apply additional attributes, you’ll have to use the New-Object
cmdlet to create an instance of the type:

System.Management.Automation.ParameterAttribute

This is used to include the Mandatory, Position, or ValueFromPipeline attributes you saw earlier in
this chapter.

In the following example, you define a function with two static parameters—Name and Path—and
an optional dynamic parameter named dp1. dp1 is in the set1 parameter set and has a type: [int].
The dynamic parameter is available only when the value of the Path parameter begins with HKLM:,

(262)

indicating that it’s being used in the Registry drive. The complete function is shown in figure 7.6
(the code is available in the book’s download).

Figure 7.6. A function that defines dynamic parameters. If the -Path parameter is set to something that starts
with HKML:, an additional parameter, dp1, will be defined for the function.

This function will return the bound parameters in the end block of the function.

Note

The variable $PSBoundParameters is an automatic variable which contains a hashtable with all the
parameters that were bound when the command was invoked. You’ll learn more about this
variable when we cover proxy commands in chapter 10.

The presence of the dynamicParam block forces you to explicitly use the end keyword just like
using the begin and process keywords would. Now run the function. Try the function in the C:
drive:

PS> dynamicParameterExample -dp1 13 -Path c:\

dynamicParameterExample : A parameter cannot be found that matches parameter name 'dp1'.

At line:1 char:29

(263)

+ dynamicParameterExample -dp1 <<<< 13 -Path c:\

 + CategoryInfo : InvalidArgument: (:) [dynami

 cParameterExample], ParameterBindingException

 + FullyQualifiedErrorId : NamedParameterNotFound,dynam

 icParameterExample

You get an error saying that no -dp1 parameter was found. Now try it with HKLM:

PS> dynamicParameterExample -dp1 13 -Path HKLM:\

Key Value

--- -----

Path HKLM:\

dp1 13

This time, the function executes without error and shows you that the dynamic parameter was
bound as desired.

As you can see, using dynamic parameters is a fairly complex task. The task is more or less the
same in a script or in a compiled language like C#. If you can follow this example, you’re well
on your way to understanding dynamic parameters in C#.

7.3.2. When should dynamic parameters be used?

So when would you use this technique? The most common case is something like the namespace
providers mentioned earlier where most of the parameters are the same but certain parameters
may only be present based on the path. This allows you to have one command to deal with many
similar but slightly different scenarios, which reduces the number of commands a user has to
learn.

The other place where dynamic parameters might be used is where you want to base the
parameters on some type of dynamic configuration, like the set of columns in a database table.
You could write a single cmdlet, called something like Update-DatabaseTable, that uses the names
and types of the columns to add dynamic parameters for the cmdlet.

This concludes our discussion of dynamic parameters. Next, we’ll turn our attention to setting
default values.

(264)

7.4. Cmdlet default parameter values

You’ve seen that creating default values for functions and scripts is a useful tool. But most
parameters on most cmdlets don’t have default values. This means that every time you use a
cmdlet you have to supply the values to each parameter you use. Wouldn’t it be nice if cmdlets
had default values?

You can use the $PSDefaultParameterValue preference variable (introduced in PowerShell v3) to
create default values for parameters on cmdlets and advanced functions (that use the
CmdletBinding attribute) but not scripts or simple functions. If the cmdlet or function author has
defined default values, you can use $PSDefaultParameterValue to override those values. In addition
to defining a single value as a default, you can assign a script block to determine the value to use.

$PSDefaultParameterValue exists only in the PowerShell session in which it’s defined. If you want
to use the same set of values each time, you should define them in your profile.

The default values stored in $PSDefaultParameterValue are held as a type of hashtable
(System.Management.Automation.DefaultParameterDictionary to be specific), meaning you can use
standard hashtable techniques to manage default values.

7.4.1. Creating default values

You need to supply three things to create a default value:

The cmdlet (or advanced function) name
The parameter name
The value or scriptblock to assign to the parameter

You can set a single default value like this:

PS> $PSDefaultParameterValues= @{

'Get-Process:Name'='powershell'}

The cmdlet and parameter names are separated by a colon (:). The cmdlet and parameter names
are the hashtable key and the default value is the hashtable value. Now, when you use the Get-
Process cmdlet, the name parameter is automatically populated with PowerShell:

PS> Get-Process

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName

------- ------ ----- ----- ------ -- -- -----------

 665 30 66536 82964 1.70 13168 29 powershell

If you need to override the default value, you need only to supply a value to the parameter; for
instance

PS> Get-Process -Name *

will return all running processes, and

PS> Get-Process -Name winword

will return data on the process running winword (MS Word).

(265)

If you type another $PSDefaultParameterValues statement, you’ll overwrite the current setting:

PS> $PSDefaultParameterValues

Name Value

---- -----

Get-Process:Name PowerShell

PS> $PSDefaultParameterValues= @{

'Get-Service:Name'='BITS'}

PS> $PSDefaultParameterValues

Name Value

---- -----

Get-Service:Name BITS

Does that mean you can have only a single default parameter value at a time? No. Remember, we
said that $PSDefaultParameterValues was a hashtable and that you can use standard hashtable
techniques to manage your default values.

You use the Add() method to define additional default values, supplying the cmdlet parameter
names together with the default value as comma-delimited key–value pairs:

PS> $PSDefaultParameterValues.Add('Get-Process:Name', 'PowerShell')

PS> $PSDefaultParameterValues.Add('Get-CimInstance:ClassName', 'Win32_ComputerSystem')

PS> $PSDefaultParameterValues

Name Value

---- -----

Get-Process:Name PowerShell

Get-Service:Name BITS

Get-CimInstance:ClassName Win32_ComputerSystem

You can define default values for multiple parameters on a single cmdlet, but remember that
each parameter can have only a single default value.

7.4.2. Modifying default values

Needs change, and at some point, you’ll need to change your default values. You can remove
single entries from $PSDefaultParameterValues:

PS> $PSDefaultParameterValues.Remove('Get-CimInstance:ClassName')

PS> $PSDefaultParameterValues

Name Value

---- -----

Get-Process:Name PowerShell

Get-Service:Name BITS

You need to supply the cmdlet:parameter names to define the key of the entry you want to
remove.

Alternatively, you may want to change a default value rather than eliminate one:

PS> $PSDefaultParameterValues['Get-Service:Name'] = 'LanmanWorkstation'

PS> $PSDefaultParameterValues

Name Value

---- -----

Get-Process:Name PowerShell

(266)

Get-Service:Name LanmanWorkstation

We’re working with a hashtable so it’s a simple matter of supplying a new value to the
appropriate key. You can view the value of a single entry by supplying the key:

PS> $PSDefaultParameterValues['Get-Service:Name']

LanmanWorkstation

If you have a set of scripts that assume radically different default values and you don’t want to
supply those values, you can disable the use of default values:

PS> $PSDefaultParameterValues.Add('Disabled', $true)

or

PS> $PSDefaultParameterValues['Disabled']=$true

Note

Default parameters are either all enabled or all disabled. You can’t disable some parameters and
not others.

Default parameters are re-enabled by setting the Disabled entry to $false:

PS> $PSDefaultParameterValues['Disabled']=$false

PS> $PSDefaultParameterValues

Name Value

---- -----

Get-Process:Name PowerShell

Get-Service:Name LanmanWorkstation

Disabled False

If you’re sure you don’t want to disable your default parameters again, you can remove the entry
(which also enables your defaults):

PS> $PSDefaultParameterValues.Remove('Disabled')

You can remove all default values by using

PS> $PSDefaultParameterValues.Clear()

So far, we’ve looked at single default values, but we stated earlier that you can use a scriptblock
to define the default value depending on the conditions. We’ll finish our look at default
parameters by discovering how to use scriptblocks.

7.4.3. Using scriptblocks to determine default value

If you want your default value to change depending on conditions, then you have to supply a
scriptblock to set the value:

PS> $PSDefaultParameterValues=@{

'Format-Table:AutoSize'=

{if ($host.Name –eq 'ConsoleHost'){$true}}}

(267)

The result of this default parameter is that if you use Format-Table in the PowerShell console, the
-Autosize parameter is automatically enabled. This isn’t the case for other hosts such as the ISE.

Some parameters take a scriptblock as their value. If you need to set a default value for this type
of parameter, the scriptblock supplying the default value has to be inside an extra set of braces {}
so that the result is treated as a scriptblock:

PS> $PSDefaultParameterValues.Add(

'Invoke-Command:ScriptBlock',

{{Get-EventLog -Log Application}})

PS> $PSDefaultParameterValues

Name Value

---- -----

Format-Table:AutoSize if ($host.Name –eq

 'ConsoleHost'){$true}

Invoke-Command:ScriptBlock {Get-EventLog -Log

 Application}

This completes our discussion of parameterization of scripts and functions. You now have all the
necessary tools to define optimal interfaces or signatures for your scripts and functions. But
knowing how to define the signature for a script is only half the battle—at least if you want
someone other than yourself to use these scripts. No matter how good the interface is, production
scripting still requires documentation for the scripts you’re producing. In the next section, we’ll
explain how to accomplish this.

(268)

7.5. Documenting functions and scripts

In this section, we’ll look at mechanisms you can use to provide documentation for your scripts.
The following three features are available:

Automatic help information generated from the function or script definition
A special way of processing comments to extract help information from them
A mechanism for associating external help files with a function or script

The first of these mechanisms is the automatic generation of help text from a function or script
definition. When you define a function, the PowerShell help system can generate some help
information for that function, as shown in figure 7.7.

Figure 7.7. Automatically generated help information

As you can see, in figure 7.7, the help subsystem tries to do as much work for you as it can
automatically. In the next section, we’ll look at the fields that can be automatically generated.

7.5.1. Automatically generated help fields

A certain number of the help fields are generated automatically. These elements are described in
table 7.4.

Table 7.4. Automatically generated help fields

Help element Description

(269)

Name
The Name section of the help topic for a function is taken from
the name of the function. For a script, it’s taken from the name
of the script file.

Syntax

The Syntax section of the help topic is generated from the
function or script syntax (the parameter definitions). If a
parameter has a type attribute associated with it, that type will
be displayed as part of the syntax. If you don’t specify a
parameter type, Object is inserted as the default value.

Aliases The Aliases section is taken from the information in the alias
store.

Parameter list

The Parameter list in the help topic is generated from the
function or script syntax and from the descriptions that you add
to the parameters. The function parameters appear in the
Parameters section in the same order in which they appear in the
function or script definition. The spelling and capitalization of
parameter names are also taken from the definition.

Common parameters The common parameters are added to the syntax and parameter
list of the help topic, even if they have no effect.

Parameter attribute table

Get-Help generates the table of parameter attributes that appears
when you use the -Full or -Parameter parameter of Get-Help.
The value of the Required, Position, and Default properties is
taken from the function or script definition.

Remarks The Remarks section of the help topic is automatically
generated from the function or script name.

The automatically generated help is minimal. You’ll deliver a much better result by adding your
own help content.

7.5.2. Creating manual help content

Although it’s handy to know the command’s syntax, knowing what the command does is more
useful. This is where the manual documentation mechanisms come in. PowerShell provides two
ways for documenting scripts and functions: inline with special documentation comments or
externally in a help file.

Documentation comments (or doc comments) are a convention when writing scripts such that
these comments can be automatically used to fill in help information. These comments must be
placed in particular locations in scripts for them to be processed as doc comments and can
contain a number of markup tags for structuring the help information. We’ll cover these details
in the next section. The final mechanism for providing function/script help uses external files.

External help files are XML files written in the Microsoft Assistance Markup Language
(MAML) format.

Bruce Note

MAML is a terrible, terrible thing. The PowerShell team apologizes for foisting it on you, but it
was foisted on us. In the future, we’re hoping to go with something much simpler like

(270)

Markdown. A PowerShell module—platyPS—generates PowerShell external help files from
Markdown. The module is available from the PowerShell gallery.

Since PowerShell v2, the help file facility can be used with functions and scripts as well as
cmdlets. So why have these external files? Because they allow the help content to be translated
(localized) into many languages, whereas doc comments only allow help to be written in a single
language. Doc comments also require the script file itself to be changed just to fix a typo in the
help documentation.

Note

Most help files are not shipped with PowerShell since version 3.0. You need to download the
help files using Update-Help. See the about_Updatable_Help (which does ship with PowerShell).
Microsoft will update the help files periodically. The updatable help system enables you to
refresh your help files.

As you can see, the help mechanism scales from simple but incomplete up to a full production-
level, localizable help system. We won’t say anything else about creating external help files but
will concentrate on the doc comment mechanism.

7.5.3. Comment-based help

Comment-based help is the easiest way to add help for functions and scripts. It works by using
special help comment tags in comments associated with a function definition or script. These
comments are parsed by the PowerShell interpreter and used to create the help topics. Once this
information is available, the Get-Help cmdlet returns help objects just like those you get from the
help files associated with cmdlets. When you specify the correct tags, doc comments can specify
all the help views provided by Get-Help, such as Detailed, Full, Example, and Online, to display
function and script help.

Comment-based help is written as a series of comments. These can be single-line comments,
where there is a # before each line, but most people use the block comment feature, where the
comments are enclosed in <# and #> sequences. All the lines in a doc comment topic must be
contiguous. If a doc comment follows a comment that’s not part of the help topic, there must be
at least one blank line between the last non-help comment line and the beginning of the
comment-based help.

For functions, the doc comments can be placed in one of three places:

At the beginning of the function body, after the open brace.
At the end of the function body. There must be a blank line between the function’s closing
brace and the last line of the comment.
Before the function keyword. In this case, if the comment is to be processed as a doc
comment, there can’t be more than one blank line between the last line of the comment and
the function keyword.

(271)

For scripts, the doc comments must be placed as follows:

At the beginning of the script file, in which case there can be only non-doc comments or
blank lines before the first doc comment
At the end of the script file

There’s one other little issue to consider: If the doc comments for a script are at the beginning of
a script and the first thing a script contains is a function definition, then should the doc comment
apply to the script or the function? This ambiguity is resolved by requiring that there be at least
two blank lines between the end of the doc comment for the script and the beginning of the
function.

Let’s look at an example; you’ll use block comments and the .SYNOPSIS and .DESCRIPTION tags to
add a definition for the abc function.

Note

PowerShell added block comments to make it easier to write doc comments. The sequences <#
and #> were chosen in part because they look somewhat like XML, which is used for external
help files.

Here’s what the new function definition looks like:

function abc ([int] $x, $y)

{

<#

.SYNOPSIS

This is my abc function

.DESCRIPTION

This function is used to demonstrate writing doc

comments for a function.

#>

}

When you run Get-Help, you see

Get-Help abc

NAME

 abc

SYNOPSIS

 This is my abc function

SYNTAX

 abc [[-x] <Int32>] [[-y] <Object>] [<CommonParameters>]

DESCRIPTION

 This function is used to demonstrate writing doc

 comments for a function.

RELATED LINKS

REMARKS

 To see the examples, type: "get-help abc -examples".

 For more information, type: "get-help abc -detailed".

 For technical information, type: "get-help abc -full".

The basic pattern should be obvious by now. Each help section begins with a special tag of the

(272)

form .TAGNAME, followed by the content for that section. The tag must appear on a line by itself to
be recognized as a tag but can be preceded or followed by whitespace. The order in which tags
appear doesn’t matter. Tags are not case-sensitive but by convention they’re always written in
uppercase. (This makes the structure of the comment easier to follow.)

For a comment block to be processed as a doc comment, it must contain at least one section tag.
Most tags can be specified only once per function definition, but there are exceptions. For
instance, .EXAMPLE can appear many times in the same comment block. The help content for each
tag begins on the line after the tag and can span multiple lines.

7.5.4. Tags used in documentation comments

You can use a fairly large number of tags when creating doc comments. These tags are shown in
table 7.5. They’re listed in the order in which they typically appear in output of Get-Help.

Table 7.5. Tags that can be used in doc comments

Tag name Tag content

.SYNOPSIS A brief description of the function or script. This tag can be
used only once in each help topic.

.DESCRIPTION A detailed description of the function or script.

.PARAMETER The description of a parameter.

.EXAMPLE An example showing how to use a command.

.INPUTS The type of object that can be piped into a command.

.OUTPUTS The types of objects the command returns.

.NOTES Additional information about the function or script.

.LINK The name of a related topic.

.COMPONENT The technology or feature that the command is associated
with.

.ROLE The user role for this command.

.FUNCTIONALITY The intended use of the function.

.FORWARDHELPTARGETNAME Redirects to the help topic for the specified command.

.FORWARDHELPCATEGORY Specifies the help category of the item in the
.FORWARDHELPTARGETNAME tag.

.REMOTEHELPRUNSPACE

Specifies the name of a variable containing the PSSession
to use when looking up help for this function. This keyword
is used by the Export-PSSession cmdlet to find the help
topics for the exported commands.

.EXTERNALHELP Specifies the path to an external help file for the command.

Some of these tags require a bit more explanation. This is addressed in the following sections.

.PARAMETER <Parameter-Name> help tag

This is where you add the description for a parameter. The parameter must be named in the
argument to the tag. You can include a .PARAMETER tag for each parameter in the function or script,

(273)

and the .PARAMETER tags can appear in any order in the comment block. The order in which things
are presented is controlled by the parameter definition order, not the help tag order. If you want
to change the display order, you have to change the order in which the parameters are defined.

Alternatively, you can specify a parameter description by placing a comment before the
parameter definition on the body of the function or script. If you use both a syntax comment and
a .PARAMETER tag, the description associated with the .PARAMETER tag is used, and the syntax
comment is ignored.

.LINK help tag

The .LINK tag lets you specify the names of one or more related topics. Repeat this tag for each
related topic. The resulting content appears in the Related Links section of the help topic. The
.LINK tag argument can also include a URI to an online version of the same help topic. The online
version opens when you use the -Online parameter of Get-Help. The URI must begin with http or
https.

.COMPONENT help tag

The .COMPONENT tag describes the technology or feature area the function or script is associated
with. For example, the component for Get-Mailbox would be Exchange.

.FORWARDHELPTARGETNAME <Command-Name> help tag

.FORWARDHELPTARGETNAME redirects to the help topic for the specified command. You can redirect
users to any help topic, including help topics for a function, script, cmdlet, or provider.

.FORWARDHELPCATEGORY <Category> help tag

The .FORWARDHELPCATEGORY tag specifies the help category of the item in ForwardHelpTargetName.
Valid values are Alias, Cmdlet, HelpFile, Function, Provider, General, FAQ, Glossary, ScriptCommand,
ExternalScript, Filter, and All. You should use this tag to avoid conflicts when there are
commands with the same name.

.REMOTEHELPRUNSPACE <PSSession-variable> help tag

The .REMOTEHELPRUNSPACE tag won’t make sense to you until we cover remoting in chapter 11. It’s
used to specify a session that contains the help topic. The argument to the tag is the name of a
variable that contains the PSSession to use. This tag is used by the Export-PSSession cmdlet to find
the help topics for the exported commands.

.EXTERNALHELP <XML Help File Path>

The .EXTERNALHELP tag specifies the path to an XML-based help file for the script or function. In
versions of Windows from Vista on, if the specified path to the XML file contains UI-culture-
specific subdirectories, Get-Help searches the subdirectories recursively for an XML file with the
name of the script or function in accordance with the language fallback standards for Windows,
just as it does for all other XML-based help topics.

(274)

At long last, we’re finished with our journey through the advanced function and script features.
You now know how to create, declare, constrain, and document your functions. At this point,
you’re well on your way to becoming a scripting expert.

(275)

7.6. Summary

PowerShell programming can be done with either functions or scripts.
Scripts are pieces of PowerShell script text stored in a file with a .ps1 extension.
Scripts introduced a new kind of variable scope: the script command and the $script:
scope modifier are used to reference variables at the script scope.
PowerShell has a sophisticated attribution system for annotating parameters.
Using attributes, you can control a wide variety of argument-binding behaviors.
You can specify alternate names for parameters using parameter aliases and additional
constraints on the values that can be bound using validation attributes.
$PSDefaultParameterValue can be used to set default values for advanced functions and
cmdlets.
There are comprehensive mechanisms for documenting your scripts and functions.
You get simple documentation for free just by declaring a function.
You can add inline documentation with your code using doc comments and provide
external help files containing the documentation.

Even though we discussed a lot of material in this chapter, we’ve covered only part of the story
of programming with PowerShell. In chapter 8, you’ll learn about modules, which are the best
way to distribute your functions, and in chapter 10, we’ll dive into the plumbing underlying all of
this when we cover scriptblocks, which are the objects underlying the infrastructure for scripts
and functions.

(276)

Chapter 8. Using and authoring modules
This chapter covers

The role of the module system
Module basics
Working with modules
Writing script modules
Binary modules

The value of a telecommunications network is proportional to the square of the number of
connected users of the system.

Robert Metcalfe (Metcalfe’s Law)

A popular meme in the software industry is that the best programmers are lazy—rather than
writing new code to solve a problem, they try to reuse existing code. This leverages the work that
others have done to debug and document that code. Unfortunately, this kind of reuse happens
less often than it should.

Note

From user studies, the PowerShell team has verified that prior to the introduction of PowerShell,
the most common reuse pattern in the IT professional community is copy and paste. A user gets a
script from somewhere, copies it, and then modifies it, repeating this process for each new
application. Although this works to a degree and has a low barrier to entry, it doesn’t scale well.
This approach is slowly changing to thinking about code reuse, but adoption is slow.

The typical excuses for not “indulging their lazy sides” are overconfidence (“I can do a better
job,” also known as not invented here syndrome), underestimating (“It will only take me 10
minutes to do that”), and ignorance (“I didn’t know somebody had already implemented that”).
There’s no longer an excuse for this last point. With modern search engines, it’s easy to find
things. The introduction of the PowerShell gallery, which we’ll cover later, makes finding
quality modules much simpler. There are also over 10,000 projects using PowerShell on GitHub
(https://github.com/) including open source code from Microsoft. There’s an official PowerShell
team repository at https://github.com/powershell.

But finding the code is only part of the solution because the code has to be in a form that can be
reused. The most common way to facilitate code reuse is to package the code in a module. The
PowerShell help files define a module:

A module is a package that contains Windows PowerShell commands, such as cmdlets,
providers, functions, workflows, variables, and aliases.

Think of a module as a library of functionality that’s loaded when you need it. In this chapter,
we’re going to examine how PowerShell facilitates code reuse with its module system. You’ll

(277)

https://github.com/
https://github.com/powershell

learn how to find existing modules on your system and how to install new ones on the system.
Then we’ll look at how you can create modules and package your code so that others can use it.

(278)

8.1. The role of a module system

In the previous chapter, you organized your code into functions and scripts and used dot-
sourcing to load libraries of reusable script code. This is the traditional shell-language approach
to code reuse.

PowerShell modules provide a more manageable, production-oriented way to package code.
PowerShell modules build on features you’ve already learned; for example, a PowerShell script
module is a PowerShell script with a special extension (.psm1) loaded in a special way. We’ll
cover all of these details in later sections, but first you need to understand the problem domains
that the PowerShell module system was designed to address.

8.1.1. Module roles in PowerShell

Modules serve three roles in PowerShell. These roles are listed in table 8.1.

Table 8.1. The roles modules play in PowerShell

Role Description

Configuring the environment
Packaging a set of functions to configure the environment is
what you usually use dot-sourcing for, but modules allow you to
do this in a more controlled way.

Reusing code Facilitating the creation of reusable libraries is the traditional
role of modules in a programming language.

Composing solutions

Modules can be used to create a solution—a domain-specific
application. PowerShell modules have the unique characteristic
of being nested. In most programming languages, when one
module loads another, all the loaded modules are globally
visible. In PowerShell, modules nest. If the user loads module A
and module A loads module B, then all the user sees is module
A (at least by default). Sometimes all you’ll do in a module is
import some other modules and republish a subset of those
modules’ members.

The concepts involved in the first role—configuration—were covered when we talked about dot-
sourcing files. The second role—facilitating reuse—is, as we said, the traditional role for
modules. The third role is unique to PowerShell. Let’s look at this third role in more detail.

8.1.2. Module mashups: composing an application

One of the unique features that PowerShell modules offer is the idea of a composite management
application. This is conceptually similar to the idea of a web mashup, which takes an existing
service and tweaks it, or adds layers on top of it, to achieve some other, more specific purpose.
The notion of management mashups is important as we move into the era of software plus
services (or clients plus clouds, if you prefer). Low operating costs make hosted services
attractive. The problem is how you manage all these services, in particular when you need to

(279)

delegate administration responsibility to a slice of the organization.

For example, you might have each department manage its own user resources: mailboxes,
customer lists, web portals, and so forth. To do this, you need to slice the management interfaces
and republish them as a single coherent management experience. Sounds like magic, doesn’t it?

Well, much of it still is, but PowerShell modules can help because they allow you to merge the
interfaces of several modules and republish only those parts that need to be exposed. The
individual modules being composed are hidden from the user so components can be swapped out
as needed without necessarily impacting the end user. This magic is accomplished through
module manifests and nested modules. We’ll cover nested modules in this chapter, but manifests
are a large enough topic that they get their own chapter (chapter 9).

PowerShell v5 takes controlling the functionality you make available to users to a new level with
the introduction of Just Enough Administration (JEA). This framework provides, in effect, role-
based access to PowerShell functionality at the cmdlet and module level. JEA restricts
administrators’ access to only those commands they need to perform their jobs. You can use JEA
to create controlled access portals, or even self-service portals, in your enterprise.

Now that you know why you want modules, let’s look at how you can use them in PowerShell.

(280)

8.2. Module basics

In this section, we’ll cover the basic information needed to use PowerShell modules. The first
thing to know is that the module features in PowerShell are exposed through cmdlets, not
language keywords. For example, you can get a list of the module commands using the Get-
Command command:

PS> Get-Command -Noun Module* | Format-Wide -Column 3

Find-Module Install-Module Publish-Module

Save-Module Uninstall-Module Update-Module

Update-ModuleManifest Export-ModuleMember Get-Module

Import-Module New-Module New-ModuleManifest

Remove-Module Test-ModuleManifest

Note that in the command name pattern, you use wildcards because there are a couple of
different types of module cmdlets. These cmdlets and their descriptions are shown in table 8.2.

Table 8.2. The cmdlets used for working with modules

Module cmdlet Description

Get-Module Gets a list of the modules currently loaded in memory

Import-Module Loads a module into memory and imports the public commands
from that module

Remove-Module Removes a module from memory and removes the imported
members

Export-ModuleMember Specifies the members of a module to export to the user of the
module

New-ModuleManifest Creates a new metadata file for a module directory

Test-ModuleManifest Runs a series of tests on a module manifest, validating its
contents

Update-ModuleManifest Updates a module manifest file, either modifying content or
adding new content

New-Module Creates a new dynamic module

Each cmdlet has its own help file, as you’d expect. There’s also an about_modules help topic that
describes modules and how they work in PowerShell. You can use this built-in help as a quick
reference when working in a PowerShell session.

8.2.1. Module terminology

Before we get too far into modules, there are a number of concepts and definitions we should
cover. Along with the names of the cmdlets, table 8.2 introduced two new terms—module
member and module manifest—and reintroduced a couple of familiar terms—import and export
—used in the context of modules. These terms and their definitions are shown in table 8.3.

Table 8.3. A glossary of module terminology

(281)

Term Description

Module member
A module member is any function, variable, or alias defined
inside a script. Modules can control which members are visible
outside the module by using the Export-ModuleMember cmdlet.

Module manifest
A module manifest is a PowerShell data file that contains
information about the module and controls how the module gets
loaded.

Module type

The type of module. Just as PowerShell commands can be
implemented by different mechanisms like functions and
cmdlets, so modules also have a variety of implementation
types. PowerShell has four module types: script, binary, cim,
and manifest.

Nested module
One module can load another, either procedurally by calling
Import-Module or by adding the desired module to the
NestedModules element in the module manifest for that module.

Root module
The root module is the main module file loaded when a module
is imported. It’s called the root module because it may have
associated nested modules.

Imported member An imported module member is a function, variable, or alias
imported from another module.

Exported member

An exported member is a module member that has been marked
for export. It’s marked to be visible to the caller when the
module is imported. If module foo imports module bar as a
nested member, the exported members of bar become the
imported members in foo.

We’ll talk more about these concepts in the rest of this chapter. Now we’ll introduce another core
module concept.

8.2.2. Modules are single-instance objects

An important characteristic of modules is that there’s only ever one instance of the module in
memory. If a second request is made to load the module, the fact that the module is already
loaded will be caught and the module won’t be reprocessed (at least as long as the module
versions match; module versions are covered in chapter 9).

Note

You can ensure a module is reloaded by using the –Force parameter on Import-Module. It’s very
useful when testing module changes and fixing bugs. Using the force makes you a PowerShell
Jedi!

There are a couple of reasons for this behavior. Modules can depend on other modules, so an
application may end up referencing a module multiple times, and you don’t want to be reloading
all the time because it slows things down. The other reason is that you want to allow for private
static resources—bits of data that are reused by the functions exported from a module and aren’t

(282)

discarded when those functions are, as is normally the case.

Say we have a module that establishes a connection to a remote computer when the module is
loaded. This connection will be used by all the functions exported from that module. If the
functions had to reestablish the connection every time they were called, the process would be
extremely inefficient. When you store the connection in the module, it will persist across the
function calls.

(283)

8.3. Working with modules

Enough with the backstory; let’s start working with PowerShell modules. You’ll begin by seeing
which modules are loaded in your session and which are available for loading, then learning how
to load additional modules, and understanding how to unload them. (We’ll leave creating a
module until section 8.4.) Let’s get started.

8.3.1. Finding modules on the system

The Get-Module cmdlet is used to find modules—either the modules that are currently loaded or
the modules that are available to load. The signature for this cmdlet is shown in figure 8.1.

Figure 8.1. The syntax for the Get-Module cmdlet. This cmdlet is used to find modules, either in your session or
available to be loaded.

When run with no options, Get-Module lists all the top-level modules loaded in the current session.
If -All is specified, both explicitly loaded and nested modules are shown. (We’ll explain the
difference between top-level and nested in a minute.) If -ListAvailable is specified, Get-Module
lists all the modules available to be loaded based on the current $ENV:PSModulePath setting. If both
–ListAvailable and -All are specified, the contents of the module directories are shown, including
subdirectories.

Let’s try this and see how it works; running Get-Module with no parameters on a new PowerShell
v5 session shows three modules installed by default:

Microsoft.PowerShell.Management

Microsoft.PowerShell.Utility

PSReadline

Note

The core PowerShell modules were migrated from binary snap-ins to modules in PowerShell v3.
Snap-ins have been deprecated since PowerShell v2, and we strongly advise against packaging
your functionality as a snap-in.

(284)

Let’s see what’s available for loading on the system. You can use the -ListAvailable parameter
on Get-Module to find the system modules that are available. (In this example, the output is
filtered using the Where-Object cmdlet so you don’t pick up any non-system modules.)

PS> Get-Module -ListAvailable | where { $_.path -match "System32" }

And you see 74 modules listed on a new Windows 10 machine (PowerShell v5.1). There are
other system modules that we’ll come to in a minute.

Note

What you see listed will vary depending on which operating system you’re running and which
features are installed on the computer. On Windows servers, depending on what server roles are
installed (such as Active Directory), you’ll see additional modules in this output.

By default, the output shows only the module type, version, name, and exported commands.

The set of properties for a module is much larger than what you saw in the default. Let’s look at
more properties for the PSWorkflow module:

PS> Get-Module -ListAvailable PSWorkflow | Format-List

Name : PSWorkflow

Path : C:\WINDOWS\system32\WindowsPowerShell\v1.0\

 Modules\PSWorkflow\PSWorkflow.psd1

Description :

ModuleType : Manifest

Version : 2.0.0.0

NestedModules : {Microsoft.Powershell.Workflow.ServiceCore}

ExportedFunctions : New-PSWorkflowSession

ExportedCmdlets : New-PSWorkflowExecutionOption

ExportedVariables :

ExportedAliases : nwsn

In this output, you see the types of module members that can be exported: functions, cmdlets,
variables, and aliases. You also see the module type (Manifest), the module version, and a
description (if set). An important property to note is the Path property. This is the path to where
the module file lives on disk.

In the next section, you’ll see how PowerShell goes about finding modules on the system.

The $ENV:PSModulePath variable

As you saw in the output from Get-Module, loadable modules are identified by their path the same
as executables. They’re loaded in much the same way as executables: A list of directories is
searched until a matching module is found. There are a couple of differences, though. Instead of
using $ENV:PATH, modules are loaded using a new environment variable: $ENV:PSModulePath. And
where the execution path is searched for files, the module path is searched for subdirectories
containing module files. This arrangement allows a module to include more than one file. By
default, the module path is:

C:\Users\<user name>\Documents\WindowsPowerShell\Modules

(285)

C:\Program Files\WindowsPowerShell\Modules

C:\WINDOWS\system32\WindowsPowerShell\v1.0\Modules\

The folder C:\Program Files\WindowsPowerShell\Modules was added to the default module path in
PowerShell v4. It was originally intended as the location for modules containing Desired State
Configuration (DSC) resources (see chapter 18). Because DSC runs as System, there was no user
account to put them in and they had to go somewhere. At the same time, it was clear from the
way people were installing things that there should have been a machine-wide place to install
modules. The addition of C:\Program Files\WindowsPowerShell\Modules to the default module path
solves both of these issues. Modules downloaded from the PowerShell gallery are installed in
this location (see section 8.4.4).

In PowerShell v5 a number of other modules are also installed in this location, including
PowerShellGet (which manages PowerShell modules) and PackageManagement (which manages
software installation packages).

In the next section, you’ll explore the search algorithm in detail.

The module search algorithm

The flow chart in figure 8.2 explains the process for locating a module.

Figure 8.2. Flowchart of search algorithm for discovering a module

(286)

As you can see from the number of steps in the algorithm, the search mechanism used in loading
a module is sophisticated and a bit complicated. Later on, we’ll look at ways to get more
information about what’s being loaded.

Now that you know which modules are available, you need to be able to load them.

8.3.2. Loading a module

Beginning with PowerShell v3, modules that are found on the module path will be autoloaded.
Modules in folders not on the module path can be loaded with Import-Module.

(287)

Module autoloading

PowerShell v3 introduced the capability of autoloading modules. Any of the following actions
will cause the module to be loaded into your session:

Running a command using a cmdlet from the module
Using Get-Command to get information on a cmdlet in the module
Using Get-Help to read the help information for a cmdlet in the module

As an example, open a new PowerShell session, then run these commands:

PS> Get-Module

PS> Get-CimInstance -ClassName Win32_OperatingSystem

PS> Get-Command Get-WinEvent

PS> Get-Help Start-Transcript

PS> Get-Module

You’ll see the initial modules loaded by default, as explained in section 8.3.1. Running the
additional commands will cause autoloading of these modules, respectively:

CimCmdlets

Microsoft.PowerShell.Diagnostics

Microsoft.PowerShell.Host

You need to remember a few things about module autoloading:

Using Get-Command with a wildcard (*) won’t load modules—PowerShell assumes you’re
attempting a discovery action.
Only modules on the module path defined by $env:PSModulePath can be autoloaded.
Commands that use PowerShell providers might not load the module.

Module autoloading is useful when you’re working interactively. It’s frustrating when you forget
to load a module and try to use a cmdlet on earlier versions of PowerShell—yes, that is the voice
of experience. The fact that your modules now work for you makes life much easier.

Module autoloading issues

Please note that life is not all Skittles and beer with autoloading, mostly because you don’t know
what you’re getting. There’s also a significant performance cost to maintaining the command
cache. It’s great for interactive use but isn’t recommended for production scripting. In fact, the
new recommendation would be to use the using -module keyword. Because of the way classes
work, the dependent module must be imported with using –module—otherwise, you won’t get
type checking.

Some users prefer to maintain control of module loading. You can control autoloading by using
the $PSModuleAutoLoadingPreference preference variable. Table 8.4 lists the values this variable can
take.

Table 8.4. Possible values of the $PSModuleAutoLoadingPreference variable

Value Meaning

(288)

All Default. Module autoloading is enabled as described previously.

ModuleQualified

Module is loaded only when the module qualified name of the
command is used. Get-Command Get-CimInstance won’t
trigger autoloading but Get-Command CimCmdlets\Get-
CimInstance will.

None Module autoloading is disabled.

By default, the $PSModuleAutoLoadingPreference preference variable is undefined, which means
module autoloading is on in all PowerShell sessions.

If you need to import a module manually, you must use the Import-Module cmdlet.

Using Import-Module

Modules are automatically loaded by default, but there are occasions when you may want to
control when they are loaded. If you’re developing a module, for example, the module may be
stored in a folder off the module path, and you’ll need to manually load new versions of the
module as you make changes.

The Import-Module cmdlet loads modules into your current session. The syntax for this cmdlet is
shown in figure 8.3. As you can see, this cmdlet has many parameters, allowing it to address a
wide variety of scenarios. We’ll look at the basic features of this cmdlet in this section and cover
some obscure features in later sections of this chapter.

Figure 8.3. The syntax for the Import-Module cmdlet. This cmdlet is used to import modules into the current
module context or the global context if -Global is specified.

This cmdlet has numerous parameters. We’ll cover many of them in the next sections. Some of
the more advanced parameters will be covered in chapters 9 and 10.

Loading a module by name

The most common way to load a module is to specify its name. You saw how to find modules

(289)

using the Get-Module cmdlet in the previous section. One of the modules you discovered was
PSDiagnostics. Let’s use Import-Module to load this module now:

PS> Import-Module psdiagnostics

By default, nothing is output when you load a module. This is as expected and desirable because
when you’re loading library modules in scripts or in your profile, you don’t want chattiness.
Unless there’s an error, loading a module should be silent.

When you do want to see what was loaded, use Get-Module. The output is substantially
abbreviated when displayed as a table, so use Format-List to see the details of the loaded module
as you did when you were exploring the on-disk modules:

PS> Get-Module PSDiagnostics | Format-List

Name : PSDiagnostics

Path : C:\WINDOWS\system32\WindowsPowerShell\v1.0\

 Modules\PSDiagnostics\PSDiagnostics.psm1

Description :

ModuleType : Script

Version : 1.0.0.0

NestedModules : {}

ExportedFunctions : {Disable-PSTrace, Disable-PSWSManCombinedTrace,

 Disable-WSManTrace, Enable-PSTrace...}

ExportedCmdlets :

ExportedVariables :

ExportedAliases :

Let’s examine this output for a minute. The most obvious thing to notice is that the
ExportedFunctions member in the output is no longer empty. When you load a module, you can
finally see all the available exported members. The other thing to notice is that the module type
has been changed from Manifest to Script. Again, the details of the implementation of the module
aren’t known until after the module has been loaded. We’ll cover module manifests and the
details on module types in chapter 10.

To see what commands were imported, you can use Get-Command with the -Module option:

PS> Get-Command -Module PSDiagnostics

This list matches the list of exports from the module, as you can see with Get-Module:

PS> (Get-Module psdiag*).exportedfunctions

Let’s remove this module using the Remove-Module cmdlet and look at other ways you can specify
which module to load:

PS> Remove-Module PSDiagnostics

Again, the command completes with no output.

In addition to loading a module by name, you can load it by path, again paralleling the way
executables work. Let’s do this with the PSDiagnostics module. You saw the path in the output of
the earlier example. We’ll use this path to load the module. Because this is a system module, it’s
loaded from the PowerShell install directory. This means that you can use the built-in $PSHOME
variable in the path:

PS> Import-Module $PSHOME/modules/PSDiagnostics/PSDiagnostics

Call Get-Module to verify that it has been loaded.

(290)

By loading a module using a full path, you know exactly which file will be processed. This can
be useful, for example, when you’re developing modules, as you’ll see in section 8.4. Let’s
remove this module again as we move on to the next example:

PS> Remove-Module PSDiagnostics

Tracing module loads with -Verbose

So far, you’ve allowed the modules to be loaded without caring about the details of what’s
happening. This is fine as long as everything works, but remember how complex the module
search algorithm was. When you get into more complex scenarios where you’re loading multiple
modules, it’s useful to see what’s happening. You can do this by specifying the -Verbose flag:

PS> Import-Module PSDiagnostics -Verbose

VERBOSE: Loading module from path

'C:\WINDOWS\system32\WindowsPowerShell\v1.0\Modules\

PSDiagnostics\PSDiagnostics.psd1'.

VERBOSE: Loading module from path

'C:\WINDOWS\system32\WindowsPowerShell\v1.0\Modules\

PSDiagnostics\PSDiagnostics.psm1'.

VERBOSE: Importing function 'Disable-PSTrace'.

VERBOSE: Importing function 'Disable-PSWSManCombinedTrace'.

VERBOSE: Importing function 'Disable-WSManTrace'.

VERBOSE: Importing function 'Enable-PSTrace'.

VERBOSE: Importing function 'Enable-PSWSManCombinedTrace'.

VERBOSE: Importing function 'Enable-WSManTrace'.

VERBOSE: Importing function 'Get-LogProperties'.

VERBOSE: Importing function 'Set-LogProperties'.

VERBOSE: Importing function 'Start-Trace'.

VERBOSE: Importing function 'Stop-Trace'.

All the output that begins with VERBOSE: is generated when the -Verbose flag is specified. It shows
two things: the path to the module file and a list of all members (in this case, functions) being
imported into your session. This is pretty straightforward with a simple scenario, but you’ll see
that it can become much more complicated when we get to nested modules in section 8.4.6.

Imports and exports

Thus far, you’ve defaulted to loading everything that a module exports into your session. You
don’t have to do that—and there are cases where you don’t want to do it. Importing too many
commands clutters up your session and makes it hard to find what you’re looking for. To avoid
this, you can control what gets imported by using the -Function, -Cmdlet, -Alias, and -Variable
parameters on Import-Module. As you’d expect, each of these parameters controls a particular type
of import from the module. You’ve seen all the command types previously as well as PowerShell
variables. The PSDiagnostics module only exports functions, so you can use that feature to restrict
what gets loaded. Say you only wanted to load Enable-PSTrace. Here’s what this would look like:

PS> Import-Module PSDiagnostics -Verbose `

 -Function Enable-PSTrace

VERBOSE: Loading module from path

'C:\Windows\system32\WindowsPowerShell\v1.0\Modules\

psdiagnostics\psdiagnostics.psd1'.

VERBOSE: Loading module from path

'C:\Windows\system32\WindowsPowerShell\v1.0\Modules\

psdiagnostics\PSDiagnostics.psm1'.

VERBOSE: Importing function 'Enable-PSTrace'.

In the verbose output, you see that only Enable-PSTrace was imported into your session. Using

(291)

Get-Command -Module PSDiagnostics confirms that only the required function has been loaded.

Now you know how to avoid creating clutter in your session. But what if it’s too late and you
already have too much stuff loaded? You’ll learn how to fix that next.

8.3.3. Removing a loaded module

Because your PowerShell session can be long running, there may be times when you want to
remove a module. As you saw earlier, you do this with the Remove-Module cmdlet.

Note

Typically, the only people who remove modules are those who are developing the module in
question or those who are working in an application environment that’s encapsulating various
stages in the process as modules. A typical user rarely needs to remove a module—it’s often
quicker to start a new PowerShell session. The PowerShell team almost cut this feature because
it turns out to be quite hard to do in a sensible way.

The syntax for Remove-Module is shown in figure 8.4.

Figure 8.4. The syntax for Remove-Module. Note that this command doesn’t take wildcards.

When a module is removed, all the modules it loaded as nested modules are also removed from
the global module table. This happens even if the module was explicitly loaded at the global
level.

Note

Any .NET types that are loaded by the module aren’t unloaded by calling Remove-Module because
.NET doesn’t support the removal of types. The types remain in memory until the PowerShell
session is closed.

To illustrate, let’s look at how the module tables are organized in the environment. This
organization is shown in figure 8.5.

Figure 8.5. How the module tables are organized. The global module table holds a reference to all loaded
modules. Each module in turn has a reference to the modules it has loaded.

(292)

First, let’s talk about the global module table. This master table has references to all the modules
that have been loaded either explicitly or implicitly by another module. Anytime a module is
loaded, this table is updated. An entry is also made in the environment of the caller. In figure 8.5,
Module1 and Module3 are loaded from the global module environment, so there are references
from the top-level module table. For example, Module1 loads Module2, causing a reference to be
added to the global module table and the private module table for Module1. Module2 loads
Module3 as a nested module. Because Module1 has already been loaded from the global
environment, no new entry is added to the global module table, but a private reference is added
to the module table for Module2.

Now you’ll remove Module3 from the global environment. The updated arrangement of modules
is shown in figure 8.6.

Figure 8.6. How the module tables are organized after Module3 is removed at the top level. The global module
table no longer has a reference to Module3, but the local module table for Module2 still has a link to that object.

Next, you’ll update Module3 and reload it at the top level. The final arrangement of modules is
shown in figure 8.7.

(293)

Figure 8.7. How the module tables are organized when the revised Module3 is loaded at the top level. The global
module table now has a reference to the new Module3, but the local module table for Module2 still has a link to
the original Module3.

In the final arrangement of modules in figure 8.7, two versions of Module3 are loaded into the
same session. Although this is extremely complicated, it permits multiple versions of a module to
be loaded at the same time in the same session, allowing different modules that depend on
different versions of a module to work at the same time. This is a pretty pathological scenario,
but the real world isn’t always tidy. Eventually you do have to deal with things you’d rather
ignore, so it’s good to know how.

How exported elements are removed

With an understanding of how modules are removed, you also need to know how the imported
members are removed. There are two different flavors of member removal behavior depending
on the type of member you’re removing. Functions, aliases, and variables have one behavior.
Cmdlets imported from binary modules have a slightly different behavior. This is an artifact of
the way the members are implemented. Functions, aliases, and variables are data structures that
are dynamically allocated and so can be replaced. Cmdlets are backed by .NET classes, which
can’t be unloaded from a session because .NET doesn’t allow the assemblies containing these
classes to be unloaded. Because of this, the implementation of the cmdlet table depends on
hiding or shadowing a command when there’s a name collision when importing a name from a
module. For the other member types, the current definition of the member is replaced. Why does
this matter? It doesn’t matter at all until you try to remove a module.

When you remove a module that has imported cmdlets, causing existing cmdlets to be shadowed,
the previously shadowed cmdlets become visible again. But when you remove a module that
imports colliding functions, aliases, or variables, because the old definitions were overridden
instead of shadowed, the definitions are removed.

Okay, this has gotten a bit heavy. Let’s move on to something more creative and exciting. In
section 8.4, you’ll finally start writing your own modules.

(294)

8.4. Writing script modules

In this section you’ll start writing modules instead of only using them. For now, we’ll limit our
coverage to script modules. That’s because script modules are written in the PowerShell
language—something you’re familiar with by now. In section 8.5, we’ll expand our coverage to
include binary modules, which requires dabbling in C#.

When showing you how to write script modules, we’ll also explain in more detail how script
modules work. A script module is a file that contains PowerShell script text with a .psm1
extension instead of a .ps1 extension. A PowerShell script module is a script with a different
extension.

Note

Because a script module is a form of script, it obeys execution policy like a script. Before you
can load a script module, you’ll need to change the execution policy to be RemoteSigned as a
minimum, as described in section 7.1.1.

Is it as simple as that? Well, almost. Let’s walk through an example where you convert a script
into a module and see what changes during the process.

8.4.1. A quick review of scripts

You’re going to write a short script to work with in this conversion exercise. This script is
indented to implement a simple counter. You get the next number from the counter by calling
Get-Count and you reset the sequence using the Reset-Count command. The script is shown in this
listing.

Listing 8.1. Counter.ps1 script

$script:count = 0

$script:increment = 1

function Get-Count 1

{

 return $script:count += $increment

}

function Reset-Count 2

{

 $script:count=0

 setIncrement 1

}

function setIncrement ($x) 3

{

 $script:increment = $x

}

1 Getting a counter
2 Resetting a counter
3 Helper function

(295)

As you can see, this script defines the two functions we mentioned, Get-Count 1 and Reset-Count
2. But it also defines a number of other things that aren’t part of the specification: a helper
function, setIncrement 3, and two script-level variables, $count and $increment. These variables
hold the state of the counter. Obviously, running the script won’t be useful as the commands are
defined at the script scope and are removed when the script exits. Instead, you’ll dot-source the
script to load the script members into your environment:

PS> . .\counter.ps1

This creates the elements without showing anything (which is what you want a library to do in
most cases). Now manually verify that you got what you intended:

PS> Get-Command *-count

CommandType Name Version Source

----------- ---- ------- ------

Function Get-Count

Function Reset-Count

The functions are there so you can try them out. Start with Get-Count:

PS> Get-Count

1

PS> Get-Count

2

Each call to Get-Count returns the next number in the sequence. Now use the Reset -Count
command and call Get-Count to verify that the count has been reset:

PS> Reset-Count

PS> Get-Count

1

But what about the other private members in the script? Using Get-Command you see that the
setIncrement function is also visible:

PS> Get-Command setIncrement

CommandType Name Version Source

----------- ---- ------- ------

Function setIncrement

And you can even call it directly:

PS> setIncrement 7

PS> Get-Count

8

PS> Get-Count

15

Because this function was supposed to be a private implementation detail, the fact that it’s
publicly visible isn’t desirable. Likewise, you can also get at the state variables you created:

PS> Get-Variable count, increment

Name Value

---- -----

count 15

increment 7

The problem with this is clear: $count isn’t a unique name, so the chance of it colliding with a
similarly named variable from another script is high. This lack of isolation between scripts makes

(296)

using dot-sourcing a fragile way to build libraries.

Finally, try to remove this script, emulating what you’ve been doing with Remove -Module. This
turns out to be quite complicated. You end up having to write a command that looks like this:

PS> Remove-Item -Verbose variable:count,

variable:increment,function:Reset-Count,

function:Get-Count,function:setIncrement

VERBOSE: Performing operation "Remove Item"

 on Target "Item: count".

VERBOSE: Performing operation "Remove Item"

 on Target "Item: increment".

VERBOSE: Performing operation "Remove Item"

 on Target "Item: Reset-Count".

VERBOSE: Performing operation "Remove Item"

 on Target "Item: Get-Count".

VERBOSE: Performing operation "Remove Item"

 on Target "Item: setIncrement".

This is necessary because there’s no implicit grouping of all the members created by a script.

Finding function definitions

The path to the file where a function was defined is attached to the scriptblock of the function.
For the counter example we’ve been discussing, the path might look like this:

PS>${function:Get-Count}.File

C:\TestScripts\counter.ps1

This File property makes it easier to figure out where things came from in your environment
when you have to debug it. For example, all the functions that were defined in your profile will
have the path to your profile in them, functions that were defined in the system profile will have
the system profile path, and so on. This fixes only part of the problem—managing functions—
and doesn’t deal with variables and aliases.

At this point, it’s clear that although it’s possible to build libraries using dot-sourcing, there are a
number of problems with this approach. Private implementation details leak into the public
namespace, and the members of a dot-sourced script lose any sort of grouping that allows you to
manage them as a whole.

Note

Building libraries of functionality in this manner isn’t a recommended best practice.

Let’s turn this script into a module and see how that fixes the problem.

8.4.2. Turning a script into a module

Now let’s turn the counter script into a module. Do this by changing the extension on the module
from .ps1 to .psm1 (where the m stands for module):

(297)

PS> copy .\counter.ps1 .\counter.psm1 -Force -Verbose

VERBOSE: Performing the operation "Copy File"

on target "Item: C:\TestScripts\counter.ps1

Destination: C:\TestScripts\counter.psm1".

You’re using the -Force parameter here to make the example work all the time. Try loading the
renamed file. The module wasn’t run. The default action is to open the file in the editor
associated with the extension (Notepad.exe by default). This is because module files aren’t
commands and can’t be run. Instead, you need to use the Import -Module command to load this
module:

PS> Import-Module .\counter.psm1

Now that you’ve loaded a module, you can try the Get-Module command and see something
useful:

PS> Get-Module counter

ModuleType Version Name ExportedCommands

---------- ------- ---- ----------------

Script 0.0 counter {Get-Count, Reset-Count, setIncrement}

Again, let’s use the Format-List cmdlet to see the object in more detail:

PS> Get-Module counter | Format-List

Name : counter

Path : C:\TestScripts\counter.psm1

Description :

ModuleType : Script

Version : 0.0

NestedModules : {}

ExportedFunctions : {Get-Count, Reset-Count, setIncrement}

ExportedCmdlets :

ExportedVariables :

ExportedAliases :

An important thing to notice is that the Path property stores the full path to where the module was
loaded from. The module type is script and the version is 0.0—the default for a script module.
(When we look at manifests in chapter 9, you’ll see how to change this.) The most important
things to notice are the export lists. You see that all the functions defined in the script module are
being exported but no variables are. To verify this, use Get-Command to look for all the functions
defined by the script:

PS> Get-Command -Module counter

CommandType Name Version Source

----------- ---- ------- ------

Function Get-Count 0.0 counter

Function Reset-Count 0.0 counter

Function setIncrement 0.0 counter

You can immediately see one of the benefits of using modules: You can work with sets of related
elements as a unit. (More on this in a bit.) Now that you’ve loaded the functions, you have to run
them to make sure they work:

PS> Get-Count

1

PS> Get-Count

2

PS> Get-Count

3

(298)

As before, you see that Get-Count returns the next element in the sequence. Now let’s check on
the variables used by Get-Count. These were a big problem when you dotted the script:

PS> $count

PS> $increment

Neither exists. Try assigning a value to $count and see whether it makes a difference:

PS> $count = 100

PS> Get-Count

4

As desired, it has no effect on Get-Count. Try Reset-Count and verify that it works:

PS> Reset-Count

PS> Get-Count

1

And it does. Now let’s look at another issue you had to deal with when using script libraries: how
to remove the imported elements. With modules, you can remove the module:

PS> Remove-Module counter

This will remove the module from the session along with all imported members, so if you try to
run Get-Count now, you get an error:

PS> Get-Count

Get-Count : The term 'Get-Count' is not recognized as the name of

a cmdlet, function, script file, or operable program. Check the

spelling of the name, or if a path was included, verify that the

path is correct and try again.

At line:1 char:1

+ Get-Count

+ ~~~~~~~~~

 + CategoryInfo : ObjectNotFound: (Get-Count:String) [], CommandNotFoundException

 + FullyQualifiedErrorId : CommandNotFoundException

In the next section, we’ll look at ways to get more fine-grained control over the things that
modules export.

8.4.3. Controlling member visibility with Export-ModuleMember

Let’s recap what you saw in the last example. You converted a script to a module by changing
the file extension. When you imported the module, all the functions you’d defined were visible
by default, but nothing else was. This is the default behavior in a module when you don’t do
anything to control member visibility. Because script libraries written for v1 typically depended
on this behavior, renaming them with a .psm1 extension may be all that’s needed to turn them
into modules.

Although this approach is simple, it’s not too flexible. For complex scenarios, you need to be
able to control exactly what gets exported; for example, you may need to use a number of helper
functions in your module that you don’t want to make public. You do this with the Export-
ModuleMember cmdlet. This cmdlet lets you declare exactly which commands and variables are
exported from the module. We’ll start by reviewing how it works with functions.

Controlling which functions are exported

First, we’ll look at how you can hide the functions you want to be private in a module. Take a

(299)

look at another variation of the counter module.

Listing 8.2. Counter module

$script:count = 0

$script:increment = 1

function Get-Count

{

 return $script:count += $increment

}

function Reset-Count

{

 $script:count=0

 setIncrement 1

}

function setIncrement ($x)

{

 $script:increment = $x

}

Export-ModuleMember *-Count 1

1 Controlling function export

The only difference between this version and the previous one is the last line, which uses the
Export-ModuleMember cmdlet. This line says “Export all functions matching the pattern *-Count.”
Save the module as counter1.psm1. Now import the module:

PS> Import-Module .\counter1.psm1

You verify that the Get- and Reset-Count commands are there by using

PS> Get-Command *-Count

But the setIncrement command isn’t, because it wasn’t explicitly exported:

PS> Get-Command setIncrement

Get-Command : The term 'setIncrement' is not recognized as the

name of a cmdlet, function, script file, or operable program.

Check the spelling of the name, or if a path was included,

verify that the path is correct and try again.

At line:1 char:1

+ Get-Command setIncrement

+ ~~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : ObjectNotFound:

(setIncrement:String) [Get-Command],

CommandNotFoundException

 + FullyQualifiedErrorId : CommandNotFoundException,

Microsoft.PowerShell.Commands.GetCommandCommand

Remove the module to clean up after yourself:

Ps> Remove-Module counter1

Function export rules

Here’s the rule to remember: If there are no calls to Export-ModuleMember in a script module, all
functions are exported by default and all other member types are private. If there’s at least one
call to Export-ModuleMember, whatever the cmdlet does overrides the default. This means
PowerShell doesn’t know exactly what set of functions will be exported until the script has run to

(300)

completion.

We’ll look further into function exporting in a minute, but first let’s finish up with variables and
aliases.

Controlling what variables and aliases are exported

Although functions are exported by default, variables and aliases aren’t. Again, to change the
default set of exports, use the Export-ModuleMember cmdlet. Let’s look at a third variation on the
counter module.

Listing 8.3. Exporting variables

$script:count = 0

$script:increment = 1

function Get-Count { return $script:count += $increment }

function Reset-Count { $script:count=0; setIncrement 1 }

New-Alias -Name reset -Value Reset-Count 1

function setIncrement ($x) { $script:increment = $x }

Export-ModuleMember -Function *-Count -Variable increment -Alias reset 2

1 Defining alias
2 Controlling export

This time, there are two changes to the script. First, you’re defining an alias for the Reset-Count
function. Second, you’re using Export-ModuleMember to explicitly control all of the exports:
functions, variables, and aliases. Now, if the member doesn’t appear in a call to Export-
ModuleMember, it won’t be exported.

Note

Use a new PowerShell session for this example to ensure all variables from previous examples
are eliminated.

Let’s import the updated module

PS> Import-Module .\counter2.psm1

and verify the contents. Check that the *-Count commands are loaded with

PS> Get-Command *-Count

What about setIncrement? You weren’t supposed to export it, so there should be an error when
you try calling the following:

PS> setIncrement 10

setIncrement : The term 'setIncrement' is not recognized as the

name of a cmdlet, function, script file, or operable program.

Check the spelling of the name, or if a path was included,

(301)

verify that the path is correct and try again.

At line:1 char:1

+ setIncrement 10

+ ~~~~~~~~~~~~

 + CategoryInfo : ObjectNotFound:

(setIncrement:String) [], CommandNotFoundException

 + FullyQualifiedErrorId : CommandNotFoundException

And there is. The function wasn’t exported from the module, so it can’t be imported by the
module loaded. Finally, check to see if your variables were exported properly by trying to
display their contents:

PS> $count

PS> $increment

1

You can see that the $count variable wasn’t exported because nothing was displayed. The
$increment variable was exported, so the value was output.

Next, check to see if the reset alias was exported:

PS> Get-Alias reset

CommandType Name Version Source

----------- ---- ------- ------

Alias reset -> Reset-Count 0.0 counter2

Test the alias by using Get-Count a number of times; then use reset.

When module exports are calculated

Now let’s return to something we mentioned earlier: The set of module members to export is not
known until runtime. The Export-ModuleMember cmdlet doesn’t export the function; it adds it to a
list of members to export. Once execution of the module body is completed, the PowerShell
runtime looks at the accumulated lists of exports and exports those functions. The export
algorithm is shown in figure 8.8.

Figure 8.8. The order of the steps when processing a module manifest. At any point prior to the next-to-the-last
step, if an error occurs, module processing will stop and an error will be thrown.

(302)

As shown in figure 8.8, PowerShell loads and executes the module file. As execution proceeds,
the module code defines functions and may or may not call Export-ModuleMember. If it does call
Export-ModuleMember, then the specified members to export are added to the exports list. When
execution has completed, control returns to the module loader, which checks to see if anything
was put into the export list. If there were no calls to Export-ModuleMember, then this list is empty.
In that case, the loader finds all the functions defined in the module’s scope and exports them. If
there was at least one call to Export -ModuleMember, then the module loader uses the export list to
control what gets exported.

So far, you’ve been loading the module using the path to the module file. This is a good
approach for development, but eventually you’ll need to put it into production. In the next
section you’ll learn how.

8.4.4. Installing a module

As of PowerShell v5 you have two broad categories of module availability. The first category,
manual installation, has been available since modules were introduced in PowerShell v2. Manual
installation encompasses modules you write yourself and those you may explicitly copy or

(303)

download from other sources. The second category, automatic installation, was introduced with
PowerShell v5 and the PowerShell Gallery—a public gallery of modules you can reuse. Access
to the gallery is done through (surprise!) a module called PowerShellGet. The PowerShellGet
module includes commands to find and install modules from the PowerShell Gallery. You can
also add public or private repositories to the search path.

Manual install

A manual module installation is simple to perform. All you have to do is create a subdirectory of
one of the directories in the module path and copy the module file, or files, into that folder—the
proverbial Xcopy install that people like to talk about.

Note

Installing your modules into $pshome\Modules is not recommended. Updates and changes to
PowerShell may overwrite the contents of that folder obliterating your module. You did have
another copy, didn’t you?

Let’s look at the first element of the default module path:

PS> ($ENV:PSModulePath -split ';')[0]

C:\Users\brucepay\Documents\WindowsPowerShell\Modules

The Modules directory in Documents\WindowsPowerShell is the user’s personal module repository.

Note

You can create a separate folder for your own modules and add it to the module path in your
profile.

You’re going to install the counter module in it so you don’t have to load it using the full path
anymore—in fact, autoloading removes the need to manually load the module. Let’s get the
repository path into a variable so it’s easier to use:

PS> $mm = ($ENV:PSModulePath -split ';')[0]

Next, create the module directory:

PS> New-Item -Path $mm/Counter2 -ItemType Directory

 Directory: C:\Users\brucepay\Documents\WindowsPowerShell\Modules

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 22/04/2017 11:11 Counter2

Install the module by copying it into the directory just created:

PS> Copy-Item -Path .\counter2.psm1 -Destination $mm\Counter2

(304)

Now try it out. Use the -ListAvailable option on Get-Module to see if the module lookup algorithm
will find it:

PS> Get-Module -ListAvailable Counter2 | Format-List name, path

Name : Counter2

Path : C:\Users\brucepay\Documents\WindowsPowerShell\

 Modules\Counter2\Counter2.psm1

And it does. This means you should be able to load it by name:

PS> Import-Module -Verbose counter2

VERBOSE: Loading module from path 'C:\Users\brucepay\Documents\WindowsPowerShell\Modules

\Counter2\Counter2.psm1'.

VERBOSE: Importing function 'Get-Count'.

VERBOSE: Importing function 'Reset-Count'.

VERBOSE: Importing variable 'increment'.

VERBOSE: Importing alias 'reset'.

It works. Installing a module is as simple as copying a file. Try removing the module and then
using the Get-Count function to test autoloading.

Module folders

You may be wondering why you have to put in into a directory—it’s only a single file. In chapter
9, you’ll see that a production module is more than a single .psm1 file; for example, the
DNSClient module (introduced with Windows 8) has a number of files:

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 03/11/2016 13:16 en-US

-a---- 18/03/2017 20:58 1705 DnsClient.psd1

-a---- 18/03/2017 20:58 17850 DnsClientPSProvider.Format.ps1xml

-a---- 18/03/2017 20:58 4788 DnsClientPSProvider.Types.ps1xml

-a---- 04/03/2017 11:35 391 DnsClient_5696d5ef-fa2d-4997-94f1-0bc13daa2ac5_HelpInfo.xml

-a---- 18/03/2017 20:58 61640 DnsCmdlets.Format.ps1xml

-a---- 18/03/2017 20:58 22151 DnsCmdlets.Types.ps1xml

-a---- 18/03/2017 20:58 20344 DnsConfig.Format.ps1xml

-a---- 18/03/2017 20:58 1100 DnsConfig.Types.ps1xml

-a---- 18/03/2017 20:58 39424 dnslookup.dll

-a---- 18/03/2017 20:58 4504 MSFT_DnsClient.cdxml

-a---- 18/03/2017 20:58 4130 MSFT_DnsClientCache.cdxml

-a---- 18/03/2017 20:58 1306 MSFT_DnsClientGlobalSetting.cdxml

-a---- 18/03/2017 20:58 3613 MSFT_DnsClientServerAddress.cdxml

-a---- 18/03/2017 20:58 5188 PS_DnsClientNRPTGlobal_v1.0.0.cdxml

-a---- 18/03/2017 20:58 1704 PS_DnsClientNrptPolicy_v1.0.0.cdxml

-a---- 18/03/2017 20:58 18650 PS_DnsClientNRPTRule_v1.0.0.cdxml

This is why modules are stored in a directory—it allows all the module resources to be gathered
in one place, making it easy to distribute a multifile module. Zip it up and send it out.

Note

Downloading and installing a zipped module on Windows Vista or later requires extra steps
because files downloaded using Internet Explorer are blocked by default. PowerShell honors this
blocking attribute, so you won’t be able to load the module until you unblock it. The most
effective way to do this is to unblock the zip file before unzipping it. Then, when you unzip it, all
the extracted files will also be unblocked. To unblock a file, use Unblock-File -Path ./myfile.zip.
If you have a number of files to unblock, then use Get-ChildItem –Path c:\mypath* | Unblock-
File.

(305)

PowerShell v5 introduced the ability to have multiple versions of a module installed into the
same folder; you use subfolders to separate the versions:

PS> Get-ChildItem `

-Path 'C:\Program Files\WindowsPowerShell\Modules\Pester'

 Directory: C:\Program Files\WindowsPowerShell\Modules\Pester

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 18/03/2017 21:03 3.4.0

d----- 20/03/2017 13:57 4.0.2

Using Import-Module or accessing the module via autoloading will automatically load the latest
version of the module available on your system:

PS> Get-Module -ListAvailable Pester

 Directory: C:\Program Files\WindowsPowerShell\Modules

ModuleType Version Name ExportedCommands

---------- ------- ---- ----------------

Script 4.0.2 Pester {Describe, Context, It, Should...}

Script 3.4.0 Pester {Describe, Context, It, Should...}

If you need to import a specific version of the module, you’ll use the -RequiredVersion parameter:

PS> Import-Module -Name Pester -RequiredVersion 3.4.0

Note

You can use the -MinimumVersion parameter to specify a version number. Import-Module will only
import a version that’s greater than or equal to the specified version.

Installing a module manually is okay if (a) you found the module in the first place, and (b) you
want to install it only once. It is still, however, a bit fiddly, including the “find the module” bit,
so PowerShell v5 introduced the PowerShell Gallery—a public, searchable module repository
along with a set of commands to make it easy to find, download, and install modules.

PowerShellGet

The commands in the PowerShellGet module manage finding, installing, updating, and
potentially uninstalling modules, scripts, and DSC resources (find only) on your system. The
modules are stored in a central repository, which provides a central distribution point for your
code. PowerShellGet provides you with a number of commands:

PS> Get-Command -Module PowerShellGet | Format-Wide -Column 3

Find-Command Find-DscResource Find-Module

Find-RoleCapability Find-Script Get-InstalledModule

Get-InstalledScript Get-PSRepository Install-Module

Install-Script New-ScriptFileInfo Publish-Module

Publish-Script Register-PSRepository Save-Module

Save-Script Set-PSRepository Test-ScriptFileInfo

Uninstall-Module Uninstall-Script Unregister-PSRepository

Update-Module Update-ModuleManifest Update-Script

Update-ScriptFileInfo

(306)

The Find-* commands enable you to search repositories in various ways, as shown in table 8.5.

Table 8.5. PowerShellGet search targets

Command Search target

Find-Command Searches modules in registered repositories for PowerShell
commands such as cmdlets, aliases, functions, and workflows.

Find-DscResource Finds DSC resources contained in modules that match the
specified criteria from registered repositories.

Find-Module Finds modules from the online gallery that match the specified
criteria.

Find-RoleCapability
Finds PowerShell role capabilities in modules. PowerShell role
capabilities define which commands, applications, and so on are
available to a user at a Just Enough Administration endpoint.

Find-Script Finds a specified script in registered repositories.

Once you’ve found the module, you can install it using Install-Module.

NuGet

The PowerShellGet and PackageManagement modules use the Nuget package management software as
used in Microsoft Visual Studio or Chocolatey. The NuGet package manager is open source
software licensed under the Apache 2 License. This means you can take the code, modify it, and
redistribute it freely, as long as you adhere to the terms of the license. But this software is not
installed as part of the Windows operating system or by a PowerShell update. Instead, you’ll
have to download and install it yourself. Fortunately, this is easy.

If you attempt to use the PowerShellGet or the PackageManagement module without NuGet
installed, you’ll be prompted to download and install the file nuget-anycpu.exe to C:\Users\
<user>\AppData\Local\PackageManagement\ProviderAssemblies.

When prompted, accept the request to install NuGet, and then wait for the install to complete
before proceeding.

The default repository in PowerShell v5 for PowerShellGet is the PowerShell gallery that
Microsoft manages:

PS> Get-PSRepository | Format-List

Name : PSGallery

SourceLocation : https://www.powershellgallery.com/api/v2/

Trusted : False

Registered : True

InstallationPolicy : Untrusted

PackageManagementProvider : NuGet

PublishLocation : https://www.powershellgallery.com/

 api/v2/package/

ScriptSourceLocation : https://www.powershellgallery.com

 /api/v2/items/psscript/

ScriptPublishLocation : https://www.powershellgallery.com

 /api/v2/package/

(307)

ProviderOptions : {}

Note two things: First, the default repository is internet-based, so any software obtained from the
gallery should be thoroughly tested in your environment before production use. Second, the
gallery is untrusted by default, which means that you’ll be prompted before installation of a
module.

PowerShell repositories

The PowerShell gallery is managed by Microsoft, and a number of tests are performed on any
published code to ensure the modules adhere to best practice and hopefully eliminate any
malicious code.

It’s still your responsibility to test any code you download!

Many organizations don’t want to publish their code to an online repository that’s available to
the general public. In this case, you need to set up an internal repository and set that as the
default. PowerShellGet works happily with multiple repositories. You can download from the
PowerShell gallery, test, and then upload to your internal repository so that you always have a
consistent known version in use.

Once you’ve discovered the available repositories, you can view the available modules:

PS> Find-Module -Repository PSGallery

At the time of writing, over 1700 modules were available, so we won’t list them all. If you don’t
supply the repository name, Find-Module will scan all available repositories. If you supply a
module name, Find-Module will scan for only that one:

PS> Find-Module -Repository PSGallery -Name Pscx

Version Name Repository Description

------- ---- ---------- -----------

3.2.2 Pscx PSGallery PowerShell Community Extensions...

Once you’ve found your module, installing is simple:

PS> Install-Module -Name Pscx

Untrusted repository.

You are installing the modules from an untrusted repository. If you trust

this repository, change its InstallationPolicy value by running the Set-

PSRepository cmdlet. Are you sure you want to install the modules from

'PSGallery'?

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "N"): Y

As we said earlier you’ll be prompted because the PowerShell gallery is an untrusted source. All
module sources, even the official PowerShell gallery, are marked untrusted by default. This is an
aspect of the secure-by-default philosophy used in PowerShell. You can test the module’s
availability:

PS> Get-Module -ListAvailable pscx

 Directory: C:\Program Files\WindowsPowerShell\Modules

ModuleType Version Name ExportedCommands

---------- ------- ---- ----------------

Script 3.2.2 Pscx {Add-PathVariable, Clear-MSMQueue...}

(308)

If you later decide you don’t need the module, you can uninstall it using Uninstall-Module.

Note

Modules managed through PowerShellGet will always install in Program Files. We don’t
recommend moving PowerShellGet-managed modules from this location.

If the module author provides an update, you can download that with (you guessed it) Update-
Module. One interesting point with Update-Module is that it will install the new version side by side
with the old one, as described earlier. PowerShell will automatically use the new version and
effectively ignore any older versions.

Testing modules from an online repository

The recommended way to test modules from the gallery is to use Save-Module to download the
module to some place that isn’t in PSModulePath. Now you can safely inspect it:

PS> Save-Module -Name Timezone -Repository PSGallery -Path C:\testmodule

You can view the download:

PS> Get-ChildItem -Path C:\testmodule\ -Recurse

 Directory: C:\testmodule

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 27/06/2016 17:17 Timezone

 Directory: C:\testmodule\Timezone

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 27/06/2016 17:17 1.2.2

 Directory: C:\testmodule\Timezone\1.2.2

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 02/06/2016 23:27 3149 Timezone.Help.Tests.ps1

-a---- 02/06/2016 23:27 8336 Timezone.psd1

-a---- 02/06/2016 23:27 7173 Timezone.psm1

-a---- 02/06/2016 23:27 5924 Timezone.Tests.ps1

Notice that the module is downloaded into a folder with the module name and is versioned. You
can inspect the code in the module and run tests to determine its applicability and safety in your
environment.

If you need to load the same module onto many machines, it may be simpler to download once
and then copy to the machines. But you won’t get access to the other module management tools
such as update and uninstall. A better approach may be to create your own internal repository
and target that for the installations.

In all the exercises so far, you’ve depended on the module-scoping semantics to make things
work. Now is a good time to develop your understanding of exactly how these new scoping rules
operate. In the next section, we’ll look at how function and variable names are resolved when

(309)

using modules.

8.4.5. How scopes work in script modules

In section 7.4, we covered how scripts introduced script-specific scoping rules. As you’ve seen,
modules also introduce new scoping rules. The primary goal of these module-specific rules is to
insulate modules from accidental contamination picked up from the caller’s environment. This
insulating property makes module behavior more predictable, and that, in turn, makes modules
more reusable.

To accomplish this isolation, each module gets its own scope chain. As with the default scope
chain, the module scope chain eventually ends at the global scope (which means that module and
default scope chains share the same global variables). Walking up the module scope chain, right
before you reach the global scope, you’ll encounter a new distinguished scope: the module scope.
This scope is somewhat similar to the script scope except it’s created only once per loaded
module and is used to share and preserve the state of that module. A diagram of all of these
pieces is shown in figure 8.9.

Figure 8.9. How variables are resolved in a module context. Function one calls two, and two calls the module
function foo. Functions one and two look up variables in the default scope. The module function foo uses the
module scope chain.

Let’s spend some time walking through figure 8.9. In the diagram, you see boxes indicating three
functions. The two on the left (one and two) are defined in the default scope and will use the
default scope chain to look up variables. The function shown on the right (foo) is defined inside a
module and so uses the module scope chain. Now let’s call function one. This function sets a
local variable, $y, to 20 then calls function two.

In the body of two, you’re adding $x and $y together. This means that you have to look up the
variables to get their values. The dashed lines in figure 8.9 show the order in which the scopes
will be checked. Following the default scope path, the first instance of a variable named $y is
found in the local scope of function one and has a value of 20. Next, you follow the scope path to
find $x, and you don’t find it until you hit the global scope, where it resolves to 1. Now you can
add them, yielding the value 21.

(310)

Function two then calls the module function foo. This function also adds $x and $y, but this time
you’ll use the module scope chain to look up the variables. You travel up the module chain and
don’t find the defined variable $y until you hit the global scope, where its value is 2. When you
look up $x, you find that it was set to 10 in the module scope. You add 2 and 10 and get 12. This
shows how local variables defined in the caller’s scope can’t have an impact on the module’s
behavior. The module’s operations are insulated from the caller’s environment.

At this point, we’ve covered most of the important details of what happens when a module is
loaded into the global environment. But modules can be loaded into other modules too. This is
where reuse can kick in—modules building on modules delivering more and more functionality.
You’ll see how this works in the next section when we introduce nested modules.

8.4.6. Nested modules

In this section, we’ll cover what happens when modules import other modules. Because Import-
Module is a regular cmdlet, it can be called from anywhere. When it’s called from inside another
module, the result is a nested module. A nested module is only directly visible to the calling
module. This is much easier to show than to explain. Let’s look at a module called
usesCount.psm1.

Listing 8.4. usesCount.psm1

Import-Module .\counter2.psm1

function CountUp ($x)

{

 while ($x-- -gt 0) { Get-Count }

}

This module imports the counter2 module created earlier and then defines a single function,
countUp. Import this module:

PS> Import-Module .\usesCount.psm1

Now call Get-Module to see what’s loaded:

PS> Get-Module

ModuleType Version Name ExportedCommands

---------- ------- ---- ----------------

Script 0.0 usesCount {CountUp, Get-Count, Reset-Count, reset}

<default modules removed for brevity>

The first thing to notice in this output is that the nested module isn’t shown. This is by design—
you don’t want to expose module implementation details by default. The other thing to notice is
that there are more commands in the ExportedCommands list than merely CountUp. Let’s use Format-
List to see all the information about the module:

PS> Get-Module usesCount | Format-List

Name : usesCount

Path : C:\TestScripts\usesCount.psm1

Description :

ModuleType : Script

Version : 0.0

NestedModules : {counter2}

ExportedFunctions : {CountUp, Get-Count, Reset-Count}

ExportedCmdlets :

ExportedVariables :

(311)

ExportedAliases : reset

This shows you that three functions were exported from this module even though the module
itself defined only one. This is because the functions that are being imported from the nested
module are exported from the root module, usesCount. Remember, all defined functions in a
module are exported by default. This includes function definitions that were imported from a
nested module as well as those defined in the module body.

Although nested modules are hidden by default, there’s a way to see all the modules that are
loaded, including nested modules. You use the -All flag on Get-Module:

PS> Get-Module -All

ModuleType Version Name ExportedCommands

---------- ------- ---- ----------------

Script 0.0 counter2 {Get-Count, Reset-Count, reset}

Script 0.0 usesCount {CountUp, Get-Count, Reset-Count, reset}

<output truncated for brevity>

Using this flag, you see both of the modules that are loaded. Let’s look at some of the commands
that were imported. First, look at the function that came from the root module:

PS> Get-Command countup | Format-List -Force -Property Module*

ModuleName : usesCount

Module : usesCount

There’s a lot of information available, but the properties that are most interesting for this
discussion are ModuleName and Module. ModuleName names the module that this function was
exported from; the Module property points to the module that defined this function. For top-level
modules, the defining and exporting modules are the same; for nested modules, they aren’t. From
the ModuleName property, you see that this function was exported from module usesCount. Now
let’s look at one of the functions that was imported from the nested module and then re-exported:

PS> Get-Command Get-Count | Format-List -Force -Property Module*

ModuleName : usesCount

Module : usesCount

From the output, you see that the module name for the function shows the top-level module
name, not the name of the module where the function was defined. This makes sense because
they’re both exported from the same module. But they were defined in separate files. Knowing
where a function is defined is critical to debugging, as you’ll learn in chapter 15. The way to see
where a function was defined is to look at the File property on the scriptblock that makes up the
body of the function:

PS> ${function:CountUp}.File

C:\TestScripts\usesCount.psm1

PS> ${function:Get-Count}.File

C:\TestScripts\counter2.psm1

This is a fairly easy way to see where the module came from, once you know how.

Import into the global environment with -Global

When one module loads another, by default it becomes a nested module. This is usually what
you want, but perhaps you want to write a module that manipulates modules. In this scenario,
you need to be able to import the module into a context other than your own. Although there

(312)

isn’t a way to import directly into an arbitrary context, the -Global flag on Import-Module allows
you to import into the global context. Let’s work on a variation of the usesCount module to see
how this works. The modified script module is shown next.

Listing 8.5. usesCount2.psm1

Import-Module -Global .\counter2.psm1

function CountUp ($x)

{

 while ($x-- -gt 0) { Get-Count }

}

The significant difference in this version is the use of the -Global parameter on Import-Module.
First, import the module:

PS> Import-Module .\usesCount2.psm1

Then look at the modules that are loaded:

PS> Get-Module

ModuleType Version Name ExportedCommands

---------- ------- ---- ----------------

Script 0.0 counter2 {Get-Count, Reset-Count, reset}

Script 0.0 usesCount2 CountUp

<output truncated for brevity>

This time you see that both modules are loaded at the top level instead of one being nested inside
another. Also, the ExportedCommand property for usesCount2 doesn’t report the functions defined
in counter2 as being exported from usesCount2. When you use Get-Command to look at functions
from each of the modules, the functions defined in counter2 are shown as being in the correct
module, as is the case for the CountUp functions. In effect, you’ve written a module that
manipulates modules.

Import with -Scope parameter

Prior to PowerShell v4 you could load a module into the global scope (by using the -Global
parameter) or into the current module scope, which is the default action. The introduction of the -
Scope parameter in PowerShell v4 gives you more flexibility. The parameter has two options: -
Scope Global (same as -Global) and -Scope Local.

Importing a module into the local scope means importing into the scope of the caller. If you do
Import-Module -Scope Local inside a script, the exported functions will be visible only to the
script. If you do -Scope Local inside a function, then the exported commands are visible only in
that function’s scope. In both cases, the exported commands get cleaned up when the function or
script exits. This makes it much easier to work with different versions of the same module in a
script by importing them into the scopes of different functions.

Let’s see how that works in practice. Create a folder called ScopeTest—preferably not on your
PSModulePath so it doesn’t autoload. Create subfolders 1.0.0 and 1.1.0 inside ScopeTest. Each will
hold a different version of a module.

Create the module using this code:

function Hello {

 Write-Host 'Hello World'

}

(313)

Save into the 1.0.0 folder as ScopeTest.psm1. Create a module manifest file ScopeTest.psd1.
Ensure the module version is set to 1.0.0 in the manifest.

Note

Manifest files are covered in chapter 9. The sample code for the book supplies copies of the code
discussed in this section if you don’t want to skip ahead.

Now copy the contents of the 1.0.0 folder to 1.1.0. Change the version number in the manifest
file to 1.1.0 and change 'Hello World' to 'Hello Universe' in the .psm1 file.

You now have two versions of the module. You can use this script to test the -Scope parameter:

function fscope {

 Import-Module C:\testmodule\ScopeTest -RequiredVersion 1.1.0 `

-Scope Local -Force

 Write-Information "`n In function" -InformationAction Continue

 hello

}

Write-Information "`n In Script" -InformationAction Continue

Import-Module C:\testmodule\ScopeTest -RequiredVersion 1.0.0 `

-Scope Global -Force

hello

Write-Information "`n Moving to function" -InformationAction Continue

fscope

Write-Information "`n Back in Script and Finish" `

-InformationAction Continue

hello

When you run the script you should see these results:

PS> C:\testmodule\ScopeTest\ScopeTest.ps1

 In Script

Hello World

 Moving to function

 In function

Hello Universe

 Back in Script and Finish

Hello World

The script loads the 1.0.0 version of the module into the global scope and executes the hello
function. The fscope function is called, which loads the 1.1.0 version of the module into the local
scope and executes the hello function—giving the result 'Hello Universe'. After exiting the
fscope function, the call to hello gives the original result of 'Hello World' again.

Note

It’s worth experimenting with the -Scope parameter to ensure you understand its action. For
instance, change the -Scope value to Global in the fscope function and observe the results.

(314)

This completes our coverage of script modules, which are the type of module most people are
likely to write. The next module type we’ll look at is binary modules, which everyone uses but
are usually created by programmers (because they’re written in languages that must be compiled
in an assembly or DLL file).

(315)

8.5. Binary modules

This section explores how binary modules operate in PowerShell. Binary modules contain the
classes that define cmdlets and providers. Unlike script modules, binary modules are written in
compiled languages like C# or Visual Basic. They’re used to deliver much of the packaged
functionality in the PowerShell distribution. From a technical perspective, a binary module is a
.NET assembly (a DLL) compiled against the PowerShell libraries.

Programming topics aren’t the focus of the book, but we’ll spend time looking at how binary
modules are written and compiled. This implies that you’ll have to do some C# programming to
produce a module to work with. In the following sections, we’ll look at how to create and load
binary modules, how they interact with script modules, and any issues you need to be aware of
when working with them.

PowerShell snap-ins

PowerShell snap-ins were the only way to add binary cmdlets to PowerShell v1. You had to
register the DLL containing the snap-in before you could load it into PowerShell.

Snap-ins were deprecated in PowerShell v2 when modules were introduced. Modules are the
recommended way to extend PowerShell.

The only thing you need to know about snap-ins is that you shouldn’t use them.

8.5.1. Creating a binary module

The first thing you’ll need for our experiments is a module to work with, so in this section you’ll
learn how to create that module. Remember that binary modules are written in a language like
C#, so you’ll do a bit of non-PowerShell programming. A simple binary module is shown next.

Listing 8.6. A binary module

$source = @"

using System.Management.Automation;

[Cmdlet("Write", "InputObject")]

public class MyWriteInputObjectCmdlet : Cmdlet

{

 [Parameter] 1

 public string Parameter1;

 [Parameter(Mandatory = true, ValueFromPipeline=true)] 1

 public string InputObject;

 protected override void ProcessRecord()

 {

 if (Parameter1 != null)

 WriteObject(Parameter1 + ":" + InputObject);

 else

 WriteObject(InputObject);

 }

}

"@

Add-Type -TypeDefinition $source -OutputAssembly examplemodule.dll 2

(316)

1 Parameter attributes
2 Add-Type

If you were paying attention in the previous chapter, this should be pretty comprehensible. You
should certainly recognize the [Parameter()] attributes 1 from advanced functions. Before you
can use this C# code as a module, you need to compile it. PowerShell has a handy, powerful
cmdlet called Add-Type, 2 designed to make this kind of thing easy. Here you’ll use it to compile
the source code into the output assembly Example-Module.dll. Save listing 8.6 as
examplemodule.ps1 and run it.

Once the module DLL has been created, you can load it the same way you loaded a script
module, using Import-Module:

PS> Import-Module ./examplemodule.dll

As before, you’ll use Get-Module to look at the module information object for -ExampleModule:

PS> Get-Module -Name examplemodule | Format-List

Name : examplemodule

Path : C:\TestScripts\examplemodule.dll

Description :

ModuleType : Binary

Version : 0.0.0.0

NestedModules : {}

ExportedFunctions :

ExportedCmdlets : Write-InputObject

ExportedVariables :

ExportedAliases :

You see the name and path as expected. The module type is binary, and it’s exporting a single
cmdlet, Write-InputObject. Now try this new cmdlet:

PS> 1,2,3 | Write-InputObject -Parameter1 'Number'

Number:1

Number:2

Number:3

It’s all working fine.

Other than the implementation of a binary module, there’s not much difference in behavior when
using it. Well, there’s one major difference: Binary modules are implemented as .NET
assemblies, and .NET assemblies can’t be unloaded from a session (it’s a .NET thing, not a
PowerShell thing); therefore, binary modules can’t be unloaded from a session. This means that
you can’t update a binary module once it’s been loaded. You can’t even update the assembly on
disk because the file is locked when the assembly is loaded. If you rerun the examplemodule.ps1
script you used to build the assembly earlier, you’ll get a set of rather intimidating error
messages. If you need to make changes, you’ll have to close PowerShell and open a new session
to perform the compilation.

As we said, as long as the binary module is loaded into any PowerShell session, it can’t be
updated. This can be annoying when you’re developing a binary module, but in a production
environment it isn’t likely to be a problem—at least until you need to service a binary module to
fix a bug. This is one area where script modules do have an advantage: they’re much easier to
update dynamically than binary modules.

A way to get aspects of both module types is to combine binary and script module files in a
single module directory. You’ll learn how this all works next.

(317)

8.5.2. Nesting binary modules in script modules

In section 8.4.6, we explored the idea of nested modules, where one script module is imported
into another. This nesting concept also works with binary modules so script modules can import
binary modules. One consequence is that it means that script modules may also export cmdlets
even though they can’t define them. The way nested modules work, the calling module can filter
the exports of the nested module. This means you can use a script module to filter the members
exported from a binary module. Let’s see how this works. In the process of doing this, we’ll
introduce a couple of Import-Module features that you haven’t seen so far.

For this example, the next listing contains a script module that loads the binary module created in
the previous section.

Listing 8.7. Wrapping a binary module in a script module—WrapBinaryModule.psm1

param (1

 [bool] $showCmdlet

)

Import-Module $PSScriptRoot\ExampleModule.dll –Verbose 2

function wof 3

{

 param ($o = "Hi there")

 Write-InputObject -InputObject $o

}

if ($showCmdlet) 4

{

 Export-ModuleMember -Cmdlet Write-InputObject

}

else

{

 Export-ModuleMember -Function wof

}

1 Defining parameter
2 Importing module
3 Defining function
4 Determining exports

There are a number of interesting things to see in this module. Right at the beginning, you see a
param statement 1 defining a parameter for the module. As this implies, script modules can be
parameterized. The values to bind to the module’s parameters are passed using the -ArgumentList
parameter on Import-Module. This parameter is used to pass a list of argument values, which
means that module parameters can only be positional.

The other new feature can be seen in the call to Import-Module, 2 where you’re loading the binary
module. The path to the binary module is specified using the $PSScriptRoot (or $PSModuleRoot
introduced in PowerShell v5) automatic variable. This variable was introduced in PowerShell v2
and contains the path to the directory from which the script module was loaded. In the script, the
call to Import-Module specifies the -Verbose parameter so you can see this path.

In the body of the module, you define a function, wof. 3 This function uses the imported cmdlet
to write an object to the output stream.

The module ends with an if statement 4 that uses the $showCmdlet module parameter to decide

(318)

whether the function or the cmdlet should be exported from the module. Let’s load the module
without specifying any arguments and see what happens:

PS> Import-Module .\WrapBinaryModule.psm1 -Verbose

VERBOSE: Loading module from path 'C:\TestScripts\WrapBinaryModule.psm1'.

VERBOSE: Importing cmdlet 'Write-InputObject'.

VERBOSE: Importing function 'wof'.

From the -Verbose output, you can see that the binary module has been loaded and the location it
has been loaded from. Now use Get-Module to get information about the loaded module:

PS> Get-Module WrapBinaryModule |

Format-List Name, ExportedFunctions, ExportedCmdlets

Name : WrapBinaryModule

ExportedFunctions : {[wof, wof]}

ExportedCmdlets : {}

From the output, you see that the function was exported, but no cmdlets were. Now try this
function:

PS> wof 123

123

It works, so everything is as intended. This is an important pattern to be aware of. Using this
pattern, you can use a script module to wrap a cmdlet but leave the cmdlet itself hidden. This
allows you to customize the command experience even though you may not be able to change
the cmdlet itself.

Let’s reverse the scenario. You’ll reload the script module (using the -Force flag to make sure the
script gets processed again), but this time you’ll pass in an argument to the script:

PS> Import-Module .\WrapBinaryModule.psm1 -Force `

 -ArgumentList $true -Verbose

VERBOSE: Removing the imported "wof" function.

VERBOSE: Loading module from path 'C:\TestScripts\WrapBinaryModule.psm1'.

VERBOSE: Importing cmdlet 'Write-InputObject'.

VERBOSE: Importing cmdlet 'Write-InputObject'.

Because the binary module is already loaded, you see the importing message. Remember, you
can’t update a binary module in your session once it’s been loaded. The point here is to use script
modules to give you at least a partial workaround for this scenario—in this case, controlling the
visibility of the cmdlet. Once again, call Get-Module to see what was imported:

PS> Get-Module WrapBinaryModule |

 Format-List Name, ExportedFunctions, ExportedCmdlets

Name : WrapBinaryModule

ExportedFunctions : {}

ExportedCmdlets : {[Write-InputObject, Write-InputObject]}

This time you see the cmdlet but not the function as intended. Even though you couldn’t change
the binary module, you could still control what it exported.

Note

There are limits to this—you can’t export more cmdlets; you can only filter the existing imports.
You also can’t rename the cmdlet itself, though you could proxy it through a function if you

(319)

wanted to change its name. See section 10.5.2 for a description of how to create command
proxies.

So far, all of our work with modules has been pretty much ad hoc—we’re making stuff up as we
go along. The modules have none of the metadata (description, author information, copyright,
and so on) needed in a production environment for figuring out things like which modules need
to be patched. In the next chapter, we’ll address this and see how module manifests are used to
fill in the missing pieces.

CDXML modules

There are three basic types of module:

Script modules covered in section 8.4
Binary modules that are covered in this section
CDXML modules

CDXML modules are based on WMI classes. The base implementation provides a Get- cmdlet
that retrieves the same information as if the class had been used with Get-CimInstance or Get-
WmiObject. Any methods available on the WMI class can be used to create cmdlets performing the
same task.

A CDXML module is an XML file. It’s treated as a PowerShell module in terms of being located
in a subfolder off the module path. The file has a .CDXML extension. Many of the modules
delivered with Windows 8 and later are created using CDXML techniques.

PowerShell uses the cmdlets-over-objects technology introduced in PowerShell v3 to create
functions from the XML file when the module is loaded. You can view the function in the
PowerShell function drive.

CDXML modules are treated in a similar manner to script modules, so we won’t cover them in
any detail. We suggest PowerShell and WMI by Richard Siddaway (Manning, 2012) as a good
reference.

(320)

8.6. Summary

Modules are discovered, both in memory and on disk, using the Get-Module cmdlet.
Modules are loaded with Import-Module and removed from memory with Remove -Module.
PowerShell uses the $ENV:PSModulePath environment variable to search the file system for
modules to load when an unqualified module name is specified.
Modules on the module path are autoloaded.
A fully qualified path name can be used to load a module directly without going through
the search process.
There are three basic types of modules: script modules, which are written using the
PowerShell language; binary modules, which are written in a compiled language; and
CDXML modules, which are based on WMI classes.
No registration process is needed to make a module available for use—you need to be able
to read the file somehow.
Script modules are another form of script (with a .psm1 extension); they obey the
Execution Policy setting like regular scripts.
Script modules execute in their own isolated environment, called the module context. A
script module also has access to the global environment, which is shared across all
modules.
The commands in the PowerShellGet module enable you to find, download, and manage
modules from online repositories. The default repository is the PSGallery.

The focus in this chapter was on how to construct simple ad hoc modules. In the next chapter, we
introduce module manifests—a mechanism to add production metadata to our modules as well as
provide a way to deal with multifile modules.

(321)

Chapter 9. Module manifests and metadata
This chapter covers

Module folder structure
Module manifest structure and elements
Advanced module operations
Publishing a module

The world is my world: this is manifest in the fact that the limits of language (of that
language which alone I understand) mean the limits of my world.

Ludwig Wittgenstein, Tractatus Logico-Philosophicus

In chapter 8, we introduced PowerShell modules and covered the basics needed for using and
writing modules. The code in your module isn’t the full story. There needs to be a way to attach
production-oriented metadata to your modules—it’s the difference between ad hoc and
production scripting. Module manifests enable you to annotate and organize the pieces in more
complex, multifile modules. You can think of them as a set of instructions to be implemented
when the module is loaded. The instructions tell PowerShell which cmdlets, variables, and
aliases to load and which will remain private. Like bookkeeping and inventory management,
manifests are complicated and a bit boring but absolutely necessary when doing production
scripting.

A manifest is a file in the module containing a set of metadata about the module, and instructions
on how to load the module are the subject of this chapter. We’ll start with a discussion of the
layout of a module’s directory structure. Then we’ll introduce the manifest and look at its
contents. We’ll explore the tools provided for authoring and testing manifests and walk through
each manifest element, describing its purpose and how to use it. You’ll learn advanced module
techniques, including how to manipulate metadata from within a module, control the module
access mode, and set up actions to take when a module is removed.

(322)

9.1. Module folder structure

A module in the module path ($ENV:PSModulePath) is a directory containing a collection of
files. One of the files in the module directory is the module manifest. This file usually has the
same name as the directory and has a .psd1 extension. You can see an example of this structure
by looking at the contents of the system module directory. This directory contains modules that
are installed with Windows and are visible in the directory $PSHome/Modules. The structure of
some of the modules in this directory is shown in figure 9.1.

Figure 9.1. The layout of the system modules that ship with Windows. Each module is stored in its own folder,
with a .psd1 file containing the module manifest. The PSDiagnostics folder contains the PSDiagnostics module.
The BitsTransfer folder contains the BitsTransfer module.

In figure 9.1, you see that two modules are stored in the system module directory. These modules
are directories containing the files that make up the module contents. Each folder contains a
.psd1 file that’s the manifest for the module.

(323)

Note

In addition to the files shown in figure 9.1 you may see a filename of the form
BitsTransfer_8fa5064b-8479-4c5c-86ea-0d311fe48875_HelpInfo.xml. These files are created by
the updatable help system. Ignore them.

The first module directory, PSDiagnostics, contains two files: the manifest file and a script
module that defines the commands for this module. Notice that the directory, manifest, and script
files all have the same name.

Note

The directory and manifest must have the same name—otherwise, the module won’t load. A
single script file should have the same name by convention. If there isn’t a manifest, the script
file must have the same name as the directory.

The second module is the BitsTransfer module. The structure of this module folder is a little
more complicated. In addition to the manifest, it contains a format file, an interop DLL, and a
subdirectory, en-US. This subdirectory is used to hold the message catalogs that allow for
localized messages.

Note

The previous description is true for system modules, but you’ll find that the overall module
structure in PowerShell v5 has changed to allow multiple versions of a module to be installed.
The folder structure becomes ModuleName/version/module contents. We’ll discuss this further
when we introduce publishing to the PowerShell gallery.

We’ll go over how all these elements are used when we discuss the contents of module manifests
in the next section.

(324)

9.2. Module manifest structure

As you saw in the previous section, a module manifest is stored in a file with a .psd1 extension.
This extension indicates that it’s a PowerShell data file, which is a type of script that’s limited in
the things it can contain. We’ll talk about these restrictions in section 9.6, but for now, you need
to know that it’s a text file containing PowerShell scripts.

This script code must return a hashtable containing a predetermined set of keys when executed
by the system. These keys define the manifest elements for the module. Because these manifest
files are fairly long and somewhat complex, PowerShell provides a cmdlet, New-ModuleManifest, to
help create a manifest. Run this command so you’ll have an example manifest to work with:

PS> New-ModuleManifest testManifest.psd1

Note

In PowerShell v2 all of the parameters on New-ModuleManifest were mandatory, so you would be
prompted for every unspecified parameter even if you weren’t going to use it. This was changed
in PowerShell v3, and only the -Path parameter is mandatory, and so that’s the only parameter
for which you’ll be prompted. If in doubt, use Show-Command to drive the use of New-ModuleManifest.

The generated file will contain comments for each element, describing what the element is used
for. The manifest file you’ve created is shown in the following listing. Note the values that are
automatically added for a number of items, including ModuleVersion, GUID, Author, and Copyright.

Listing 9.1. testmanifest.psd1

#

Module manifest for module 'testManifest'

#

Generated by: Richard

#

Generated on: 23/04/2017

#

@{

Script module or binary module file associated with this manifest.

RootModule = ''

Version number of this module.

ModuleVersion = '1.0'

Supported PSEditions

CompatiblePSEditions = @()

ID used to uniquely identify this module

GUID = '75d7e8c4-5d7e-49bc-a5f6-45554be47ca6'

Author of this module

Author = 'Richard'

Company or vendor of this module

CompanyName = 'Unknown'

Copyright statement for this module

Copyright = '(c) 2017 Richard. All rights reserved.'

(325)

Description of the functionality provided by this module

Description = ''

Minimum version of the Windows PowerShell engine required by this module

PowerShellVersion = ''

Name of the Windows PowerShell host required by this module

PowerShellHostName = ''

Minimum version of the Windows PowerShell host required by this module

PowerShellHostVersion = ''

Minimum version of Microsoft .NET Framework required by this module. This

 prerequisite is valid for the PowerShell Desktop edition only.

DotNetFrameworkVersion = ''

Minimum version of the common language runtime (CLR) required by this

 module. This prerequisite is valid for the PowerShell Desktop edition

 only.

CLRVersion = ''

Processor architecture (None, X86, Amd64) required by this module

ProcessorArchitecture = ''

Modules that must be imported into the global environment prior to

 importing this module

RequiredModules = @()

Assemblies that must be loaded prior to importing this module

RequiredAssemblies = @()

Script files (.ps1) that are run in the caller's environment prior to

 importing this module.

ScriptsToProcess = @()

Type files (.ps1xml) to be loaded when importing this module

TypesToProcess = @()

Format files (.ps1xml) to be loaded when importing this module

FormatsToProcess = @()

Modules to import as nested modules of the module specified in RootModule/

 ModuleToProcess

NestedModules = @()

Functions to export from this module, for best performance, do not use

 wildcards and do not delete the entry, use an empty array if there are no

 functions to export.

FunctionsToExport = @()

Cmdlets to export from this module, for best performance, do not use

 wildcards and do not delete the entry, use an empty array if there are no

 cmdlets to export.

CmdletsToExport = @()

Variables to export from this module

VariablesToExport = '*'

Aliases to export from this module, for best performance, do not use

 wildcards and do not delete the entry, use an empty array if there are no

 aliases to export.

AliasesToExport = @()

DSC resources to export from this module

DscResourcesToExport = @()

List of all modules packaged with this module

ModuleList = @()

List of all files packaged with this module

FileList = @()

Private data to pass to the module specified in RootModule/ModuleToProcess.

 This may also contain a PSData hashtable with additional module metadata

 used by PowerShell.

(326)

PrivateData = @{

 PSData = @{

 # Tags applied to this module. These help with module discovery in online galleries.

 # Tags = @()

 # A URL to the license for this module.

 # LicenseUri = ''

 # A URL to the main website for this project.

 # ProjectUri = ''

 # A URL to an icon representing this module.

 # IconUri = ''

 # ReleaseNotes of this module

 # ReleaseNotes = ''

 } # End of PSData hashtable

} # End of PrivateData hashtable

HelpInfo URI of this module

HelpInfoURI = ''

Default prefix for commands exported from this module. Override the default

 prefix using Import-Module -Prefix.

DefaultCommandPrefix = ''

}

Remember we said it was long and complex? In fact, it’s complex enough that PowerShell also
includes a cmdlet to test a manifest. This cmdlet is called (surprise) Test -ModuleManifest. You’ll
use it to test the manifest you’ve generated to make sure it’s valid (though it would be surprising
if it weren’t—after all, you created it):

PS> Test-ModuleManifest testManifest.psd1

ModuleType Version Name ExportedCommands

---------- ------- ---- ----------------

Manifest 1.0 testmanifest

If the test is successful, the module information object is returned.

ModuleManifest—PrivateData

Originally the PrivateData could be any type you wanted. In PowerShell v5 it was changed so
that only hashtables are allowed. This allows multiple manifest extensions to be added as long as
they’re distinct.

The PSData hashtable was added to the module manifest in PowerShell v5. The contents of
PSData are used to supply information for PowerShell repositories such as the online PowerShell
Gallery.

Section 9.7 explains the use of the PSData section when we discuss publishing modules to a
gallery.

Now that you know it’s valid, you can import it. Normally a module doesn’t emit anything, but
in this case, you want to see it immediately. Specify -PassThru (which will cause the module
information object to be written to the output pipe)

(327)

PS> Import-Module .\testManifest.psd1 -PassThru | Format-List

Name : testmanifest

Path : C:\test1\testmanifest.psd1

Description :

ModuleType : Manifest

Version : 1.0

NestedModules : {}

ExportedFunctions :

ExportedCmdlets :

ExportedVariables :

ExportedAliases :

and you see your essentially empty module.

The New-ModuleManifest cmdlet creates a manifest that contains all the allowed fields, but most of
the fields aren’t required. The only field that’s required is the module version.

In practice, it’s always best to use New-ModuleManifest to generate a complete manifest for your
modules even if you aren’t going to use all the fields immediately. Once you’ve generated the
manifest, you can easily add data to it over time using your favorite text editor.

You can update an existing module manifest using Update-ModuleManifest. This cmdlet was
introduced in PowerShell v5 as part of the PowerShellGet module.

Language restrictions in a manifest

Because the manifest is a PowerShell data file, its contents are restricted to a small subset of
PowerShell language features. This subset includes the basic PowerShell data types (numbers,
strings, hashtables, and so on), the if statement, and the arithmetic and comparison operators.
Things like assignment statements, function definitions, and loop statements aren’t allowed.

With only these elements, you’d be limited to using static values for element definitions. This
means you wouldn’t be able to accommodate variations in system configuration—things like
paths to system directories, software installation directories, and drive letters. To allow you to
handle these situations, manifests are permitted to read (but not write) the $ENV: environment
provider and can use the Join-Path cmdlet to construct paths at runtime. This allows manifest
elements to be written in such a way that system differences can be handled.

In the next few sections, we’ll go over the contents of the manifest. To make our exploration a
bit more manageable, we’ve divided the manifest elements into three broad categories:
production, construction, and content elements. We’ll cover each of these areas and the elements
they contain, starting with the production elements.

(328)

9.3. Production manifest elements

In this section we’ll explore the elements that make up the production metadata. These elements
are used to add things like copyright information and version numbers. The fields in the module
for this are shown in table 9.1. The use of some of the elements is pretty obvious: Author,
CompanyName, Copyright, and so forth. We won’t cover them beyond the comments in the table. The
remaining elements will be covered in the subsections that follow.

Table 9.1. The manifest elements in a module manifest file that contain production-oriented metadata

Manifest element Type Default value Description

ModuleVersion String 1.0

The version number of this
module. This string must be in a
form that can be converted into
an instance of [System.Version].

GUID String Autogenerated ID used to uniquely identify this
module.

Author String None The name of the module creator.

CompanyName String Unknown The company, if any, that
produced this module.

Copyright String
(c) Year Author.
All rights
reserved.

The copyright declaration for
this module with the copyright
year and name of the copyright
holder.

Description String ''

The description of this module.
Because this description may be
used when searching for a
module, it should be a
reasonable description,
mentioning the purpose of the
module and technology area to
which it relates.

PowerShellVersion String ''
Minimum version of the
Windows PowerShell engine
required by this module.

PowerShellHostName String ''

Name of the Windows
PowerShell host application
required by this module. The
default PowerShell hosts are
ConsoleHost and Windows
PowerShell ISE Host. Use $host
to discover PowerShell host
names.

PowerShellHostVersion String ''
Minimum version of the
Windows PowerShell host
required by this module.

(329)

DotNetFrameworkVersion String ''
Minimum version of the .NET
Framework required by this
module.

CLRVersion String '' Minimum version of the CLR
required.

ProcessorArchitecture String ''
The processor architecture this
module requires. It may be '',
None, X86, Amd64, or IA64.

RequiredModules [object[]] @()
Modules that must be imported
into the global environment
prior to importing this module.

In the next few sections, you’ll see how the elements in this table are used to make modules more
production worthy. We’ll begin with an important topic: module identity.

9.3.1. Module identity

For modules to be shared and serviced (patched) effectively, there needs to be a strong notion of
identity that allows you to uniquely identify a module. It can’t only be the module name. The
name of the module comes from the manifest filename, and there’s no guarantee somebody else
won’t give their module the same name as yours. To guarantee that you can always identify a
module regardless of path changes, renames, and so on, the manifest contains a globally unique
identifier (GUID). The algorithm used to generate GUIDs is guaranteed to produce a globally
unique number. Once you know the GUID for a module, you can always identify it, even if the
file gets renamed.

Another important aspect of module identity is the version number. Versioning is what allows
you to determine if the module has been patched properly. The ModuleVersion element in the
manifest is used to hold the module’s version. This element uses the type System.Version to
represent the version of a module internally. In the manifest file, the element should be assigned
a string that can be converted into an instance of System.Version. This string must have the form
of #.#.#.#—for example, 1.0.0.0. When you use the -Version parameter on Import-Module, it will
search the path in $ENV:PSModulePath, looking for the first module whose name matches the
requested name and whose module version is equal to or greater than the required version.

9.3.2. Runtime dependencies

The remainder of the production elements in the manifest relate to identifying environmental
dependencies—what needs to be in the environment for the module to work properly. For many
script modules, most of these elements can be left in their default state. Let’s go through these
elements and what they’re used for.

The CLRVersion and DotNetFrameworkVersion identify dependencies based on what version of the
CLR (or .NET) is installed on the system. Why do you need two elements? Because the CLR
runtime and the framework (all of the libraries) can and do vary independently; for example, the
CLR 3.0 runtime version was 2.0, and the framework version was 3.0.

When adding the dependencies to the manifest, you should specify the minimum highest version
required. This depends on the higher revisions being backward compatible with earlier versions
and is a fairly safe assumption for the CLR.

(330)

Expressing a dependency on the processor architecture isn’t likely to be common, but it’s
possible to have a module that uses .NET interoperation or COM and, as a consequence, has
some processor architecture-specific dependency.

The next set of dependencies is on PowerShell itself. The PowerShellVersion is pretty
straightforward. It specifies the minimum version of PowerShell needed by this module. The
PowerShellHostName and ModuleVersion are only slightly more complex. They allow you to place a
dependency on the application that’s hosting the PowerShell runtime rather than on the runtime
itself. For example, you can have a module that adds custom elements to the PowerShell ISE.
This module clearly has a dependency on the name of the host. To find out the name of the string
to place here, in the host look at the Name property on the object in $host.

Once you know which host you’re depending on, you also need the version number, which is
available through the Version property on $host.

The final type of dependency is on the modules that are already loaded into the system. This is
done through the RequiredModules manifest element. In PowerShell v2 this element only checked
to see if the listed modules were loaded in memory. This has changed so that from PowerShell
v3 onward the required modules are loaded if not already present in memory. Whereas the other
elements you’ve seen so far are either simple strings or strings that can be converted into a
version number, this element can take either a module name string or a hashtable containing two
or three elements. These hashtable elements allow you to precisely specify the module you’re
dependent on because they include the module name, the version number, and the GUID of the
module that must be loaded (although the GUID is optional).

This covers all the production elements in the manifest. Now that you know you have the right
module (Identity) and that it will work in your environment (Dependencies), let’s look at the
manifest elements that control what happens when the module is loaded. Load-time behavior is
controlled by a set of manifest elements that contain entries that are used to construct the in-
memory representation of the module.

(331)

9.4. Construction manifest elements

The construction metadata in this module includes the fields that tell the engine what to load as
part of this module. These fields are listed in table 9.2.

Table 9.2. Module manifest elements that contain data used in constructing the module

Manifest element Type Default value Description

RootModule string '' Script module or binary module file
associated with this manifest

RequiredAssemblies [string[]] @() Assemblies that must be loaded prior to
importing this module

ScriptsToProcess [string[]] @()
Script files (.ps1) that are run in the
caller’s environment prior to importing
this module

TypesToProcess [string[]] @() Type files (.ps1xml) to be loaded when
importing this module

FormatsToProcess [string[]] @() Format files (.ps1xml) to be loaded
when importing this module

NestedModules [string[]] @()
Modules to import as nested modules of
the module specified in
ModuleToProcess

FunctionsToExport String "*" Functions to export from this module
CmdletsToExport String "*" Cmdlets to export from this module
VariablesToExport String "*" Variables to export from this module
AliasesToExport String "*" Aliases to export from this module

DscResourcesToExport [string[]] @() DSC resources to export from this
module

Note

In PowerShell v2 RootModule was known as ModuleToProcess. Both names still work in a manifest,
though RootModule is recommended because it matches with the latest parameters. RootModule is a
better description because it supplies the base module with everything else being loaded as
submodules. ModuleToProcess is an alias for the RootModule parameter on New-ModuleManifest. If you
need backward compatibility to PowerShell 2.0, be sure to use ModuleToProcess.

There are two subcategories in the construction elements: “things to load” and “things to export.”
The relevant code from listing 9.1 is repeated here:

@{

Script module or binary module file associated with this manifest.

RootModule = ''

Assemblies that must be loaded prior to importing this module

(332)

RequiredAssemblies = @()

Script files (.ps1) that are run in the caller's environment prior to importing this module.

ScriptsToProcess = @()

Type files (.ps1xml) to be loaded when importing this module

TypesToProcess = @()

Format files (.ps1xml) to be loaded when importing this module

FormatsToProcess = @()

Modules to import as nested modules of the module specified in RootModule/ModuleToProcess

NestedModules = @()

Functions to export from this module

FunctionsToExport = '*'

Cmdlets to export from this module

CmdletsToExport = '*'

Variables to export from this module

VariablesToExport = '*'

Aliases to export from this module

AliasesToExport = '*'

DSC resources to export from this module

DscResourcesToExport = @()

}

We’ll start with loading because you can’t export anything until something has been loaded. As
mentioned previously, none of the fields is required. If they aren’t there, then PowerShell
assumes the default value for each field, as shown in the table.

9.4.1. The loader manifest elements

The next few sections cover each of these manifest elements in the order in which you’re most
likely to use them when creating a manifest. This isn’t the order in which they’re processed when
the module is loaded. We’ll cover the load order as a separate topic in section 9.4.2.

RootModule manifest element

The first loader element we’ll discuss is RootModule. It’s the most commonly used manifest
element and identifies the main, or root, active module to load. By active, we mean that the file
defines executable elements, instead of merely providing metadata definitions. The type of the
module file specified in this member will determine the final module type. If no file is specified
as the RootModule, then the type shown in the module information object will be Manifest. If it’s a
script or binary module, it will be the respective module type. Other types will raise errors. The
combinations are shown in table 9.3.

Table 9.3. Module types as determined by the RootModule member

Contents of RootModule Final module type

empty Manifest
Script module (.psm1 file) Script
CDXML module (.cdxml file) Cim
Binary module (.dll, .exe) Binary

(333)

A workflow module (.xaml file) Workflow
Module manifest (.psd1 file) Error—not permitted
Script file Error—not permitted

PowerShell discoverability

One of the great things about PowerShell is that you can investigate the inner workings using
PowerShell itself. As an example, you can discover the available module types like this:

PS> [System.Management.Automation.ModuleType].GetFields().Name

value__

Script

Binary

Manifest

Cim

Workflow

You could look at the MSDN documentation for the ModuleType enumeration at
http://mng.bz/5JkY.

But that’s not as much fun.

If a script, cdxml, workflow, or binary module is specified in the RootModule element, the type of
the loaded module will be Script, CIM, Workflow, or Binary, respectively, as shown in the
ModuleType property displayed by Get-Module.

Note

A CIM module is created from a CIM (WMI) class. The module definition is a .cdxml (cmdlet
definition XML) file. Details on creating .cdxml modules can be found in PowerShell and WMI
by Richard Siddaway (Manning, 2012) or PowerShell in Depth by Don Jones, et al., (Manning,
second edition, 2015).

What it can’t be, however, is another manifest module or script file. The reason for this
constraint is that the job of a manifest is to add metadata to a script or binary module. If the main
module is another manifest, you’d have to deal with colliding metadata. For example, one
manifest may declare that the module is version 1.0.0.0, but the second module says it’s version
1.2.0.0. There’s no way to reconcile this type of collision, so it’s not allowed. As a result,
PowerShell won’t look for a .psd1 file when searching for the module to process. It’s expected
that production modules will use RootModule to identify a single main module.

NestedModules manifest element

The NestedModules are loaded before the RootModule is loaded. Although the net effect is
equivalent to having the main module call Import-Module, there are two advantages to this
approach. First, it’s easy to see what the module is going to lod before loading the module.
Second, if there’s a problem with loading the nested modules, the main module won’t have been
loaded and won’t have to deal with the load failures.

(334)

http://mng.bz/5JkY

RequiredAssemblies manifest element

The RequiredAssemblies field loads the assemblies listed in the element if they aren’t already
loaded. Figure 9.2 shows the steps taken when trying to find the assembly to load.

Figure 9.2. The steps taken when trying to load an assembly from the RequiredAssemblies module

Note

The LoadWithPartialName() method shown in figure 9.2 is deprecated but is unlikely to be
removed because PowerShell and many people still rely on this method. The CorePowerShell for
Nano server option in Windows Server 2016 uses an alternative mechanism because there isn’t a

(335)

GAC in CoreCLR.

If one of the steps results in a successful load, PowerShell will proceed to the next step in loading
a module. If it fails, the entire module loading process is considered a failure.

ScriptsToProcess manifest element

Now let’s talk about ScriptsToProcess and scripts in general. Something we didn’t discuss earlier
is that NestedModules can also refer to script files. These script files are run in the root module’s
context—equivalent to dot-sourcing them into the root module script. The scripts listed in
ScriptToProcess do something quite different. These scripts are run in the caller’s environment,
not the module environment, and are run before any of the modules are loaded. This allows for
custom setup and environment validation logic. We talked about how version checks work—the
first module with a version number equal to or greater than the requested version number will be
loaded, assuming things are backward compatible. This might not be true, but there’s no explicit
support for this level of dependency checking currently. If you’re in a situation where you have
to do this, you can use a script referenced in ScriptsToProcess.

TypesToProcess and FormatsToProcess manifest elements

The last of the loaded manifest elements are TypesToProcess and FormatsToProcess. These are files
with a .ps1xml extension that contain formatting instructions and additional type metadata.

9.4.2. Module component load order

Module components are loaded into the PowerShell environment using a fixed sequence of steps
called the module load order. This load order is shown in figure 9.3.

Figure 9.3. The ordering of the steps when processing a module manifest. If an error occurs at any point prior to
the next-to-last step, module processing will stop, and an error will be thrown.

(336)

The order in which these steps are taken can be of significance when you’re trying to construct a
module with a complex structure. In particular, there’s an issue load order that causes problems
when using binary modules with types and format files.

Because types and format files are loaded before ModuleToProcess is, if the types and format files
contain references to any of the .NET types in the binary module, an error saying that the
referenced types can’t be found because the module’s DLL hasn’t been loaded yet will occur. To
work around this, you need to make sure the DLL for the binary module is loaded first. You do
so by adding the DLL to the list of RequiredAssemblies. Because RequiredAssemblies is processed
before the types and format file entries, there won’t be a problem resolving the types. Then,
when it’s time to load the binary module, the DLL will already be loaded and will need to be

(337)

scanned to find the cmdlets and providers. This resolves the problem with effectively no
performance impact and only a small increase of complexity for the module owner.

At this point, we’ve covered all the major module manifest topics. There are the content manifest
elements left to look at before we’re finished.

(338)

9.5. Content manifest elements

The content manifest elements mainly list the component files that make up a module. Two lists
are provided: a list of all loadable module files and a separate list for any other files (data files,
icons, audio clips, and so on) that are part of the module. The location of the external help and a
default prefix for exported commands can also be specified. These elements are shown in table
9.4.

Table 9.4. Module manifest elements used to list the module’s contents

Manifest element Type Default value Description

ModuleList [string[]] @()
Non-normative list of
all modules packaged
with this module.

FileList [string[]] @()
Non-normative list of
all files packaged with
this module.

PrivateData [hastable] @{}

Private data to pass to
the module specified in
RootModule. This may
also contain a PSData
hashtable with
additional module
metadata used by
PowerShell.

HelpInfoURI [string] ''
HelpInfo URI of this
module. This points to
external help.

DefaultCommandPrefix [string] ''

Default prefix for
commands exported
from this module.
Override the default
prefix using Import-
Module -Prefix.

Note that these packing lists are not normative—they aren’t processed or enforced by
PowerShell, and filing them is optional. As a best practice, though, it’s recommended that they
contain accurate data because external tools may be created to do the validation.

The PrivateData element provides a way for module writers to include custom data in manifests
and make it available to modules when loaded. Originally, PrivateData could be any type, but in
PowerShell v5 its type is effectively a hashtable implemented such that it’s backward compatible
with earlier versions of PowerShell. If you’re using PrivateData for your own purposes, you
should insert your data as a subkey of the hashtable. The system makes the data available to both
script and binary modules, including to providers defined in binary modules. We’ll look at the
PSData section in section 9.7 when we discuss publishing a module to a gallery.

(339)

And we’re finished with manifests! In the next section, we’ll explore features that are less
tedious but (hopefully) more exciting.

(340)

9.6. Advanced module operations

In this section, you’ll learn sophisticated things you can do with modules. These features are not
intended for typical day-to-day use, but they allow for some sophisticated scripting. As always, if
you aren’t only scripting for yourself, have pity on the person who will have to maintain your
code and avoid “stunt scripting.”

9.6.1. The PSModuleInfo object

PowerShell modules, like everything in PowerShell, are objects you can work with directly. The
type of the object used to reference modules is System.Management.Automation.PSModuleInfo.

You’ve been looking at these objects all along—this is what Get-Module returns—but you’ve been
using them only to get basic information about a module. In practice, there are a lot of other
things that can be done once you have a PSModuleObject. In this section, we’ll look at what can be
done (and try to explain why you’d do these things).

Invocation in the module context

In our discussion about module scopes, we introduced the concept of a module-level scope,
which is used to isolate the private variables and functions. When you execute code where
function and variable lookup is done in a module scope, we call this executing in the module
context. This is what happens anytime you execute a function that has been exported from a
module. But you can also cause arbitrary code to be executed in the module context even though
it wasn’t defined in that context. In effect, you’re pushing code into the module context. This is
done with a PSModuleInfo object using the call operator &.

Note

Yes, this ability to inject code into a module context violates all the principles of isolation and
information hiding. And from a language perspective, this is a bit terrifying, but people do it all
the time when debugging. One of the nice things about dynamic languages is that you’re
effectively running the debugger attached all the time.

To try this out, you’ll need a module object to play with. Let’s load the counter module we
looked at in section 8.4.1. This module has private state in the form of the two variables—$count

and $increment—and one public function, Get-Count. Now import it

PS> Import-Module .\counter.psm1

and use Get-Module to get the module reference:

PS> $m = Get-Module counter

You could have done this in one step with the -PassThru parameter, as you saw earlier, but we’re
using two steps here to illustrate that these techniques can be done with any in-memory module.
Now run the Get-Count function, and it returns 1, as it should right after the module is first

(341)

loaded:

PS> Get-Count

1

Now set a global variable, $count, using the Set-Variable command (again, we’re using the
command instead of assignment to set the variable for illustration purposes):

PS> Set-Variable -Name count -Value 33

When you run Get-Count again, it returns 2 because the $count variable it uses exists in the
module context:

PS> Get-Count

2

So far, nothing much to see. Now let’s do something a bit fancier. Let’s see what the current
value of $count in the module context is. You can do this by invoking Get -Variable in the
module context with the call operator:

PS> & $m Get-Variable count

Name Value

---- -----

count 2

You see the value is 2. Great. Now you can inspect the private inner state of a module to see
what’s going on. Next, let’s alter that state. You’ll execute the same Set-Variable command as
before but inside the module this time:

PS> & $m Set-Variable -Name count -Value 33

Call Get-Count to verify that you have made a change:

PS> Get-Count

34

The call to Get-Count returns 34, so you’ve successfully changed the value of the variable it uses
in its operation.

Okay, you know how to get and set state in the module, so let’s try altering the code. First, look
at the body of the Get-Count function:

PS> & $m Get-Item function:Get-Count

CommandType Name Version Source

----------- ---- ------- ------

Function Get-Count 0.0 counter

Now redefine the function in the module. Instead of adding the increment, add the increment
times 2:

PS> & $m {

 function script:Get-Count

 {

 return $script:count += $increment * 2

 }

}

Although you’ve redefined the function in the module, you have to reimport the module in order
to get the new definition into your function table:

(342)

PS> Import-Module .\counter.psm1

Now you can call the function again to make sure you’re getting what you expected:

PS> Get-Count

36

PS> Get-Count

38

Yes, Get-Count is now incrementing by 2 instead of 1.

All these tweaks on the module affect only the module in memory. The module file on disk isn’t
changed! If you use the -Force parameter on Import-Module, you’ll force the system to reload the
file from disk, reinitializing everything to the way it was:

PS> Import-Module .\counter.psm1 -Force

Verify this by running Get-Count:

PS> Get-Count

1

Again, this is one of the characteristics of dynamic languages: the ability of programs to modify
themselves in a profound way at runtime and then restore the original state. In the next section
we’ll look at how to use properties on the PSModuleInfo to access the members of a module
without importing them.

Accessing modules exports using the PSModuleInfo object

The exported members of a module are discoverable through properties on the PSModuleInfo
object that represents the module. This gives you a way to look at the exported members without
having to import them into your environment. For example, the list of exported functions is
available in the ExportedFunctions member. These properties are hashtables, indexed by the name
of the exported member. Let’s look at what you can do using these properties.

As always, you need a module to work with. In this case, you’ll use a dynamic module, which
we’ll cover in more detail in chapter 10. Dynamic modules don’t require a file on disk, which
makes them easy to use for experiments. You’ll create a dynamic module and save the
PSModuleInfo object in a variable called $m:

PS> $m = New-Module {

 function foo {"In foo x is $x"}

 $x=2

 Export-ModuleMember -func foo -var x

}

Now you can use the export lists on the PSModuleInfo object to see what was exported:

PS> $m | Format-List exported*

ExportedFunctions : {[foo, foo]}

ExportedCmdlets : {}

ExportedCommands : {[foo, foo]}

ExportedVariables : {[x, System.Management.Automation.PSVariable]}

ExportedAliases : {}

ExportedWorkflows : {}

ExportedDscResources : {}

ExportedFormatFiles : {}

ExportedTypeFiles : {}

(343)

In the output, you see that one function and one variable were exported. You also see that the
function turns up in the ExportedCommands member. Modules can export more than one type of
command—functions, aliases, or cmdlets—and this property exists to provide a convenient way
to see all commands regardless of type.

Note

By implementing the exported member properties as hashtables, you can access and manipulate
the state of the module in a fairly convenient way. The downside is that the default output for the
exported members is a bit strange, especially for functions where you see things like [foo, foo].
These tables map the name of a command to the CommandInfo object for that command. When the
contents of the table are displayed, both the key and the value are displayed as strings, and
because the presentation of a CommandInfo object as a string is the name of the object, you see the
name twice.

Let’s use the ExportedFunctions property to see how the function foo is easier to write:

PS> $m.ExportedFunctions.foo

CommandType Name Version Source

----------- ---- ------- ------

Function foo 0.0 __DynamicModule_7263f1...

The value returned from the expression is a CommandInfo object.

Note

The value of source is _DynamicModule_ followed by a GUID, so you’ll see a different value each
time you try this code.

This means that you can use the call operator, &, to invoke this function:

PS> & $m.ExportedFunctions.foo

In foo x is 2

You can also use the PSModuleInfo object to change the value of the exported variable $x:

PS> $m.ExportedVariables.x.value = 3

Call the function again to validate this change:

PS> & $m.ExportedFunctions.foo

In foo x is 3

The return value from the call is the updated value as expected. Next, we’ll look at some of the
methods on PSModuleInfo objects.

9.6.2. Using the PSModuleInfo methods

(344)

The call operator isn’t the only way to use the module information object. The object itself has a
number of methods that can be useful. Look at some of them:

PS> [psmoduleinfo].GetMethods() |

Select-String -notmatch '(get_|set_)'

System.Management.Automation.ScriptBlock NewBoundScriptBlock(

 System.Management.Automation.ScriptBlock)

System.Object Invoke(System.Management.Automation.ScriptBlock,

 System.Object[])

System.Management.Automation.PSObject AsCustomObject()

<output truncated for brevity>

We’ll cover the first two listed, Invoke() and NewBoundScriptBlock(), and save AsCustomObject() for
chapter 10.

The Invoke() method

This method is a .NET programmer way of doing what you did earlier with the call operator.
Assuming you still have the counter module loaded (load it if you don’t), let’s use this method to
reset the count and change the increment to 5. First, get the module information object:

PS> $m = Get-Module counter

Now invoke a scriptblock in the module context using this method:

PS> $m.Invoke({$script:count = 0; $script:increment = 5})

The corresponding invocation using the call operator would be as follows:

PS> & $m {$script:count = 0; $script:increment = 5}

This is scripter-friendly, but either way, let’s try to verify the result:

PS> Get-Count

5

PS> Get-Count

10

The count was reset, and Get-Count now increments by 5 instead of 1. Next, let’s look at a way to
attach modules to a scriptblock.

The NewBoundScriptBlock() method

In this topic, we’re jumping ahead a bit because we won’t cover scriptblocks in depth until
chapter 10. A module-bound scriptblock is a piece of code—a scriptblock—that has the module
context to use attached to it. Normally an unbound scriptblock is executed in the caller’s context,
but once a scriptblock is bound to a module, it always executes in the module context. In fact,
that’s how exported functions work—they’re implicitly bound to the module that defined them.

Let’s use this mechanism to define a scriptblock that will execute in the context of the counter
module. First, you need to get the module (again). You could use Get-Module as before, but now
that you know that exported functions are bound to a module, you can use the Module property on
an exported command to get the module information object. Do so with Get-Count:

PS> $gcc = Get-Command Get-Count

(345)

Now you can get the module for this command:

PS> $gcc.Module

ModuleType Version Name ExportedCommands

---------- ------- ---- ----------------

Script 0.0 counter {Get-Count, Reset-Count, setIncrement}

Next, you need to define the scriptblock you’re going to bind. Do this and place the scriptblock
into a variable:

PS> $sb = {param($incr) $script:increment = $incr}

This scriptblock takes a single parameter, which it uses to set the module-level $increment
variable. Now you’ll bind it to the target module. Note that this doesn’t bind the module to the
original scriptblock; instead, it creates a new scriptblock with the module attached:

PS> $setIncrement = $gcc.Module.NewBoundScriptblock($sb)

Now test using the scriptblock to set the increment. Invoke the scriptblock with the call operator
passing in an increment of 10:

PS> & $setIncrement 10

And verify that the increment has been changed:

PS> Get-Count

20

PS> Get-Count

30

Okay, good. But if you want to use this mechanism frequently, it would be useful to have a
named function. You can do this by assigning the scriptblock to Set-Increment in the function:
drive:

PS> ${function:Set-CountIncrement} = $setIncrement

Let’s test the function:

PS> Set-CountIncrement 100

PS> Get-Count

130

PS> Get-Count

230

And now the increment is 100 per the argument to the Set-CountIncrement. Now use Get-Command
to look at the function you’ve defined:

PS> Get-Command Set-CountIncrement | Format-Table name, module

Name Module

---- ------

Set-CountIncrement counter

Similar to Get-Count, it’s listed as being associated with the counter module. Now that you’ve
introduced the idea of a function being dynamically attached to a module, you should learn about
the context where a function gets evaluated—which we’ll cover in the next section.

9.6.3. The defining module vs. the calling module

(346)

In this section we’ll go into greater detail about how the execution context for a module is
established. We covered module scoping in section 8.4.4. By providing you with a deeper
understanding of the details of how this works, we’re setting the stage for some of the more
advanced topics we’ll cover in chapter 10.

Commands always have two module contexts: the context where they were defined and the
context where they were called from. This is a somewhat subtle concept that will be explained
through the examples in this section. Before PowerShell had modules, this wasn’t terribly
interesting except for getting filename and line number information for where the function was
called and where it was defined. With modules, this distinction becomes more significant.
Among other things, the module where the command was defined contains the module-specific
resources like the manifest PrivateData element mentioned in section 9.5. For functions, the
ability to access the two contexts allows the function to access the caller’s variables instead of
the module variables.

Accessing the defining module

The module that a function was defined in can be retrieved by using the expression
$MyInvocation.MyCommand.Module. Similarly, the module a cmdlet was defined in is available
through the instance property this.MyInvocation.MyCommand.Module. If the function is defined in the
global scope (or top level), the module field will be $null. Let’s try that. First, define a function
at the top level:

PS> function Test-ModuleContext {

 $MyInvocation.MyCommand.Module

}

Then run it, formatting the result as a list showing the module name and PrivateData fields:

PS> Test-ModuleContext | select name,privatedata

Nothing was output because the defining module at the top level is always $null. Now let’s
define the function inside a module. Use a here-string to create a .psm1 file:

PS> @'

function Test-ModuleContext {

 $MyInvocation.MyCommand.Module

}

'@ > TestModuleContext.psm1

Now load the file and run the same test command as you did previously:

PS> Import-Module ./TestModuleContext.psm1

PS> Test-ModuleContext | Format-List name, privatedata

Name : TestModuleContext

PrivateData :

This time the result of the function was not $null—you see the module name, and the PrivateData
field is empty because there was no module manifest to provide this data. You can remedy this
by creating a module manifest to go along with the .psm1 file. This abbreviated manifest defines
the minimum—the module version, the module to process, and a hashtable for PrivateData:

PS> @'

 @{

 ModuleVersion = '1.0.0.0'

 ModuleToProcess = 'TestModuleContext.psm1'

 PrivateData = @{a = 1; b = 2 }

(347)

 }

'@ > TestModuleContext.psd1

Load the module using the manifest and -Force to make sure everything gets updated:

PS> Import-Module -Force ./TestModuleContext.psd1

Then run the test command:

PS> Test-ModuleContext | Format-List name, privatedata

Name : TestModuleContext

PrivateData : {a, b}

You see that the PrivateData field is now also filled in.

Accessing the calling module

The module that a function was called from can be retrieved by using the expression
$PSCmdlet.SessionState.Module. Similarly, the module a cmdlet is called from is available through
this.SessionState.Module. In either case, if the command is being invoked from the top level, this
value will be $null because there is no “global module.”

Note

It’s unfortunate that the PowerShell team didn’t get a chance to wrap the global session state in a
module before PowerShell v2 shipped. This means that this kind of code has to be special case
for the module being $null some of the time.

Working with both contexts

Now let’s look at a tricky scenario where you access both contexts at once. This is something
that’s rarely necessary but when needed is absolutely required.

In functions and script modules, accessing the module session is trivial because unqualified
variables are resolved in the module context by default. To access the caller’s context, you need
to use the caller’s session state, available as a property on $PSCmdlet. Let’s update the Test-
ModuleContext module to access a variable, $testv, both in the caller’s context and the module
context. Here’s the module definition:

PS> @'

 $testv = 123

 function Test-ModuleContext {

 [CmdletBinding()] param()

 "module testv is $testv"

 $ctestv = $PSCmdlet.SessionState.PSVariable.Get("testv").Value;

 "caller's testv is $ctestv"

}

'@ > TestModuleContext.psm1

This defines your test function, specifying that the cmdlet binding be used so you can access
$PSCmdlet. The module body also defines a module-scoped variable, $testv. The test function will
emit the value of this variable and then use the expression

(348)

$PSCmdlet.SessionState.PSVariable.Get("testv").Value

to get the value of the caller’s $testv variable. Next, load the module:

PS> Import-Module -Force ./TestModuleContext.psm1

Now define a global $testv:

PS> $testv = '456'

Next, run the command:

PS> Test-ModuleContext

module testv is 123

caller's testv is 456

And you see the module $testv was correctly displayed as 123 and the caller’s variable is the
global value 456. Now wait a minute, you say, you could’ve done this much more easily by
specifying $global:testv. That’s true if you were only interested in accessing variables at the
global level. But sometimes you want to get the local variable in the caller’s dynamic scope.
Let’s try this. Define a new function, nested, that will set a local $testv:

PS> function nested {

 $testv = "789"

 Test-ModuleContext

}

This function-scoped $testv variable is the caller’s variable you want to access, so you should get
789 instead of the global value 456:

PS> nested

module testv is 123

caller's testv is 789

It works. The module $testv was returned as 123, and the caller’s $testv returned the value of the
function-scoped variable instead of the global variable.

When would you need this functionality? If you want to write a function that manipulates the
caller’s scope—say something like the Set-Variable cmdlet implemented as a function—then
you’d need this capability. The other time you might need to do this is when you want to access
the value of locally scoped configuration variables, such as $OFS.

9.6.4. Setting module properties from inside a script module

We’ve talked at length about how manifests are required to set metadata on a module, but there’s
a way for the script module to do some of this itself during the module load operation. To do that
it needs to have access to its own PSModuleInfo object during the load. This can be retrieved using
the rather awkward expression

$MyInvocation.MyCommand.ScriptBlock.Module

But once you have the PSModuleInfo object, the rest is easy. Try it out by setting the Description
property on your own module.

Setting the module description

(349)

In this example, you’ll set the Description property for a module from within the module itself.
You’ll create a module file in the current directory called setdescription.psm1:

PS> @'

$mInfo = $MyInvocation.MyCommand.ScriptBlock.Module

$mInfo.Description = "My Module's Description on $(Get-Date)"

'@ > setdescription.psm1

On the first line of the module, you copy the reference to the PSModuleInfo object into a variable,
$mInfo. On the second line, you assign a value to the Description property on that object. Import
the module:

PS> Import-Module .\setdescription.psm1

Then call Get-Module, piping into Format-List so you can see only the module name and its
description:

PS> Get-Module setdescription | Format-List name, description

Name : setdescription

Description : My Module's Description on 04/23/2017 20:01:10

And there you go. You’ve dynamically set the Description property on your module.

Along with being able to set this type of metadata entry on the PSModuleInfo object, there are a
couple of behaviors you can control as well. You’ll see how this works in the next two sections.

9.6.5. Controlling when modules can be unloaded

The module AccessMode feature allows you to restrict when a module can be unloaded. There are
two flavors of restriction: static and constant. A static module is a module that can’t be removed
unless the -Force option is used on the Remove-Module cmdlet. A constant module can never be
unloaded and will remain in memory until the session that loaded it ends. This model parallels
the pattern for making variables and functions constant.

To make a module either static or constant, you need to set the AccessMode property on the
module’s PSModuleInfo object to the appropriate setting. Set it to ReadOnly for static modules and
Constant for constant modules. You can’t do this through the metadata in the module manifest.
The appropriate code has to be in the module script file. Let’s see how this is done. Here’s an
example script module called readonly.psm1 that makes itself ReadOnly by having these lines at
the top of the module:

PS> @'

$mInfo = $MyInvocation.MyCommand.ScriptBlock.Module

$mInfo.AccessMode = 'readonly'

'@ > readonly.psm1

The first line of the module is the same as the example in the previous section and retrieves the
PSModuleInfo object. The next line sets the AccessMode to readonly. Now load this module and
verify the behavior:

PS> Import-Module .\readonly.psm1

PS> Get-Module readonly

ModuleType Version Name ExportedCommands

---------- ------- ---- ----------------

Script 0.0 readonly

(350)

You’ve verified that it’s been loaded, so now try to remove it:

PS> Remove-Module readonly

Remove-Module : Unable to remove the module 'readonly' because it is read-

 only. Add the Force parameter to your command to remove read-only modules.

At line:1 char:1

+ Remove-Module readonly

+ ~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : PermissionDenied: (readonly:PSModuleInfo) [Remove-Module],

InvalidOperationException

 + FullyQualifiedErrorId :

Modules_ModuleIsReadOnly,Microsoft.PowerShell.Commands.RemoveModuleCommand

When you try to remove the module, you get an error stating that -Force must be used to remove
it. Do that:

PS> Remove-Module readonly -Force

This time you don’t get an error. You can verify that the module has been removed by calling
Get-Module. Nothing is returned, confirming that the module has been removed. The same
approach is used to mark a module as constant.

And now, the final feature we’re going to cover: how to run an action when a module is
unloaded.

9.6.6. Running an action when a module is removed

Sometimes you need to clean up when a module is unloaded. If the module establishes a
persistent connection to a server, when the module is unloaded you’ll want that connection to be
closed. An example of this pattern occurs when using implicit remoting. The PSModuleInfo object
provides a way to do this through its OnRemove property.

To set up an action to execute when a module is unloaded, assign a scriptblock defining the
action to the OnRemove property on the module’s PSModuleInfo object. Here’s an example that
shows how this is done (save as onremove.psm1):

PS> @'

$mInfo = $MyInvocation.MyCommand.ScriptBlock.Module

$mInfo.OnRemove = {

 Write-Host "I was removed on $(Get-Date)"

}

'@ > onremove.psm1

You get the PSModuleInfo object in the first line, and then you assign a scriptblock that displays a
message to the OnRemove property. (Note that you have to call Write-Host if you want to see the
message because the output of the scriptblock is ignored.) Let’s try it out. Import the module:

PS> Import-Module .\onremove.psm1

then remove it:

PS> Remove-Module onremove

I was removed on 04/23/2017 20:09:09

And the message from the scriptblock is printed, confirming that the OnRemove action was
executed.

Once you have your module working the way you want, you need to be able to make it available

(351)

to other people. You can provide a zip file containing the module files, but PowerShell v5
supplies a better option: publishing to a PowerShell gallery.

(352)

9.7. Publishing a module to a PowerShell Gallery

A PowerShell gallery (also known as a repository) is a place from which you can download
modules. We showed you how to install modules from the PowerShell gallery in chapter 8. To
recap, you can find available repositories:

PS> Get-PSRepository

Name InstallationPolicy SourceLocation

---- ------------------ --------------

PSGallery Untrusted https://www.powershellgallery.com/api/v2/

You can find modules within the gallery:

PS> Find-Module -Name A*tools -Repository PSGallery

Version Name Repository Description

------- ---- ---------- -----------

1.0.1.16 ActiveDirectoryTools PSGallery Custom tools...

1.30.1.28 ACLReportTools PSGallery Provides Cmd...

1.0 AzureStorageTools PSGallery Azure storag...

2016.5.7.3 ARTools PSGallery PowerShell m...

Having found the module, you can install it:

PS> Install-Module -Name ARTools -Repository PSGallery

Alternatively, you can save the module for further inspection and testing:

PS> Save-Module -Name ARTools -Repository PSGallery -Path C:\testscripts

But this raises a question. How do modules get into the repository?

You can publish modules to a repository using Publish-Module. The module has to have a
manifest, and the PSData items should be completed. We’ll discuss how to generate the correct
items in the module manifest and the requirements your module has to meet to enable publishing
to the PowerShell gallery.

Modules change as features are added or modified. Those changes need to be published to the
gallery.

A private PowerShell gallery

The public PowerShell gallery is just that: public. Many organizations don’t allow the
installation of software from public sites or want their users to be able to install only approved
modules.

The answer is to create a private PowerShell gallery internal to your organization. You can
control who can publish modules, and if modules from the public gallery are required you can
download them, test them, and then publish to your internal gallery for your users to access.

The PowerShell team has published the code to create and configure a private PowerShell gallery
at https://github.com/powershell/psprivategallery. We’ll be using this for the publishing
examples so that we don’t add our examples to the public gallery.

(353)

https://github.com/powershell/psprivategallery

When you create a private gallery, you have to register it on each machine from which you want
to access the gallery:

PS> Register-PSRepository -Name PSPrivateGallery `

-SourceLocation 'http://w16gly:8080/api/v2/' `

-InstallationPolicy Trusted

The source location will change depending on the machine on which you installed the private
gallery

Let’s work through publishing a module. The first thing we need is a module.

9.7.1. A module to publish

In chapter 8 we created a module, shown in listing 8.2. We’ll reuse that module as our example.

Listing 9.2. Counter module

$script:count = 0

$script:increment = 1

function Get-Count

{

 return $script:count += $increment

}

function Reset-Count

{

 $script:count=0

 setIncrement 1

}

function setIncrement ($x)

{

 $script:increment = $x

}

Export-ModuleMember *-Count

The module is a simple incrementing counter, as discussed in chapter 8. It exports two functions:
Get-Count and Reset-Count.

You need to meet a number of requirements to be able to publish to the PowerShell gallery:

You need to be a registered user to publish modules to the gallery. You don’t need to be
registered to download modules.
You must have a module manifest preferably created using New-ModuleManifest and tested
with Test-ModuleManifest.
The module manifest should contain a LicenseURI, HelpInfoURI, and ProjectURI. These fields
are found in the PSData section of the module manifest.
The module should be scanned with an antivirus scanner before being published.
PSScriptAnalyzer (available from the PowerShell gallery) should be used to scan the
module. All errors must be corrected because the gallery also uses PSScriptAnalyzer and a
module with errors will be unlisted.
You should follow the appropriate guidelines, published on MSDN, for modules and DSC
resources.

(354)

Note

It’s becoming accepted best practice in the PowerShell community that Pester-based tests should
be included with modules published to the public PowerShell gallery.

Once your module is complete, you should generate a module manifest using New -
ModuleManifest.

9.7.2. PSData Packaging elements

Within the PrivateData element you have the option to complete the PSData hashtable. This
hashtable provides data for module discovery in online repositories such as the PowerShell
Gallery. An example, from the Pester module (installed in Windows 10 or available from the
PowerShell Gallery), is here.

Listing 9.3. PSData entries from the Pester module

PSData = @{

 # The primary categorization of this module

 (from the TechNet Gallery tech tree).

 Category = "Scripting Techniques"

 # Keyword tags to help users find this module

 via navigations and search.

 Tags = @('powershell','unit testing','bdd','tdd','mocking')

 # The web address of an icon which can be used

 in galleries to represent this module

 IconUri = "http://pesterbdd.com/images/Pester.png"

 # The web address of this module's project or

 support homepage.

 ProjectUri = "https://github.com/Pester/Pester"

 # The web address of this module's license.

 Points to a page that's embeddable and linkable.

 LicenseUri = "http://www.apache.org/licenses/LICENSE-2.0.html"

 # Release notes for this particular version of the module

 # ReleaseNotes = False

 # If true, the LicenseUrl points to an end-user license

 (not just a source license) which requires the user

 agreement before use.

 # RequireLicenseAcceptance = ""

 # Indicates this is a pre-release/testing version of the module.

 IsPrerelease = 'False'

}

If you compare this to listing 9.1 you’ll see that a number of elements have been added,
including ReleaseNotes and RequireLicenseAcceptance. You can add whatever metadata you need
into this section of the manifest.

You can generate the standard PSData entries using New-ModuleManifest:

PS> $path = "$HOME\Documents\WindowsPowerShell\Modules"

PS> $module = "Counter\1.0.0"

PS> New-ModuleManifest -Path "$path\$module\Counter.psd1" `

-RootModule Counter.psm1 -CompanyName 'PowerShell in Action' `

-Description 'Test module' `

-Author 'Bruce and Richard' -Guid ([System.Guid]::NewGuid()) `

(355)

-Copyright 'Bruce and Richard 2017' -ModuleVersion 1.0.0 `

-Tags 'PowerShell', 'Example', 'Counters' `

-ProjectUri 'http://BRproject.com' `

-LicenseUri 'http://BRproject.com/License.html' `

-IconUri 'http://BRproject.com/Counter.png' `

-ReleaseNotes 'http://BRproject.com/ReleaseNotes.html'

Running this code produces the following PSData block (comments removed for brevity):

 PSData = @{

 Tags = 'PowerShell', 'Example', 'Counters'

 LicenseUri = 'http://brproject.com/License.html'

 ProjectUri = 'http://brproject.com/'

 IconUri = 'http://brproject.com/Counter.png'

 ReleaseNotes = 'http://BRproject.com/ReleaseNotes.html'

 }

Note

The examples given are fictitious, so please don’t try accessing the URIs.

Let’s examine the PSData elements in more detail.

Tags

Tags are used to aid the user when searching for modules in the gallery. For instance, you may
be looking for modules that provide functionality for managing Active Directory, as shown in
figure 9.4.

Figure 9.4. Searching for modules in the PowerShell gallery using tags

(356)

Figure 9.4 shows that the results will vary depending on the exact value input to the Tag
parameter. The syntax for Find-Module shows that the Tag parameter accepts an array of strings so
you can search on multiple tags simultaneously:

PS> Find-Module -Tag 'Active Directory', 'ActiveDirectory', 'Active', 'Directory', 'AD'

As a module writer, you need to use sufficient tags to ensure that your module will be found.
Find-Module treats tags in a case-insensitive manner, so you don’t need to worry about case issues.

Gallery users should ensure they use a variety of tags so they find the correct modules. There are
hundreds of modules in the PowerShell gallery at the time of writing; this number will only
increase, so using tags will make your gallery use more efficient.

LicenseURI

Publishing your module to the PowerShell gallery implies that you want other people to access
and use the module. Some of the modules in the gallery are commercial—for instance, the
ISEsteroids module—in which case you need to pay to obtain the license. The vast majority are
free to use.

A license isn’t necessary, but if you want to adopt the standards of the open source community,
then using one of the open source licenses is a good idea. The Pester module in listing 9.3 uses
the Apache open source license, for example. Information on other licensing options can be
discovered at https://opensource.org/licenses. Most PowerShell modules in the gallery don’t have
a license defined.

ProjectURI

The PowerShell gallery is the place to publish your finished code. While your module is in
development, it’s not suitable for publishing. The recommendation is that if you want other
people to be able to work on the module, you create a project on the GitHub site:
https://github.com. You’ll find many PowerShell projects on GitHub, including some from the
PowerShell team.

IconURI

The IconURI entry enables you to define an icon for your module. Many, if not most, module
authors don’t define an icon.

ReleaseNotes

Release notes are the information you supply to your users describing the features, including
those that are new to that version of your module. You could include an About file to perform the
same task or store the information online in the project.

If your module changes frequently, you should include release notes to keep the users up to date
with changes. Now that you have a module and a module manifest, it’s time to publish the
module.

9.7.3. Publishing a module

(357)

https://opensource.org/licenses
https://github.com

We stated earlier in this section that we’d be using a private gallery to demonstrate publishing
modules. When you create a private gallery, you can state which modules, if any, you want
downloaded from the public gallery. We populated our gallery with three modules:

PS> Find-Module -Repository PSPrivateGallery

Version Name Type Repository Description

------- ---- ---- ---------- -----------

2016.5.7.3 ARTools Module PSPrivateGallery PowerShell...

2.6 Authenticode Module PSPrivateGallery Function w...

1.6.0 PSScriptAnalyzer Module PSPrivateGallery PSScriptAn...

Publishing the module requires you to supply the module name, the repository to which you’ll
publish it, and the NuGet API key assigned to your user account:

PS> Publish-Module -Name Counter -Repository PSPrivateGallery `

-NuGetApiKey 'c34d0782-b5ad-4b45-9165-a168b7f0436f'

WARNING: This module 'C:\Users\Richard\AppData\Local\Temp\791442835\

 Counter\Counter.psd1' has exported functions. As a best practice, include

 exported functions in the module manifest file(.psd1). You can run

 Update-ModuleManifest -FunctionsToExport to update the manifest with

 ExportedFunctions field.

Note

When you create an account on the public PowerShell gallery, a NuGet API key is assigned and
is stored in your profile. This key is unique to you and shouldn’t be shared. The private gallery
lists the key in the ./ Configuration\PSPrivateGalleryPublishEnvironment.psd1 file.

Your private gallery now contains four modules:

PS> Find-Module -Repository PSPrivateGallery

Version Name Type Repository Description

------- ---- ---- ---------- -----------

2016.5.7.3 ARTools Module PSPrivateGallery PowerShell...

2.6 Authenticode Module PSPrivateGallery Function w...

1.6.0 PSScriptAnalyzer Module PSPrivateGallery PSScriptAn...

1.0.0 Counter Module PSPrivateGallery Test module

The module can now be downloaded to other machines in your environment. You’ll have noticed
the warning message about best practice being to use the module manifest file to control the
functions that are exported rather than the module file. Let’s update the module to correct that
issue.

9.7.4. Publishing module updates

When you update the module to move the control of the exported functions into the module
manifest, you should also modify the module version. This needs to be performed manually if
you’ve created a set of folders under the module folder for each version. The module file (.psm1)
in listing 9.2 can be modified by removing the last line.

The module manifest file can be modified using Update-Module:

PS> $path = "$HOME\Documents\WindowsPowerShell\Modules"

PS> $module = "Counter\1.0.1"

PS> Update-ModuleManifest -Path "$path\$module\Counter.psd1" `

(358)

-FunctionsToExport 'Get-Count', 'Reset-Count'

The module can now be republished:

PS> Publish-Module -Name Counter -Repository PSprivateGallery `

-RequiredVersion 1.0.1 `

-NuGetApiKey 'c34d0782-b5ad-4b45-9165-a168b7f0436f'

This time you also give the version you require to be published. The gallery contains both
versions of the module:

PS> Find-Module -Repository PSPrivateGallery -Name Counter -AllVersions

Version Name Type Repository Description

------- ---- ---- ---------- -----------

1.0.1 Counter Module PSPrivateGallery Test module

1.0.0 Counter Module PSPrivateGallery Test module

It may take a few minutes for the new version of the module to become the default version
shown by Find-Module. You can always use the -RequiredVersion parameter on Install-Module to
control the version you install.

And with that, we’re finished with modules ... well, mostly finished. We’ll cover a few even
more advanced techniques in chapter 10.

(359)

9.8. Summary

Production modules are stored in a directory containing the module manifest and content.
The metadata or information about a module is contained in a .psd1 file, usually with the
same name as the module directory.
The easiest way to create a module manifest is to use the New-ModuleManifest cmdlet.
Test-ModuleManifest is provided to test an existing module for issues.
A manifest lets you define three types of information for your module: production,
construction, and content.
Production metadata defines things like version number and dependencies.
Construction elements control how a module is constructed, including specifying any
nested modules.
Content manifest elements deal with other types of content in the module.
Modules in memory are represented by a PSModuleInfo object.
The PSModuleInfo object for a module can be retrieved using Get-Module or by using the
Module property on a scriptblock for that function.
Using the PSModuleInfo object for a module, you can inject code into the module, where it
will be executed in the module context. This allows you to manipulate the state of a
module without having to reload it. This feature is primarily intended for diagnostic and
debugging purposes.
From within a script module, you can use the PSModuleInfo object to directly set some
metadata elements like the module description.
PSModuleInfo object has an AccessMode field that controls the ability to update or remove a
module from the session. This field is set to ReadWrite by default but can be set to Static,
requiring the use of the -Force parameter (to update it) or Constant (which means it can’t be
removed from the session). A Constant module remains in the session until the session
ends.
To set up an action to be taken when a module is removed, you can assign a scriptblock to
the OnRemove property on the PSModuleInfo object for that module.
The PSData section in the module manifest is used for module discovery in online
PowerShell repositories.
Publish-Module is used to publish a module to a PowerShell repository. Publish -Script
performs the same action for scripts.

In the next chapter, we’ll look at some more advanced programming topics that build on what
you’ve learned. These advanced topics will not only introduce some powerful new ways of using
PowerShell, they’ll also engender a deep understanding of how PowerShell works.

(360)

Chapter 10. Metaprogramming with scriptblocks and
dynamic code
This chapter covers

Scriptblocks
Creating and managing objects
Creating code dynamically
Steppable pipelines

Philosophy have I digested, The whole of Law and Medicine, From each its secrets I have
wrested, Theology, alas, thrown in. Poor fool, with all this sweated lore, I stand no wiser
than I was before.

Johann Wolfgang Goethe, Faust

Greek letters are cool ...

Not actually a quote from Beavis and Butthead

Chapters 6 through 9 covered the basic elements of programming in PowerShell and introduced
modules as a way of aggregating your code into reusable pieces. In this chapter, we’ll take things
to the next level and talk about metaprogramming, the term used to describe the activity of
writing programs that create or manipulate other programs. If you’re not already familiar with
this concept, you may be asking why you should care. In most environments, if the designer
makes a mistake, the user is stuck with the result. This isn’t true in PowerShell.
Metaprogramming lets you poke into the heart of the system and make things work the way you
need them to.

Here’s an analogy that should give you the full picture: Imagine buying a computer that was
welded shut. You can run all the existing programs and even install new programs. But a case
that’s welded shut doesn’t allow for hardware upgrades.

Traditional programming languages are much like that welded computer. You can extend what
they do by adding libraries, but you can’t extend the core capabilities of the language. You can’t,
for example, add a new type of looping statement. In a language that supports metaprogramming,
you can undertake such activities as adding new control structures. This is how the Where-Object
and ForEach-Object cmdlets are implemented. They use the metaprogramming features in
PowerShell to add what appear to be new language elements. You can even create your own
variations of these commands.

We’ll begin our investigation with a detailed discussion of PowerShell scriptblocks, which are at
the center of most of the metaprogramming techniques. This discussion takes up the first part of
this chapter and lays the groundwork for the rest of what we’ll discuss. With that material as
context, we’ll look at how and where scriptblocks are used in PowerShell. We’ll look at the role
scriptblocks play in the creation of custom objects and types and how they can be used to extend
the PowerShell language. We’ll cover techniques like proxy functions, dynamic modules, and
custom objects—all of which are examples of applied metaprogramming. Then we’ll move on,
and you’ll see how you can use similar techniques with static languages like C# from within your

(361)

scripts. But first you need to understand scriptblocks themselves.

(362)

10.1. Scriptblock basics

In PowerShell, the key to metaprogramming is the scriptblock. This is a block of script code that
exists as an object reference but doesn’t require a name. The Where-Object and ForEach-Object
cmdlets rely on scriptblocks for their implementation. In the example

PS> 1..10 | foreach-object { $_ * 2 }

the expression in braces—{ $_ * 2 }—is a scriptblock. It’s a piece of code that’s passed to the
ForEach-Object cmdlet and is called by the cmdlet as needed. A number of cmdlets take
scriptblocks as parameters, including Invoke-Command and Start-Job, which you’ll meet in chapters
11 and 13 respectively.

That’s all a scriptblock is—a piece of script in braces—but it’s the key to all the advanced
programming features in PowerShell.

Note

What we call scriptblocks in PowerShell are called anonymous functions or sometimes lambda
expressions in other languages. The term lambda comes from the lambda calculus developed by
Alonzo Church and Stephen Cole Kleene in the 1930s. A number of languages, including Python
and dialects of LISP, still use lambda as a language keyword. In designing the PowerShell
language, the PowerShell team felt that calling a spade a spade (and a scriptblock a scriptblock)
was more straightforward (the coolness of using Greek letters aside).

We’ve said that scriptblocks are anonymous functions, and functions are one of the types of
commands in PowerShell. But wait! You invoke a command by specifying its name. If
scriptblocks are anonymous, they have no names—so how can you invoke them? This
necessitates one more diversion before we dig into scriptblocks. Let’s talk about how commands
can be executed.

10.1.1. Invoking commands

The way to execute a command is to type its name followed by a set of arguments, but
sometimes you can’t type the command name as is. For example, you might have a command
with a space in the name. You can’t type the command because the space would cause part of the
command name to be treated as an argument. And you can’t put it in quotes, because this turns it
into a string value. You have to use the call operator, &. If, for instance, you have a command
called my command, you’d invoke this command by typing:

& 'my command'

The interpreter sees the call operator and uses the value of the next argument to look up the
command to run. This process of looking up the command is called command discovery. The
result of this command discovery operation is an object of type
System.Management.Automation.CommandInfo, which tells the interpreter what command to execute.
There are different subtypes of CommandInfo for each of the types of PowerShell commands.

(363)

10.1.2. Getting CommandInfo objects

You’ve used the Get-Command cmdlet before as a way to attain information about a command. This
is useful as a kind of lightweight help, but in addition to displaying information, the object
returned by Get-Command can be used with the call operator to invoke that command. This is
significant. This extra degree of flexibility, invoking a command indirectly, is the first step on
the road to metaprogramming.

Let’s try this out. First, get the CommandInfo object for the Get-Date command:

PS> $d = Get-Command Get-Date

PS> $d.CommandType

Cmdlet

PS> $d.Name

Get-Date

As you can see from this example, the name Get-Date resolves to a cmdlet with the name Get-
Date. Now run this command using the CommandInfo object with the call operator:

PS> & $d

24 April 2017 15:35:22

It’s as simple as that. Why should you care about this? Because it’s a way of getting a link to a
specific command in the environment. Say you defined a function Get-Date:

PS> function Get-Date {'Hi there'}

PS> Get-Date

Hi there

Your new Get-Date command outputs a string. Because PowerShell looks for functions before it
looks for cmdlets, this new function definition hides the Get-Date cmdlet. Even using & with the
string “Get-Date” still runs the function:

PS> & 'Get-Date'

Hi there

Because you created a second definition for Get-Date (the function), now if you use Get-Command
you’ll see only the function. How do you select the cmdlet Get-Date?

PS> Get-Command Get-Date

CommandType Name Version Source

----------- ---- ------- ------

Function Get-Date

Note

If you use Get-Command Get-Date -CommandType All, you’ll see the function and the cmdlet. This
matches the behavior of PowerShell v2, where both commands would be shown.

One way is to find the CommandInfo object based on the type of the command:

PS> Get-Command -CommandType cmdlet Get-Date

(364)

CommandType Name Version Source

----------- ---- ------- ------

Cmdlet Get-Date 3.1.0.0 Microsoft.PowerShell.Utility

Now put the result of this command into a variable

PS> $ci = Get-command -CommandType cmdlet Get-Date

and then run it using the call operator:

PS> & $ci

24 April 2017 15:37:12

The Get-Date cmdlet runs as expected. Another way to select which command to run, because
Get-Command returns a collection of objects, is to index into the collection to get the right object:

PS> &(Get-Command Get-Date -CommandType All)[1]

24 April 2017 15:37:54

Here you use the result of the index operation directly with the call operator to run the desired
command. The index is 1 because we’re accessing the second element. The Get-Date function is
the first element in the collection, and the Get-Date cmdlet is the second element.

This is all interesting, but what does it have to do with scriptblocks? We’ve demonstrated that
you can invoke a command through an object reference instead of by name. This was the
problem we set out to work around. Scriptblocks are functions that don’t have names, so as you
might expect, the way to call a scriptblock is to use the call operator. Here’s what that looks like:

PS> & {param($x,$y) $x+$y} 2 5

7

In this example, the scriptblock is

{param($x,$y) $x+$y}

This example used the call operator to invoke it with two arguments, 2 and 5, so the call returns
7. This is how you can execute a function if it doesn’t have a name. As long as you have access
to the scriptblock, you can call it.

10.1.3. The scriptblock literal

What you’ve been writing to create scriptblocks is called a scriptblock literal—a chunk of
legitimate PowerShell script surrounded by braces. The syntax for this literal is shown in figure
10.1.

Figure 10.1. Defining a simple scriptblock. Note that the param statement is optional, so a minimal scriptblock has
only the braces.

(365)

The definition of a scriptblock looks more or less like the definition of a function, except the
function keyword and function name are missing. If the param statement isn’t present, the
scriptblock will get its arguments through $args, exactly as a function would.

Param vs. lambda

The param statement in PowerShell corresponds to the lambda keyword in other languages. For
example, the PowerShell expression

& {param($x,$y) $x+$y} 2 5

is equivalent to the LISP expression

(lambda (x y) (+ x y)) 2 5)

or the Python expression

(lambda x,y: x+y)(2,5)

Also note that, unlike Python lambdas, PowerShell scriptblocks can contain any collection of
legal PowerShell statements.

Scriptblocks, like regular functions or scripts, can also behave like cmdlets—they can have one
or all of the begin, process, or end clauses that you can have in a function or script. Figure 10.2
shows the most general form of the scriptblock syntax, with all three clauses.

Figure 10.2. A scriptblock that works like a cmdlet

(366)

As was the case with a regular function, you don’t have to define all the clauses. Here’s an
example that uses only the process clause:

PS> 1..5 |&{process{$_ * 2}}

2

4

6

8

10

A scriptblock written this way works like the filters you saw in chapter 6. It also works like the
ForEach-Object cmdlet:

PS> 1..5 |ForEach-Object {$_ * 2}

The ForEach-Object cmdlet is effectively a shortcut for the more complex scriptblock
construction.

As we’ve been going along, we keep talking about how scriptblocks are anonymous functions.
This is a good time to see how scriptblocks and named functions are related.

10.1.4. Defining functions at runtime

In earlier sections, we said that scriptblocks are functions without names. The opposite is also
true—functions are scriptblocks with names. What then, exactly, is the relationship between the
two? In chapter 6, you learned how to manage the functions in your PowerShell session using the
function: drive. To get a list of functions, you could use Get-ChildItem on that drive. You could
also delete or rename functions. But we didn’t cover the whole story. In fact, the function: drive
is, in effect, a set of variables containing scriptblocks. Let’s explore this further. First, let’s
define our favorite function, foo:

PS> function foo {2+2}

PS> foo

4

You can use the Get-ChildItem cmdlet to get the command information from the function

(367)

provider:

PS> Get-ChildItem function:foo

CommandType Name Version Source

----------- ---- ------- ------

Function foo

Now use Get-Member to get more information about the object that was returned:

PS> Get-ChildItem function:foo | Get-Member sc*

 TypeName: System.Management.Automation.FunctionInfo

Name MemberType Definition

---- ---------- ----------

ScriptBlock Property scriptblock ScriptBlock {get;}

The object that comes back to you is a FunctionInfo object. This is the subclass of CommandInfo
that’s used to represent a function. As you see, one of the properties on the object is the
scriptblock that makes up the body of the function. Retrieve that member:

PS> (Get-ChildItem function:foo).ScriptBlock

2+2

The scriptblock, when displayed as a string, shows the source code for the scriptblock. Another,
simpler way to get back the scriptblock that defines a function is to use the variable syntax:

PS> $function:foo.GetType().Fullname

System.Management.Automation.ScriptBlock

Now here’s the interesting part. Change the definition of this function by assigning a new
scriptblock to the function:

PS> $function:foo = {'Bye!'}

When you run the function again

PS> foo

Bye!

you see that it’s changed. The function keyword is, in effect, shorthand for assigning a
scriptblock to a name in the function provider.

Now that you know how to manipulate scriptblocks and functions, let’s take this one step further.
Objects encapsulate data and code—we spent a lot of time on data in the earlier chapters, and
now we have a way of manipulating code too. This means you’re ready to take the next step and
see how you can use data and scriptblocks to build your own objects.

(368)

10.2. Building and manipulating objects

Let’s kick our scripting up a notch and look at ways to build custom objects. Up to this point in
the chapter we’ve been talking about scriptblocks as standalone functions. Now it’s time to talk
about how to use scriptblocks to build objects.

Note

We’re not talking about PowerShell classes here—that topic gets its own chapter (chapter 19). In
this section, we’re going to look at building typeless objects—objects that have no specific type
or class associated with them. Both typed and untyped objects are useful when organizing the
data in a PowerShell program. Also, looking at untyped objects will give you an inside look at
how objects work in general.

At their core, objects are a binding of data and behaviors. These behaviors are implemented by
blocks of script. You needed to know how to build the blocks of code, scriptblocks, before we
could talk about building objects. With a good understanding of scriptblocks, we can now
discuss manipulating and building objects in PowerShell.

In chapter 2, we talked extensively about types. Now we’re concerned with objects—instances of
types. A type is the pattern or template that describes an object, and an object is an instance of
that pattern. In statically typed languages such as C#, once an object is instantiated, its interfaces
can’t be changed. With dynamic languages such as PowerShell (or Ruby or Python), this isn’t
true. Dynamic languages allow you to alter the set of members available at runtime.

Note

As of C# 4.0, the language is no longer purely statically typed. C# 4.0 introduced a new dynamic
keyword, allowing you to write programs that have dynamic types. In general, though, this
feature doesn’t get much use because most of the other features in C# (for example, LINQ) work
only with typed objects. Where the dynamic keyword is useful is in allowing C# to interoperate
more effectively with dynamic languages like PowerShell.

In the rest of this section, we’ll explore manipulating objects and types in PowerShell. We’ll start
with a discussion of how to examine existing members, followed by a look at the types of
members available on an object. Then we’ll cover all the ways to add members to an object, and
finally we’ll look at the plumbing of the PowerShell type system to give you a sense of the
flexibility of the overall system and how it facilitates your goal of writing programs to
manipulate programs.

10.2.1. Looking at members

An object’s interface is defined by the set of public members it exposes. Public members are the

(369)

public fields, properties, and methods of the class. As always, the easiest way to look at those
members is with the Get-Member cmdlet. For example, the members defined on an integer can be
viewed like this:

PS> 12 | Get-Member

Note that this doesn’t show you all the members on an [int]. It shows you only the instance
members. You can also use Get-Member to look at the static members:

PS> 12 | Get-Member -Static

 TypeName: System.Int32

Name MemberType Definition

---- ---------- ----------

Equals Method static System.Boolean Equals(Objec...

Parse Method static System.Int32 Parse(String s...

ReferenceEquals Method static System.Boolean ReferenceEqu...

TryParse Method static System.Boolean TryParse(Str...

MaxValue Property static System.Int32 MaxValue {get;}

MinValue Property static System.Int32 MinValue {get;}

You’ll use this mechanism to look at the members you’ll be adding to objects in the next couple
of sections.

10.2.2. Defining synthetic members

One of the most powerful features in the PowerShell environment is the ability to extend existing
object types and instances. This allows PowerShell to perform adaptation across a variety of
types of data. By adaptation, we mean overlaying a common set of interfaces onto existing data
sources. This may be as simple as unifying the name of the property that counts a collection to be
the string “count” across all countable objects, or as complex as taking a string containing some
XML data and being able to treat that string as an object with a set of properties and attributes.

This isn’t the same as subclassing or creating derived types as you would in PowerShell classes.
With classes, if you want to extend a new type, you can do so only by creating an entirely new
type. In dynamic languages such as PowerShell, you can add members to existing types and
objects. This sounds odd from the point of view of conventional object-oriented programming,
because types and member definitions are so tightly tied together. In PowerShell, it’s possible to
have objects that don’t have any type at all.

Note

If you’re a JavaScript user, this won’t be surprising. The object-oriented mechanisms in
JavaScript use a mechanism called a prototype. Prototype-based systems don’t have types as
discrete objects. Instead, you get an object that has the set of members you want your object to
have and use it as the prototype for your new object.

Because the members you’ll be adding to objects aren’t natively part of the object’s definition,
they’re called synthetic members. Synthetic members are used extensively throughout
PowerShell for adaptation and extension. Let’s look at an example. First, we’ll examine the
synthetic properties on an object returned by Get-ChildItem from the file system:

(370)

PS> Get-ChildItem $profile | Get-Member ps*

 TypeName: System.IO.FileInfo

Name MemberType Definition

---- ---------- ----------

PSChildName NoteProperty System.String PSChildName=Microsof...

PSDrive NoteProperty System.Management.Automation.PSDri...

PSIsContainer NoteProperty System.Boolean PSIsContainer=False

PSParentPath NoteProperty System.String PSParentPath=Microso...

PSPath NoteProperty System.String PSPath=Microsoft.Pow...

PSProvider NoteProperty System.Management.Automation.Provi...

Now let’s get the same information from the Registry:

PS> Get-ChildItem hklm:\software | Get-Member ps*

 TypeName: Microsoft.Win32.RegistryKey

Name MemberType Definition

---- ---------- ----------

PSChildName NoteProperty System.String PSChildName=Adobe

PSDrive NoteProperty System.Management.Automation.PSDri...

PSIsContainer NoteProperty System.Boolean PSIsContainer=True

PSParentPath NoteProperty System.String PSParentPath=Microso...

PSPath NoteProperty System.String PSPath=Microsoft.Pow...

PSProvider NoteProperty System.Management.Automation.Provi...

You can see the same set of PS* properties with the PowerShell (PS) prefix on the object, even
though they’re completely different types. Take a look at these properties. They allow you to
work with these two different objects in the same way. This means you can always tell whether
an object might have children by looking at the PSIsContainer property, regardless of the type of
the underlying object. And you can always get the path to the object through the PSPath property.
We call this type of adaptation object normalization. By adding this set of synthetic properties to
all objects returned from the provider infrastructure, you make it possible to write scripts that are
independent of the type of object that the provider surfaces. This makes the scripts both simpler
and more reusable. In the next section, we’ll start looking at ways of creating synthetic members.

10.2.3. Using Add-Member to extend objects

The Add-Member cmdlet is the easiest way to add a new member to an object instance, either a
static .NET object type or a custom synthetic object. It can be used to add any type of member
supported by the PowerShell type system.

Note

The –Force parameter of Add-Member can be used to add a new member even if it has the same
name as an existing custom member. You can’t use –Force to replace a standard member of a
type.

The list of possible member types that can be added with Add-Member is shown in table 10.1.
You’ll work through examples showing how to use these members. You’ll use an instance of the
string “Hi there” to do this. For convenience, store it in a variable $s:

PS> $s = 'Hi there'

(371)

Now let’s go over how you add these member types to an object instance.

Table 10.1. Member types that can be added with Add-Member

Member type Description

AliasProperty
An alias property provides an alternate name for an existing
property. If there’s an existing Length property, then you might
alias this to Count.

CodeProperty A property that maps to a static method on a .NET class.

Property

A native property on the object—a property that exists on the
underlying object that’s surfaced directly to the user. For
example, there might be a native property Length that you
choose to also make available through an extended alias
member.

NoteProperty A data-only member on the object (equivalent to a .NET field).

ScriptProperty A property whose value is determined by a piece of PowerShell
script.

Properties The collection of properties exposed by this object.
PropertySet A named group of properties.

Method
A native method on the underlying object. For example, the
SubString() method on the class System.String shows up as a
method.

CodeMethod A method that is mapped to a static method on a .NET class.
ScriptMethod A method implemented in a PowerShell script.

ParameterizedProperty

A property that takes both arguments and a value to assign. This
is typically used for things like indexers and might look like
$collection.item(2,3) = "hello". This sets the element at 2,3 in
the collection to the value "hello".

PSVariableProperty
A property that’s backed by a variable. This type of member is
available only in PowerShell v2 and later. It has an advantage
over note properties because it can be type constrained.

Adding AliasProperty members

The first type of synthetic member you’ll add is called an alias property. This property, whose
name is (surprise) AliasProperty, allows you to provide a new name for an existing property.
Let’s work with the Length property on a string:

PS> $s.Length

8

As you can see, this string has a length of 8. Let’s say that you want to add an alias size for
Length because you’ll be working with a set of objects that all have a size property:

PS> $s = Add-Member -InputObject $s -MemberType AliasProperty `

-Name size -Value length -PassThru

When you first add a synthetic member to an object, you’re creating a new object (but not a new
type). This new object wraps the original object in an instance of

(372)

System.Management.Automation.PSObject. Just as System.Object is the root of the type system in
.NET, PSObject is the root of the synthetic type system in PowerShell. For this reason, you assign
the result of the Add-Member call back to the original variable. To do that, you have to add the -
PassThru parameter to the command because, by default, the Add-Member cmdlet doesn’t emit
anything.

Let’s look at the new member you’ve added using Get-Member:

PS> $s | Get-Member size

 TypeName: System.String

Name MemberType Definition

---- ---------- ----------

size AliasProperty size = length

You can see that the size member is there and is an alias property that maps size to Length. Also,
you need to note that the object’s type is still System.String. The fact that it’s wrapped in a
PSObject is pretty much invisible from the script user’s view, though you can test for it, as shown
in the next example. Using the -is operator, you can test to see whether the object you’re dealing
with is wrapped in a PSObject:

PS> $s -is [PSObject]

True

PS> $s -is [string]

True

The result of the first command in the example shows that $s does contain a PSObject, and the
second line shows that the object in $s is still considered a string, even though it’s also a
PSObject.

The question now is, after all that explanation, did you create this aliased member? The answer is
yes:

PS> $s.size

8

PS> $s.Length

8

Both the size and length members return the value 8.

Adding NoteProperty members

Now let’s add a note property, a way of attaching a new piece of data (a note) to an existing
object, rather like putting a sticky note on your monitor. Again, you’ll use the same string in $s.
Let’s add a note property called Description::

PS> $s = Add-Member -InputObject $s -MemberType NoteProperty `

-Name Description -Value 'A string' -Passthru

PS> $s.Description

A string

You’ve added a Description property to the object with the value A string. And to prove that this
property isn’t present on all strings, try

PS> 'Hi there'.Description

(373)

and you’ll see that the property returns nothing.

The note property is a settable property, so you can change it with an assignment like any other
settable property:

PS> $s.Description = 'A greeting'

PS> $s.Description

A greeting

In this example, you change the value in the note property to A greeting. Note properties allow
you to attach arbitrary data to an object. They aren’t type constrained, so they can hold any type.

Note

Sooner or later, if you’re working through all the examples in this chapter, something will fail
because one example collides with another. If that happens, start a new PowerShell session and
keep going. If you’re using the ISE, you can switch to a new tab by pressing Ctrl-T. This will
allow you to flip back and forth between sessions to compare things.

Next, set the Description property to a [datetime] object:

PS> $s.Description = Get-Date

PS> $s.Description

24 April 2017 16:23:40

But the value stored in the object is still a [datetime] object, not a string. As such, you can get the
DayOfWeek property out of the description property:

PS> $s.Description.DayOfWeek

Monday

PS> $s.Description.GetType().FullName

System.DateTime

Adding ScriptMethod members

Both of the synthetic members you’ve added so far have been pure data properties; no code was
involved. Now we’ll look at adding members that execute code. We’ll start with ScriptMethods,
because they’re the easiest. You’ll add a method that returns the string that it’s associated with,
reversed.

First, let’s find an easy way to reverse a string. If you examine [string], you’ll see that there is
(unfortunately) no reverse method on the string class. There is, though, a static reverse method
on [array] that you can use. This method takes an array and, because it’s void, it must
(obviously) reverse the array in place. This tells you two things: you need to turn the string into
an array (of characters) and then save it in a variable so it can be reversed in place. Converting
the string to an array of characters is simple—you can use a cast:

PS> $a = [char[]] $s

Casting a string into the type [char[]] (array of characters) produces a new object that’s the array
of individual characters in the original string. To verify this:

(374)

PS> $a.GetType().FullName

System.Char[]

PS> "$a"

H i t h e r e

You see that the type of the new object is [char[]] and it does contain the expected characters.
Now reverse it using the [array]::reverse() static method:

PS> [array]::reverse($a)

PS> "$a"

e r e h t i H

When you look at the contents of the array, you see that the array has been reversed. But it’s still
an array of characters. The final step is to turn this back into a string. To do that, you’ll use the
unary -join operator:

PS> $ns = -join $a

PS> $ns

ereht iH

PS> $ns.GetType().FullName

System.String

At this point you’ve reversed the string in $ns. But the goal of this effort was to attach this as a
method to the string object itself. To do so, you need to construct a scriptblock to use as the body
of the ScriptMethod.

Listing 10.1. Scriptblock to perform string reversal

$sb = {

 $a = [char[]] $this

 [array]::reverse($a)

 -join $a

}

This example introduces a new “magic” variable, which is defined only for scriptblocks that are
used as methods or properties: the $this variable. $this holds the reference to the object that the
ScriptMethod member was called from. Now let’s bind this scriptblock to the object as a
ScriptMethod using Add-Member:

PS> Add-Member -InputObject $s -MemberType ScriptMethod `

-Name Reverse -Value $sb

Try it out:

PS> $s. Reverse()

ereht iH

You get the reversed string as desired.

Adding ScriptProperty members

The next type of member we’ll look at is the ScriptProperty which has up to two methods
associated with it—a getter and (optionally) a setter, like a .NET property. These methods are
expressed using two scriptblocks. As was the case with the ScriptMethod, the referenced object is
available in the $this member. And, in the case of the setter, the value being assigned is available
in $args[0].

(375)

Here’s an example. You’re going to add a ScriptProperty member, desc, to $s that will provide an
alternate way to get at the description NoteProperty you added earlier, with one difference: you’re
only going to allow values to be assigned that are already strings. An attempt to assign something
that isn’t a string will result in an error. The property definition is shown next.

Listing 10.2. Adding a ScriptProperty

Add-Member -InputObject $s -MemberType ScriptProperty `

-Name Desc -Value `

 {$this.Description} `

 {

 $t = $args[0]

 if ($t -isnot [string]) {

 throw 'this property only takes strings'

 }

 $this.Description = $t

 }

The first scriptblock

{$this.Description}

is the code that will be executed when getting the property’s value. All it does is return the value
stored in the description NoteProperty. Because the setter needs to do additional work, its
scriptblock is more complex:

{

 $t = $args[0]

 if ($t -isnot [string])

 {

 throw 'this property only takes strings'

 }

 $this.Description = $t

}

First, it saves the value to be assigned into a local variable, $t. Next, it checks whether this
variable is of the correct type. If not, it throws an exception, failing the assignment.

Let’s try out this property. First, directly set the note property to the string “Old description”:

PS> $s.Description = 'Old description'

Now use the ScriptProperty getter to retrieve this value:

PS> $s.Desc

Old description

You see that it’s changed as expected. Next, use the ScriptProperty to change the description:

PS> $s.desc = 'New description'

Verify the change by checking both the NoteProperty and the ScriptProperty:

PS> $s.Description

New description

PS> $s.desc

New description

Yes, it’s been changed. Now try assigning a [datetime] object to the property as you did with the
description NoteProperty previously:

(376)

PS> $s.desc = Get-Date

Exception setting "Desc": "this property only takes strings"

At line:1 char:1

+ $s.desc = Get-Date

+ ~~~~~~~~~~~~~~~~~~

 + CategoryInfo : NotSpecified: (:) [], SetValueInvocationException

 + FullyQualifiedErrorId : ScriptSetValueRuntimeException

The assignment failed. Using ScriptProperty members is a way to do validation and
transformation in properties on objects.

Note

The idea of adding properties to synthetic objects may seem like an academic exercise, but it
turns out to be useful. In particular, it’s incredibly useful when you need to adapt existing
utilities so that they work effectively in the PowerShell environment.

10.2.4. Adding note properties with New-Object

The most common case for adding members is when creating a synthetic object with a set of note
properties. A synthetic object, also known as a custom object, is one you create to solve a
specific problem instead of using a standard .NET object. This is equivalent to creating records
in other languages. In many cases, hashtables are sufficient for record-like scenarios. Creating
objects has some advantages: The formatting system treats objects in a more sophisticated way,
and assigning to a member that doesn’t exist is treated as an error, whereas assigning to a
member that doesn’t exist in a hashtable creates a new member.

This is a common enough scenario that there’s special support for this in PowerShell with a
parameter on the New-Object cmdlet: -Property. This parameter takes a hashtable and sets each
member on the object being created that corresponds to the member in the hashtable. If the
member doesn’t exist, then a note property is added. If the object being created is a
PSCustomObject, then you end up with a pure synthetic object. Here’s an example of how this
works:

PS> $obj = New-Object PSCustomObject -Property @{a=1; b=2; c=3}

In this example, you create a new object with three properties: a, b, and c.

Note

You can use PSObject or PSCustomObject in this case and arrive at the same result. PSObject creates
an object of type PSCustomObject.

Using Get-Member you can see that they’re all of type NoteProperty:

PS> $obj | Get-Member

 TypeName: System.Management.Automation.PSCustomObject

(377)

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string ToString()

a NoteProperty System.Int32 a=1

b NoteProperty System.Int32 b=2

c NoteProperty System.Int32 c=3

Also notice that the type of the object returned is System.Management.Automation.PSCustomObject,
which isn’t a type you’ve seen before. This type of object is used as the base for all pure
synthetic objects. Because the properties you added are note properties, you can change their
values:

PS> $obj.a = 5

PS> $obj | Format-Table

c b a

- - -

3 2 5

Property order

In the previous example you used a hashtable to create the object:

$obj = New-Object PSCustomObject -Property @{a=1; b=2; c=3}

If you want to preserve the order of the properties, use an ordered hashtable:

PS> $props = [ordered]@{

x = 1

y = 2

z = 3

}

PS> $objo = New-Object PSCustomObject -Property $props

PS> $objo | Format-Table

This results in the following:

x y z

- - -

1 2 3

But if you try to assign to a nonexistent property,

PS> $obj.d = 10

Exception setting "d": "The property 'd' cannot be found

on this object. Verify that the property exists and can be set."

At line:1 char:1

+ $obj.d = 10

+ ~~~~~~~~~~~

 + CategoryInfo : NotSpecified: (:) [], SetValueInvocationException

 + FullyQualifiedErrorId : ExceptionWhenSetting

you get an error. This can help catch runtime bugs in your code and is one reason to favor
synthetic objects over hashtables.

Now, although the New-Object cmdlet is easy to use, PowerShell v4 and above have a much
slicker way to do this—you can cast a hashtable into a PSCustomObject. For example:

PS> $co = [PSCustomObject] @{ a=1; b=2; c=3 }

(378)

Now we’ll use Get-Member to look at what we’ve created:

PS> $co | Get-Member

 TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string ToString()

a NoteProperty int a=1

b NoteProperty int b=2

c NoteProperty int c=3

Okay, you say, this saves a bit of typing, but what does it add? Well, a type can be used in places
where you can’t (easily) use a command. For example, you can use PSCustomObject as a constraint
on a function parameter. A function defined this way would look like this:

PS> function ToPSco { param([PSCustomObject] $x) $x }

PS> $co = ToPSco @{ a=1; b=2; c=3 }

Let’s see what we’ve created:

PS> $co

Name Value

---- -----

c 3

b 2

a 1

You can see that all the note properties have been added as expected. Casting to PSObject, like
calling New-Object –Property, is a quick way of creating and attaching note properties to a pure
custom object.

So far, we’ve either been adding members to existing objects or creating purely custom objects.
There’s one more scenario we need to cover: creating objects that have a subset of the properties
on the original object. The easiest way to do this is to use the Select-Object cmdlet. We’ll look at
how this cmdlet lets you build “subset” objects next.

(379)

10.3. Using the Select-Object cmdlet

Now that you know how to attach members using Add-Member and create objects with New-Object,
let’s explore other ways to build synthetic objects. The Select-Object cmdlet, which is used to
select a subset of properties on an object, creates a PSCustom -Object to hold these properties.

The Select-Object cmdlet is also a way to select elements from a stream of objects. You can
select a range of objects:

PS> 1..10 | Select-Object -First 3

Here you select the first three elements.

Note

PowerShell v3 changed the action of the –First parameter on Select-Object. It now sends a
message up the pipeline telling earlier commands to stop processing data. This speeds the
response of the pipeline and optimizes performance when you know how many objects you need
to deal with.

But, much more interesting for this discussion, it’s a way to select fields from an object:

PS> Get-ChildItem | Select-Object name,length

Name Length

---- ------

a.txt 98

b.txt 42

c.txt 102

d.txt 66

At first, this looks a lot like Format-Table. Let’s use Get-Member to see how different it is:

PS> Get-ChildItem | Select-Object name,length | Get-Member

 TypeName: Selected.System.IO.FileInfo

Name MemberType Definition

---- ---------- ----------

Equals Method System.Boolean Equals(Object obj)

GetHashCode Method System.Int32 GetHashCode()

GetType Method System.Type GetType()

ToString Method System.String ToString()

Length NoteProperty System.Int64 Length=98

Name NoteProperty System.String Name=a.txt

Wait! We said that Select-Object creates a PSCustomObject synthetic object. It does, but
PowerShell’s type system ensures the original type isn’t forgotten. You can see the underlying
type:

PS> (Get-ChildItem .\a.txt | Select name, length).PSTypeNames

Selected.System.IO.FileInfo

System.Management.Automation.PSCustomObject

System.Object

(380)

As was the case with the objects returned from New-Object -Property, the type of the object is
System.Management.Automation.PSCustomObject. The original type of System.IO.FileInfo is
prepended with Selected to show that it’s a synthetic version of the original object. That new
name is injected as the first name in the object’s PSTypeNames property.

Even though it’s a synthetic object, it’s still a first-class citizen in the PowerShell environment.
You can sort these objects

PS> Get-ChildItem | Select-Object Name,Length | sort Length

Name Length

---- ------

b.txt 42

d.txt 66

a.txt 98

c.txt 102

or do anything else that you can do with a regular object.

But there’s more to using Select-Object than selecting from the existing set of members. Say you
want to add a new field, minute, to these objects. This will be a calculated field as follows:

PS> Get-ChildItem | foreach {$_.LastWriteTime.Minute}

5

51

56

54

It will be the minute at which the file was last written. You attach this field by passing a specially
constructed hashtable describing the member to Select-Object. This hashtable has to have two
members: name and expression (which can be shortened to n and e for brevity). The name is the
name to call the property, and the expression is the scriptblock used to calculate the value of the
field. The definition will look like this:

@{Name="minute";Expression={$_.LastWriteTime.Minute}}

Let’s use it in the pipeline:

PS> Get-ChildItem | Select-Object Name,Length,

 @{Name="Minute";Expression={$_.LastWriteTime.Minute}}

Name Length Minute

---- ------ ------

a.txt 98 55

b.txt 42 51

c.txt 102 56

d.txt 66 54

As intended, the result has three fields, including the synthetic minute property you specified with
the hashtable. Use Get-Member to see what the object looks like. You’ll see that there are now
three NoteProperty members on the objects that were output:

Length NoteProperty long Length=98

Minute NoteProperty System.Int32 Minute=55

Name NoteProperty string Name=a.txt

For the last few sections, we’ve been focusing on individual functions (scriptblocks) and object
members. Let’s switch gears a bit and look at how modules fit into all of this. In chapters 8 and
9, we talked only about modules that were loaded from disk, but there’s also a way to create
modules dynamically.

(381)

10.4. Dynamic modules

Dynamic modules are created in memory at runtime rather than being loaded from disk.
Dynamic modules relate to regular modules in much the same way as functions are related to
scripts. You use a dynamic module rather than a regular, static module when you want to achieve
one of the following: encapsulate local state in scripts, implement a dynamic equivalent of the
closure feature found in other languages, or simplify the way you create custom objects.

10.4.1. Dynamic script modules

Just as there were two basic types of on-disk modules—script modules and binary modules—
there are also two types of dynamic modules: the dynamic script module and the dynamic
closure.

Let’s start by creating a dynamic script module. To create a dynamic module, use the New-Module
cmdlet which takes a scriptblock as an argument. This scriptblock is executed to define the
module’s contents. Here’s what it looks like:

PS> $dm = New-Module {

 $c=0

 function Get-NextCount

 { $script:c++; $script:c }}

Other than how they’re created; the contents of the module look pretty much like the on-disk
modules you created in chapter 8. This is by design and means that all the concepts you learned
for on-disk modules also apply to dynamic modules. As we discussed in the previous chapter, if
there’s no call to Export-ModuleMember, all the functions defined in the module are exported and
the other types of module members aren’t. Verify this by calling the function you defined,

PS> Get-NextCount

1

which works properly. And, because it wasn’t exported, there’s no variable $c (try typing the
variable) or at least not one related to this dynamic module. Now try to use Get-Module to look at
the module information, and you don’t see anything. What happened? Well, dynamic modules
are objects like everything else in PowerShell. The New-Module cmdlet has created a new module
object but hasn’t added it to the module table. This is why you assigned the output of the cmdlet
to a variable—so you’d have a reference to the module object. Let’s look at that object:

PS> $dm | Format-List

Name : __DynamicModule_5809fa0b-4b24-4a03-a796-0450145fd1a1

Path : C:\files\5809fa0b-4b24-4a03-a796-0450145fd1a1

Description :

ModuleType : Script

Version : 0.0

NestedModules : {}

ExportedFunctions : Get-NextCount

ExportedCmdlets :

ExportedVariables :

ExportedAliases :

The interesting fields are the name and path fields. Because no file is associated with the module,
you had to make up a unique path for that object using the current folder (test by examining
contents of $pwd). Likewise, you didn’t specify a name, so the runtime made one up for you. Why
did it do these things? It did this because, although a dynamic module isn’t registered by default,

(382)

it can be added to the module table by piping it to Import-Module. Let’s give it a try:

PS> $dm | Import-Module

Now check the module table:

PS> Get-Module

ModuleType Version Name ExportedCommands

---------- ------- ---- ----------------

Script 0.0 __DynamicModule_5809fa0b... Get-NextCount

There it is, ugly name and all. You can give a dynamic module a specific name using the -Name
parameter on the New-Module cmdlet. First, clean up from the last example

PS> Get-Module -Name *dynamic* | Remove-Module

and define a new dynamic module, with the same body as last time:

PS> New-Module -Name Dynamic1 {

 $c=0

 function Get-NextCount

 { $script:c++; $script:c }} |

 Import-Module

Rather than saving the result to a variable, you pipe it directly to Import-Module. Now look at the
result:

PS> Get-Module

ModuleType Version Name ExportedCommands

---------- ------- ---- ----------------

Script 0.0 Dynamic1 Get-NextCount

This time the module is registered in the table with a much more reasonable name.

When would you use dynamic modules? When you need to create a function or functions that
have persistent resources that you don’t want to expose at the global level. This is the same
scenario as the on-disk case, but this way you can package the module or modules to load into a
single script file.

There’s also another way the dynamic module feature is used: to implement the idea of closures
in PowerShell. Let’s move on and see how that works.

10.4.2. Closures in PowerShell

PowerShell uses dynamic modules to create dynamic closures. A closure in computer science
terms (at least as defined in Wikipedia) is “a function that is evaluated in an environment
containing one or more bound variables.” A bound variable is, for our purposes, a variable that
exists and has a value. The environment in our case is the dynamic module. The function is a
scriptblock. In effect, a closure is the inverse of an object. An object is data with methods
(functions) attached to that data, and a closure is a function with data attached to that method.

It may be easier to understand closures by starting with the problem they solve. We’ll use this
function:

PS> function add([int]$x) { return { param([int]$y) return $y + $x } }

(383)

The results are shown in figure 10.3.

Figure 10.3. Problem with function variables. Unexpected results from using the function.

The results of using the function are 3 and 6 when intuitively you’d expect 5 and 11. The reason
for the discrepancy is that $x isn’t defined in the local scope, so the scriptblock doesn’t have a
value for it—it’s effectively 0. Closures overcome this problem.

We’ll start with a simpler example; you’ll use closures to create a set of counter functions,
similar to what you did in chapter 8. The advantage closures give you over plain functions is that
you can change what increment to use after the counter function has been defined. The basic
function is here.

Listing 10.3. Basic closure in PowerShell

function New-Counter

{

 param

 (

 [int]$increment = 1

)

 $count=0;

 {

 $script:count += $increment

 $count

 }.GetNewClosure()

}

There’s nothing here you haven’t seen so far—you create a variable and then a scriptblock that
increments that variable—except for returning the result of the call to the GetNewClosure()
method. Let’s try this function to see what it does. First, create a counter:

PS> $c1 = New-Counter

PS> $c1.GetType().FullName

System.Management.Automation.ScriptBlock

Looking at the type of the object returned, you see that it’s a scriptblock, so you use the &
operator to invoke it:

PS> & $c1

1

PS> & $c1

2

(384)

The scriptblock works as you’d expect a counter to work. Each invocation returns the next
number in the sequence. Now create a second counter, but this time set the increment to 2:

PS> $c2 = New-Counter 2

Invoke the second counter scriptblock:

PS> & $c2

2

PS> & $c2

4

PS> & $c2

6

It counts up by 2. But what about the first counter?

PS> & $c1

3

PS> & $c1

4

The first counter continues to increment by 1, unaffected by the second counter. The key thing to
notice is that each counter instance has its own copies of the $count and $increment variables.
When a new closure is created, a new dynamic module is created, and then all the variables in
the caller’s scope are copied into this new module.

Here are more examples of working with closures to give you an idea of how flexible the
mechanism is. First, you’ll create a new closure using a param block to set the bound variable $x.
This is the same as the previous example, except that you’re using a scriptblock to establish the
environment for the closure instead of a named function:

PS> $c = & {param ($x) {$x+$x}.GetNewClosure()} 3.1415

Now evaluate the newly created closed scriptblock:

PS> & $c

6.283

This evaluation returns the value of the parameter added to itself. Because closures are
implemented using dynamic modules, you can use the same mechanisms you saw in chapter 8
for manipulating a module’s state to manipulate the state of a closure. You can do this by
accessing the module object attached to the scriptblock. You’ll use this object to reset the module
variable $x by evaluating Set-Variable in the closure’s module context:

PS> & $c.Module Set-Variable -Name x -Value 'Abc'

Now evaluate the scriptblock to verify that it’s been changed:

PS> & $c

AbcAbc

Next, create another scriptblock closed over the same module as the first one. You can do this by
using the NewBoundScriptBlock() method on the module to create a new scriptblock attached to the
module associated with the original scriptblock:

PS> $c2 = $c.Module.NewBoundScriptBlock({"x is $x"})

(385)

Execute the new scriptblock to verify that it’s using the same $x:

PS> & $c2

x is Abc

Now use $c2.module to update the shared variable:

PS> & $c2.module Set-Variable -Name x -Value 123

PS> & $c2

x is 123

and verify that it’s also changed for the original closed scriptblock:

PS> & $c

246

Finally, create a named function from the scriptblock using the function provider

PS> $function:myfunc = $c

and verify that calling the function by name works:

PS> myfunc

246

Set the closed variable yet again, but use $c2 to access the module this time:

PS> & $c2.Module Set-Variable -Name x -Value 3

and verify that it’s changed when you call the named function:

PS> myfunc

6

These examples should give you an idea of how all of these pieces—scriptblocks, modules,
closures, and functions—are related. This is how modules work. When a module is loaded, the
exported functions are closures bound to the module object that was created. These closures are
assigned to the names for the functions to import. A fairly small set of types and concepts allows
you to achieve advanced programming scenarios. In the next section, we’ll go back to looking at
objects and see how dynamic modules make it easier to create custom object instances.

10.4.3. Creating custom objects from modules

There’s one more thing you can do with dynamic modules: provide a simpler way to build
custom objects. This is a logical step because modules have private data and public members like
objects. As modules, they’re intended to address a different type of problem than objects, but
given the similarity between objects and modules, it would make sense to be able to construct an
object from a dynamic module. This is done using the -AsCustomObject parameter on New-Module.
You’ll use this mechanism to create a point object from a module.

Listing 10.4. New-Point function

function New-Point

{

 New-Module -ArgumentList $args -AsCustomObject {

 param (

 [int] $x = 0,

 [int] $y = 0

(386)

)

 function ToString()

 {

 "($x, $y)"

 }

 Export-ModuleMember -Function ToString -Variable x,y

 }

}

Now let’s try it. Begin by defining two points, $p1 and $p2:

PS> $p1 = New-Point 1 1

PS> $p2 = New-Point 2 3

You’ll use string expansion to display these objects, which will call the ToString() method you
exported from the module:

PS> "p1 is $p1"

p1 is (1, 1)

PS> "p2 is $p2"

p2 is (2, 3)

Now try to assign a string to the X member on one of the points:

PS> $p1.X = 'Hi'

Cannot convert value "Hi" to type "System.Int32".

Error: "Input string was not in a correct format."

At line:1 char:1

+ $p1.X = 'Hi'

+ ~~~~~~~~~~~~

 + CategoryInfo : MetadataError: (:) [], ArgumentTransformationMetadataException

 + FullyQualifiedErrorId : RuntimeException

This results in an error because the exported variable is a special type of note property that’s
backed by the variable. Because it’s backed by the variable, any constraints on the variable also
apply to the note property, allowing you to create strongly typed members on a synthetic object.

So far, we’ve covered scriptblocks, modules, and closures in PowerShell. Although these
features are somewhat exotic, they’re found in most modern (or modernized) languages,
including Java, JavaScript, Visual Basic, C#, and Python. In the next section, we’re going to
cover a related feature that’s unique to PowerShell: steppable pipelines. Normally once a
pipeline starts, it runs to completion. With a steppable pipeline, you can cause the pipeline to
process one object at a time (with some limitations). This is a concrete form of
metaprogramming, where one script has precise control over the sequence of operations in
another.

(387)

10.5. Steppable pipelines

Steppable pipelines existed in PowerShell v1 but weren’t exposed to the end user. In v2 this
feature was made available to the end user. The core use of this feature is to allow one command
to wrap, or proxy, other commands. In this section, we’ll begin with a look at how the feature
works and then explore a useful example showing its value.

10.5.1. How steppable pipelines work

The central concept in PowerShell programs is the pipeline, which processes a sequence of
objects, one at a time. In chapter 1, we illustrated this with a diagram of the pipeline processor.
Let’s take another look (see figure 10.4).

Figure 10.4. Objects flow through a pipeline one at a time. A common parser constructs each of the command
objects and then starts the pipeline processor, stepping each object through all stages of the pipeline.

Each object is processed completely (ignoring things like sorting) before processing begins on
the next one, but the pipeline itself has to process all objects in one go. There are times when it’s
useful to be able to start a pipeline and then feed it objects as needed. This is what a steppable
pipeline lets you do. You can create a pipeline, start it (so all the begin clauses are executed), and
then pass objects to it for processing one at a time. Let’s see how to do this.

To get a steppable pipeline object, you need to have some object representation of a pipeline.
The obvious way to do this is with a scriptblock object, and that’s exactly how it works. First,
create a scriptblock with exactly one pipeline in it:

PS> $sb = { Select-Object name, length }

The “one pipeline” part is important—a steppable pipeline maps to a single pipeline, so the
scriptblock used to create it must have only a single pipeline. Now get a steppable pipeline
object:

PS> $sp = $sb.GetSteppablePipeline()

Let’s look at the type of object you got back and see what its members are:

PS> $sp | Get-Member

(388)

 TypeName: System.Management.Automation.SteppablePipeline

Name MemberType Definition

---- ---------- ----------

Begin Method void Begin(bool expectInpu...

Dispose Method void Dispose(), void IDisp...

End Method array End()

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

Process Method array Process(System.Object input...

ToString Method string ToString()

In this list of members, you can see that there are methods that correspond to the clauses in a
function: Begin(), Process(), and End(). These do what you’d expect: Begin() runs all the begin
clauses in all of the commands in the pipeline, Process() runs all the process clauses, and End()
runs all the end clauses. Let’s try running this pipeline. When you call Begin() you have to pass a
Boolean value telling the runtime whether to expect input. If there’s no input, the pipeline will
run to completion in a single step. You do want to pass input objects to the pipeline, so call
Begin() with $true:

PS> $sp.Begin($true)

You need to get some data objects to pass through the pipeline—you’ll get a list of DLLs in the
PowerShell install directory:

PS> $dlls = Get-ChildItem -Path $pshome -Filter *.dll

Now loop through this list, passing each element to the steppable pipeline:

PS> foreach ($dll in $dlls) { $sp.Process($dll) }

Name Length

---- ------

PSEvents.dll 56320

pspluginwkr.dll 174592

pwrshmsg.dll 3072

pwrshsip.dll 29696

and you see that each element is processed through the pipeline. Finally, call the End()and
Dispose() methods to clean up the pipeline:

PS> $sp.End()

PS> $sp.Dispose()

What happens if you don’t call them? If you don’t call End(), you may not get all of the output
from the pipeline. If you’re stepping a pipeline containing the Sort-Object cmdlet, it doesn’t
return its output until the end clause. And if you don’t call Dispose(), then any resources held by
cmdlets in the pipeline may not be cleaned up in a timely manner (for example, files may not be
closed or other resources may not be released).

Now that you have an idea of how steppable pipelines work, let’s look at how you can use them.

10.5.2. Creating a proxy command with steppable pipelines

In chapter 1, we discussed how the result of all of the things we type at the command line are
streamed through Out-Default to display them on the screen. Out-Default uses steppable pipelines
to run the formatter cmdlets to do its rendering and then calls Out-Host to display the formatted
output. Let’s see how you can add a frequently requested feature to the interactive experience

(389)

using a proxy for Out-Default.

A commonly requested feature for interactive use is to capture the result of the last output object
so it can be made available to the next pipeline. First, you enter a command that displays a result:

PS> 2+2

4

You want to use that result in the next command you type, so it should be available in a variable
called $last. This would let you do subsequent calculations like this:

PS> $last+3

7

PS> $last*7

49

That would be a nice feature, but it hasn’t made it into the product. Fortunately, with steppable
pipelines and proxy functions, you can add this feature yourself. The trick is to wrap the Out-
Default cmdlet in a proxy function.

Listing 10.5. Wrapper for the Out-Default cmdlet

function Out-Default

{

 [CmdletBinding(ConfirmImpact='Medium')]

 param(

 [Parameter(ValueFromPipeline=$true)] `

 [System.Management.Automation.PSObject] $InputObject

)

 begin

 {

 $wrappedCmdlet = $ExecutionContext.InvokeCommand.GetCmdlet(

 'Out-Default')

 $sb = { & $wrappedCmdlet @PSBoundParameters }

 $__sp = $sb.GetSteppablePipeline() 1

 $__sp.Begin($pscmdlet)

 }

 process

 {

 $do_process = $true

 if ($_ -is [System.Management.Automation.ErrorRecord])

 {

 if ($_.Exception -is 2

 [System.Management.Automation.CommandNotFoundException])

 {

 $__command = $_.Exception.CommandName

 if (Test-Path -Path $__command -PathType container)

 {

 Set-Location $__command 3

 $do_process = $false

 }

 elseif ($__command -match

 '^http://|\.(com|org|net|edu)$')

 {

 if ($matches[0] -ne 'http://')

 {

 $__command = 'HTTP://' + $__command

 }

 [System.Diagnostics.Process]::Start($__command)

 $do_process = $false

 }

 }

 }

 if ($do_process) 4

(390)

 {

 $global:LAST = $_;

 $__sp.Process($_)

 }

 }

 end

 {

 $__sp.End()

 }

}

1 Create steppable pipeline wrapping Out-Default
2 Check for command-not-found exceptions
3 If directory, cd there; if URL, open browser
4 Capture last output object

As mentioned in section 10.1.3, because functions are resolved before cmdlets, when the
PowerShell host calls Out-Default to display output, it will call your function first. Now you
could collect all the output from the command the user typed and display it all at once, but that
doesn’t provide a good experience. Instead, you’ll create a steppable pipeline that runs the Out-
Default cmdlet inside the Out-Default function 1. Every time the function receives an object, this
object will be passed to the steppable pipeline to be rendered immediately. In the process of
passing this object along, you can also assign it to the global $LAST variable.

When you start the steppable pipeline, rather than passing in a Boolean, you pass in the $PSCmdlet
object (see chapter 7) for the function. This allows the steppable pipeline to write directly into
the function’s output and error streams so the function doesn’t have to deal with any output from
the pipeline. The next thing to notice is that this function does a couple of other useful things
besides capturing the last output object. If the last command typed resulted in a “command not
found” exception 2, then you check to see if the command was a path to a directory. If so, you set
the current location to that directory 3. This allows you to type

PS> c:\mydir\mysubdir

instead of

PS> cd c:\mydir\mysubdir

The other thing you check is to see if the command looks like a URL. If it does, then try to open
it in the browser. 4 This lets you open a web page by typing the URL. Both of these are minor
conveniences, but along with the $LAST variable, they make interactive use of PowerShell a more
pleasant experience. This example should give you a sense of the flexibility that steppable
pipelines provide.

Note

Run the function and try the examples given at the start of this section.

We began this chapter with scriptblocks, moved from there to synthetic objects, then on to
dynamic modules and closures, and finally to steppable pipelines. Now we’re going to circle
back to the type system and look at it in more detail. We’ve covered the nice ways to add
members to objects and build synthetic objects, so let’s dig into the plumbing of the PowerShell
type system. In the next section, we’ll look at what’s happening under the covers.

(391)

10.6. A closer look at the type-system plumbing

Earlier in this chapter, we said that the core of the PowerShell type system was the PSObject type.
This type is used to wrap other objects, providing adaptation and inspection capabilities as well
as a place to attach synthetic members. You’ve used Get-Member to explore objects and the Add-
Member, New-Object, and Select-Object cmdlets to extend and create objects. You can do all this
directly by using the PSObject class itself. But there’s one thing you can’t do without
understanding PSObject: wrap or shadow an existing property. In this technique, the synthetic
property calls the base property that it’s hiding. (Don’t worry, this is less esoteric than it sounds.
A simple example will clarify what we’re talking about here.)

Note

If you’ve done much object-oriented programming, this concept is similar to creating an override
to a virtual method that calls the overridden method on the base class. The difference here is that
it’s all instance-based; no new type is involved.

Let’s look at PSObject in more detail. First, let’s examine the properties on this object:

PS> [psobject].GetProperties() | foreach Name

BaseObject

Members

Properties

Methods

ImmediateBaseObject

TypeNames

From the list, you see some obvious candidates of interest. But how do you get at these members,
given that the whole point of PSObject is to be invisible? The answer is that there’s a special
property attached to all objects in PowerShell called (surprise) PSObject. Let’s look at this. First,
you need a test object to work on. Use Get-Item to retrieve the DirectoryInfo object for the C:
drive:

PS> $f = Get-Item c:\

PS> $f

 Directory:

Mode LastWriteTime Length Name

---- ------------- ------ ----

d--hs- 25/04/2017 14:38 C:\

Now let’s look at the PSObject member attached to this object:

PS> $f.psobject

BaseObject : C:\

Members : {string PSPath=Microsoft.PowerShell.Core\

 FileSystem::C:\, string PSParentPath=,

 string PSChildName=C:\, PSDriveInfo PSDrive=C...}

Properties : {string PSPath=Microsoft.PowerShell.Core\

 FileSystem::C:\, string PSParentPath=,

 string PSChildName=C:\, PSDriveInfo PSDrive=C...}

Methods : {string get_Name(), System.IO.DirectoryInfo

 get_Parent(), System.IO.DirectoryInfo

 CreateSubdirectory(string path),

(392)

 System.IO.DirectoryInfo

 CreateSubdirectory(string path,

 System.Security.AccessControl.DirectorySecurity

 directorySecurity), void Create(),

 void Create(System.Security.AccessControl.

 DirectorySecurity directorySecurity)...}

ImmediateBaseObject : C:\

TypeNames : {System.IO.DirectoryInfo,

 System.IO.FileSystemInfo,

 System.MarshalByRefObject, System.Object}

Right away you see a wealth of information: all the properties you saw on the PSObject type,
populated with all kinds of interesting data. First, let’s look at the TypeNames member:

PS> $f.psobject.TypeNames

System.IO.DirectoryInfo

System.IO.FileSystemInfo

System.MarshalByRefObject

System.Object

This member contains the names of all the types in the inheritance hierarchy for a DirectoryInfo
object. (These types are all documented in the .NET class library documentation that’s part of the
MSDN collection. See http://msdn.microsoft.com for more information.)

We’ll look at the Properties member next. This collection contains all the properties defined by
this type. Let’s get information about all the properties that contain the pattern “name”:

PS> $f.psobject.Properties | where {$_.name -match 'name'}

MemberType : NoteProperty

IsSettable : True

IsGettable : True

Value : C:\

TypeNameOfValue : System.String

Name : PSChildName

IsInstance : True

GetterScript : $this.Name

SetterScript :

MemberType : ScriptProperty

IsSettable : False

IsGettable : True

Value : C:\

TypeNameOfValue : System.Object

Name : BaseName

IsInstance : False

MemberType : Property

Value : C:\

IsSettable : False

IsGettable : True

TypeNameOfValue : System.String

Name : Name

IsInstance : True

MemberType : Property

Value : C:\

IsSettable : False

IsGettable : True

TypeNameOfValue : System.String

Name : FullName

IsInstance : True

You’ve seen these properties before; this is the same information that would be returned from
Get-Member. This is exactly what Get-Member does—it uses the PSObject properties to get this
information.

10.6.1. Adding a property

(393)

http://msdn.microsoft.com

Now let’s add a new member to this object. You could use Add-Member (and typically you would),
but we’re talking about the plumbing here, so we’ll do it the hard way. First, you need to create
the NoteProperty object that you want to add. Do this with the New-Object cmdlet:

PS> $np = New-Object `

 -TypeName System.Management.Automation.PSNoteProperty `

 -ArgumentList hi, 'Hello there'

Next, add it to the member collection:

PS> $f.PSObject.Members.add($np)

and you’re finished (so it wasn’t that hard after all). The hi member has been added to this
object, so try it out:

PS> $f.hi

Hello there

All of the normal members are still there. Now look at the member in the member collection:

PS> $f.PSObject.Members | where {$_.name -match '^hi'}

MemberType : NoteProperty

IsSettable : True

IsGettable : True

Value : Hello there

TypeNameOfValue : System.String

Name : hi

IsInstance : True

Notice the Value member on the object. Because you can get at the member, you can also set the
member

PS> ($f.PSObject.Members | where {

 $_.name -match '^hi'}).value = 'Goodbye!'

PS> $f.hi

Goodbye!

which is equivalent to setting the property directly on $f:

PS> $f.hi = 'Hello again!'

PS> $f.PSObject.Members | where {$_.name -match '^hi'}

MemberType : NoteProperty

IsSettable : True

IsGettable : True

Value : Hello again!

TypeNameOfValue : System.String

Name : hi

IsInstance : True

The Value member on the note property is Hello again!

In section 10.4.3 you saw a different type of note property used when constructing objects out of
modules. This type of note property is backed by a variable. You can also create an instance of
this type of property. But first you need a variable to use to back the property value:

PS> [int] $VariableProperty = 0

Now create the PSVariableProperty object, passing in the variable to bind:

PS> $vp = New-Object `

 -TypeName System.Management.Automation.PSVariableProperty `

 -ArgumentList (Get-Variable VariableProperty)

(394)

Note that the name of the property and the name of the variable will be the same. Add the
property

PS> $f.psobject.members.add($vp)

and verify that it can be read and written:

PS> $f.VariableProperty

0

PS> $f.VariableProperty = 7

PS> $f.VariableProperty

7

You can read and write integers, but the backing variable was constrained to be an integer. Let’s
verify that the constraint was preserved by trying to assign a string to it:

PS> $f.VariableProperty = 'Hi'

Cannot convert value "Hi" to type "System.Int32".

Error: "Input string was not in a correct format."

At line:1 char:1

+ $f.VariableProperty = 'Hi'

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : MetadataError: (:) [], ArgumentTransformationMetadataException

 + FullyQualifiedErrorId : RuntimeException

You get the error like you saw in section 10.4.3 when you exported a constrained variable from a
module as a property.

10.6.2. Shadowing an existing property

There’s one last item to cover in our discussion of the plumbing: the mechanism that allows you
to bypass the adapted members and lets you get at the raw object underneath. This is
accomplished through another special member on PSObject called PSBase. This member allows
you to get at the object directly, bypassing all the synthetic member lookup. It also makes it
possible to create a synthetic member to adapt an existing member. We can clarify this with an
example. Say you want to change the name property on a DirectoryInfo object to always return the
name in uppercase. Here’s what it looks like unadapted:

PS> $f = Get-Item c:\windows

PS> $f.name

windows

To do this, create a new PSProperty object called Name that will shadow the existing property:

PS> $n=New-Object -TypeName Management.Automation.PSScriptProperty `

 -ArgumentList name,{$this.psbase.name.ToUpper()}

In the body of the scriptblock for this PSProperty, you’ll use $this.psbase to get at the name
property on the base object (if you accessed the name property directly, you’d be calling yourself).
You apply the ToUpper() method on the string returned by name to acquire the desired result. Now
add the member to the object’s member collection

PS> $f.psobject.members.add($n)

and try it out:

PS> $f.name

WINDOWS

(395)

When you access the name property on this object, the synthetic member you created gets called
instead of the base member, so the name is returned in uppercase. The base object’s name
property is unchanged and can be retrieved through psbase.name:

PS> $f.psbase.name

windows

Although this isn’t a technique that you’ll typically use on a regular basis, it allows you to do
some pretty sophisticated work. You could use it to add validation logic, for example, and
prevent a property from being set to an undesired value. You could also use it to log accesses to a
property to gather information about how your script or application is being used.

With a solid understanding of the plumbing, you’re ready to use everything you’ve learned and
do some applied metaprogramming. In the next section, you’ll learn how to write a domain-
specific extension to PowerShell.

(396)

10.7. Extending the PowerShell language

In the previous section, you learned how to add members to existing objects one at a time, but
sometimes you’ll want to construct new types rather than extend the existing types. In this
section, we’ll explain how to do that and also how to use scripting techniques to add the ability to
create objects to the PowerShell language.

10.7.1. Little languages

The idea of little languages—small, domain-specific languages—has been around for a long
time. This was one of the powerful ideas that made the UNIX environment so attractive. Many of
the tools that were the roots for today’s dynamic languages came from this environment.

In effect, all programs are exercises in building their own languages. You create the nouns
(objects) and verbs (methods or functions) in this language. These patterns are true for all
languages that support data abstraction. Dynamic languages go further because they allow you to
extend how the nouns, verbs, and modifiers are composed in the language. For example, in a
language such as C#, it would be difficult to add a new looping construct. In PowerShell, this is
minor. To illustrate how easy it is, let’s define a new looping keyword called loop. This construct
will repeat the body of the loop for the number of times the first argument specifies. You can add
this keyword by defining a function that takes a number and scriptblock. Here’s the definition:

PS> function loop ([int] $i, [scriptblock] $b) {

 while ($i-- -gt 0) { . $b }

 }

Try it out:

PS> loop 3 { 'Hello World' }

Hello world

Hello world

Hello world

In a few lines of code, you’ve added a new flow-control statement to the PowerShell language
that looks pretty much like any of the existing flow-control statements. The only problem is that
the opening brace has to be on the same line as the command—otherwise, it will be treated as
two statements.

Note

As of version 4, PowerShell does have a way to create real language extensions where
everything doesn’t have to be on the same line. This is how the language extensions for
PowerShell DSC were implemented. Unfortunately, these capabilities are only exposed in the
form of rather hard-to-use APIs. Although there are a number of community examples
demonstrating how to use these APIs, we’re not going to cover them in this book because they’re
still subject to change. (Microsoft may change the APIs as part of the process of properly
exposing them.)

Now let’s change gears a bit to talk more about types.

(397)

10.7.2. Type extension

You might have noticed that all the examples we’ve looked at so far involve adding members to
instances. But what about adding members to types? Having to explicitly add members to every
object you encounter would be pretty tedious, no matter how clever you are.

Note

Nope—still not talking about classes. Wait for chapter 19. Patience is a virtue (or so they tell us).

You need some way to extend types instead of individual instances. As you might expect,
PowerShell lets you do exactly this. In the following sections, we’ll introduce the mechanisms
that PowerShell provides which let you extend types.

Type extension is performed in PowerShell through a set of XML configuration files. These files
are usually loaded at startup time, but they can be extended after the shell has started. In this
section, you’ll learn how to take advantage of these features.

Let’s look at an example. Consider an array of numbers. It’s fairly common to sum up a
collection of numbers; unfortunately, there’s no Sum() method on the Array class:

PS> (1,2,3,4).Sum()

Method invocation failed because [System.Int32] does not contain a method named 'Sum'.

At line:1 char:1

+ (1,2,3,4).sum()

+ ~~~~~~~~~~~~~~~

 + CategoryInfo : InvalidOperation: (:) [], RuntimeException

 + FullyQualifiedErrorId : MethodNotFound

Using the techniques, we’ve discussed, you could add such a method to this array:

PS> $a = (1,2,3,4)

PS> $a = Add-Member -PassThru -in $a scriptmethod sum {

 $r=0

 foreach ($e in $this) {$r += $e}

 $r

}

and finally use it:

PS> $a.sum()

10

But this would be painful to do for every instance of an array. What you need is a way to attach
new members to a type, rather than through an instance. PowerShell does this through type
configuration files. These configuration files are stored in the installation directory for
PowerShell and loaded at startup. The installation directory path for PowerShell is stored in the
$PSHome variable, so it’s easy to find these files. They have the word type in their names and have
an extension of .ps1xml:

PS> Get-ChildItem $pshome/*type*.ps1xml

You don’t want to update the default installed types files because when you install updates for
PowerShell, they’ll likely be overwritten and your changes will be lost. Instead, create your own

(398)

custom types file containing the specification of the new member for System.Array. Once you’ve
created the file, you can use the Update -TypeData cmdlet to load it. The definition for the Sum()
method extension you want to add to System.Array is shown next.

Listing 10.6. Type file for Sum() method extension

<Types>

 <Type>

 <Name>System.Array</Name>

 <Members>

 <ScriptMethod>

 <Name>Sum</Name>

 <Script>

 $r=$null

 foreach ($e in $this) {$r += $e}

 $r

 </Script>

 </ScriptMethod>

 </Members>

 </Type>

</Types>

This definition is saved to a file called SumMethod.ps1xml. Now load the file and update the
type system definitions:

PS> Update-TypeData SumMethod.ps1xml

If the file loads successfully, you won’t see any output. You can now try out the Sum() function:

PS> (1,2,3,4,5).Sum()

15

It works. And because of the way the script was written, it will work on any type that can be
added. Let’s add strings:

PS> ('abc','def','ghi').Sum()

abcdefghi

You can even use it to add hashtables:

PS> (@{a=1},@{b=2},@{c=3}).Sum()

Name Value

---- -----

c 3

a 1

b 2

You can see that the result is the composition of all three of the original hashtables. You can
even use it to put a string back together:

PS> ([char[]] 'hal' | foreach{[char]([int]$_+1)}).Sum()

ibm

Here you break the original string into an array of characters, add 1 to each character, and then
use the Sum() method to add them all back into a string.

You should take time to examine the set of type configuration files that are part of the default
PowerShell installation. Examining these files is a good way to see what you can accomplish
using these tools.

(399)

Warning

Make sure you don’t make any changes to these files because bad things will happen to your
PowerShell implementation.

Starting with PowerShell v3 you can modify types dynamically in a script. Instead of creating a
type data file, you can imperatively extend a type with Update-TypeData. The dynamically
modified type data is available only in the session in which you apply it—exactly the same as if
you used a types file. You can also remove modified type data (dynamic or from a type file)
using Remove-TypeData.

Let’s use the example from this section, but this time we’ll perform the update dynamically. Save
this listing as dynamictypes.ps1.

Listing 10.7. Updating type data dynamically

Update-TypeData -TypeName System.Array -MemberName Sum `

-MemberType ScriptMethod -Value {

 $r=$null

 foreach ($e in $this) {$r += $e}

 $r

} -Force 1

"`nSum array of numbers:" 2

(1,2,3,4,5).Sum()

"`nSum array of strings:"

("abc","def","ghi").Sum()

"`nSum array of hashtables:"

(@{a=1},@{b=2},@{c=3}).Sum()

"`nPut string back together:"

([char[]] "hal" | foreach{[char]([int]$_+1)}).Sum()

Remove-TypeData -TypeName System.Array 3

"`nSum array of numbers:"

(1,2,3,4,5).Sum()

1 Defining dynamic type data
2 Summing an array
3 Removing dynamic type data

When defining dynamic types 1 you need to supply Update-TypeData with several pieces of
information:

Type to be modified
Name of the new member
Type of the new member
Value or code used to define the new member

If you compare listing 10.7 with listing 10.6, you’ll see the very same data in both. When you
modify types dynamically, you should use the -Force parameter. This doesn’t turn you into a Jedi
knight but it ensures that the modification of the type will be applied even if you’ve already
performed the action. It’s useful when developing and testing or if you need to rerun the script in

(400)

the same session multiple times.

The same summations 2 are perfomed as in the previous discussion on using type files—namely,
summing arrays of numbers, strings, and hashtables and putting a string back together. The
results are shown in figure 10.5.

Figure 10.5. Running a script that dynamically updates types

You can remove the modified type data 3 using Remove-TypeData. You’ll remove all type
modifications for that particular type. If you then try to use the Sum() method on an array, you’ll
receive a Method Invocation error because the method doesn’t exist. As a further exercise in
dynamically modifying types, we’ll leave it to you to add a method to System.String to reverse
the string. (Hint: see the ScriptMethod in section 10.2.3.)

We’ve covered an enormous amount of material so far in this chapter, introducing ideas that are
new to a lot of users. If you’ve hung on to this point, congratulations! There are only a few more
topics to complete your knowledge of metaprogramming with PowerShell. Scriptblocks,
dynamic modules, and closures can be passed around, invoked, and assigned at runtime, but the
body of these blocks is still defined at compile time. In the next section we’ll expand our
repertoire of techniques by looking at ways to dynamically create code.

(401)

10.8. Building script code at runtime

This final section presents the mechanisms that PowerShell provides for compiling script code
and creating scriptblocks at runtime. To say that you’re compiling when PowerShell is an
interpreted language may sound odd, but that’s what creating a scriptblock is: a piece of script
text is compiled into an executable object. In addition, PowerShell provides mechanisms for
directly executing a string, bypassing the need to first build a scriptblock. In the next few
sections we’ll look at how each of these features works.

10.8.1. The Invoke-Expression cmdlet

The Invoke-Expression cmdlet is a way to execute an arbitrary string as a piece of code. It takes
the string, compiles it, and then immediately executes it in the current scope. Here’s an example:

PS> Invoke-Expression -Command '$a=2+2; $a'

4

In this example, the script passed to the cmdlet assigned the result of 2+2 to $a and wrote $a to the
output stream. Because this expression was evaluated in the current context, it should also have
affected the value of $a in the global scope:

PS> $a

4

You see that it did. Now invoke another expression:

PS> Invoke-Expression '$a++'

PS> $a

5

Evaluating this expression changes the value of $a to 5. There are no limits on what you can
evaluate with Invoke-Expression. It can take any arbitrary piece of script code.

Warning

Danger! Danger! Danger! If you ever find yourself using the Invoke-Expression cmdlet (or the
corresponding APIs) in production code, you’re almost certainly wrong. With all of the other
features covered in this chapter, there’s little need to ever use this cmdlet. Certainly, you should
never call it on unvalidated user input. Incorrect use of this cmdlet can and has led to code-
injection attacks and other security issues in the wild. You have been warned. We will now
return you to your regularly scheduled section.

Here’s an example where you build a string with several statements in it and execute it:

PS> $expr = '$a=10;'

PS> $expr += 'while ($a--) { $a }'

PS> $expr += '"A is now $a"'

PS> [string](Invoke-Expression $expr)

9 8 7 6 5 4 3 2 1 0 A is now -1

The first three commands in this example build a string to execute. The first line initializes the

(402)

variable $a, the second adds a while loop that decrements and outputs $a, and the third line
outputs a string telling you the final value of $a. Note the double quoting in the last script
fragment. Without the nested double quotes, it would try to execute the first word in the string
instead of emitting the whole string.

10.8.2. The ExecutionContext variable

One of the predefined variables (also called automatic variables) provided by the PowerShell
engine is $ExecutionContext. This variable is another way to get at various facilities provided by
the PowerShell engine. It’s intended to mimic the interfaces available to the cmdlet author. The
services that matter most to us in this chapter are those provided through the InvokeCommand
member. Let’s look at what this member can do for us:

PS> $ExecutionContext.InvokeCommand | Get-Member

 TypeName: System.Management.Automation.

 CommandInvocationIntrinsics

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System...

ExpandString Method string ExpandStrin...

GetCmdlet Method System.Management...

GetCmdletByTypeName Method System.Management...

GetCmdlets Method System.Collections...

GetCommand Method System.Management...

GetCommandName Method System.Collections...

GetCommands Method System.Collections...

GetHashCode Method int GetHashCode()

GetType Method type GetType()

InvokeScript Method System.Collections...

NewScriptBlock Method scriptblock NewScr...

ToString Method string ToString()

CommandNotFoundAction Property System.EventHandle...

HasErrors Property bool HasErrors {ge...

PostCommandLookupAction Property System.EventHandle...

PreCommandLookupAction Property System.EventHandle...

The interesting methods in this list are ExpandString(), InvokeScript(), and NewScriptBlock().
These methods are covered in the next few sections.

10.8.3. The ExpandString() method

The ExpandString() method lets you perform the same kind of variable interpolation that the
PowerShell runtime does in scripts. Here’s an example. First, set $a to a known quantity:

PS> $a = 13

Next, create a variable $str that will display the value of $a:

PS> $str='a is $a'

Because the variable was assigned using single quotes, no string expansion took place. You can
verify this by displaying the string:

PS> $str

a is $a

Now call the ExpandString() method, passing in $str:

PS> $ExecutionContext.InvokeCommand.ExpandString($str)

(403)

a is 13

It returns the string with the variable expanded into its value. An obvious use for this API is
templating. If you have a text file containing PowerShell variables and subexpressions, you can
cause those variables to be expanded on the file by doing

PS> $ExecutionContext.InvokeCommand.ExpandString((Get-Content templatefile.txt))

The only downside to this technique is that you need to know what variables are in the file so
you can make sure they’re all set properly before expanding the template.

10.8.4. The InvokeScript() method

InvokeScript()does the same thing that the Invoke-Expression cmdlet does (in fact, the cmdlet
calls the method). It takes its argument and evaluates it like a script. Call this method passing in
the string “2+2”

PS> $ExecutionContext.InvokeCommand.InvokeScript('2+2')

4

and it will return 4.

10.8.5. Mechanisms for creating scriptblocks

The NewScriptBlock() method, like InvokeScript(), takes a string, but instead of executing it, it
returns a scriptblock object that represents the compiled script. Let’s use this method to turn the
string '1..4 | foreach {$_ * 2}' into a scriptblock:

PS> $sb = $ExecutionContext.InvokeCommand.NewScriptBlock(

'1..4 | foreach {$_ * 2}')

You save this scriptblock into a variable, so let’s look at it. Because the ToString() on a
scriptblock is the code of the scriptblock, you see the code that makes up the body of the
scriptblock:

PS> $sb

1..4 | foreach {$_ * 2}

Now execute the scriptblock using the & call operator:

PS> & $sb

2

4

6

8

The scriptblock executes, printing out the even numbers from 2 to 8.

There’s a simpler way of doing this by using a static method on the ScriptBlock class. Here’s
how to use this static factory class:

PS> $sb = [scriptblock]::Create('1..4 | foreach {$_ * 2}')

PS> & $sb

2

4

6

8

(404)

Using the [ScriptBlock] type accelerator, the newer mechanism is significantly simpler than the
rather long expression in the earlier example.

Note

Many people have asked why the PowerShell team doesn’t allow you to cast a string to a
scriptblock. The reason is that they want to make the system resilient against code-injection
attacks by minimizing the number of places where executable code can be injected into the
system. They particularly want code creation to be an explicit act. Casts are more easily hidden,
leading to accidental code injections, particularly when the system may prompt for a string. You
don’t want those user-provided strings to be converted into code without some kind of check.
See the warning at the beginning of this section for more details.

10.8.6. Creating functions using the function: drive

The final way to create a scriptblock is a side effect of creating elements in the function: drive.
Earlier you saw that it’s possible to create a named function by assigning a scriptblock to a name
in the function: drive:

PS> $function:foo = {'Hello there'}

PS> foo

Hello there

You could also use the Set-Item or New-Item cmdlet to do this. For example:

PS> New-Item function:foo -Value {'Hi!'}

New-Item : The item at path 'foo' already exists.

At line:1 char:1

+ New-Item function:foo -value {'Hi!'}

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : InvalidArgument: (:)

[New-Item], PSArgumentException

 + FullyQualifiedErrorId : Argument,Microsoft.PowerShell.Commands.NewItemCommand

You receive an error because the function already exists, so use the -Force parameter to overwrite
the existing definition:

PS> New-Item function:foo -Value { 'Hi!' } -Force

CommandType Name Version Source

----------- ---- ------- ------

Function foo

New-Item returns the item created, so you can see that the function has been changed. But that’s
using scriptblocks. What happens if you pass in strings? The interpreter will compile these
strings into scriptblocks and then assign the scriptblocks to the name. Here’s an example where
the body of the function is determined by the expanded string:

PS> $x=5

PS> $y=6

PS> $function:foo = "$x*$y"

PS> foo

30

PS> $function:foo

(405)

5*6

The variables $x and $y expand into the numbers 5 and 6 in the string, so the resulting scriptblock
is

{5*6}

Now define another function using foo, but add more text to the function:

PS> New-Item function:bar -Value "$function:foo*3"

CommandType Name Version Source

----------- ---- ------- ------

Function bar

PS> bar

90

In the expanded string, $function:foo expands into “5*6”, so the new function bar is assigned a
scriptblock {5*6*3}.

This finishes our discussion of the techniques PowerShell provides for compiling script code at
runtime. In the next section, we’ll look at how to embed static languages like C# and Visual
Basic in your scripts. This ability to embed fragments of C# or Visual Basic vastly increases
what can be done directly with scripts, but at the cost of some increase in complexity.

(406)

10.9. Compiling code with Add-Type

In the previous section, we covered techniques for compiling script code at runtime. In this
section, you’ll learn how to inline code written in static languages into your scripts. The key to
doing this is the Add-Type cmdlet. With the Add-Type cmdlet, you can embed code fragments
written in compiled languages like C# or Visual Basic in your scripts and then compile that code
when the scripts are loaded.

Note

The need for the Add-Type cmdlet is significantly reduced now that you can create your own
classes right in PowerShell, but there are some situations, like interoperating with the operating
system, where you still need to use a compiled language like C#.

A particularly interesting application of this technique is that you can create dynamic binary
modules. This combines some of the best aspects of script modules with binary modules.

Add-Type can also be used to dynamically load existing .NET assemblies at runtime. Finally, this
cmdlet can be used to simplify writing scripts that compile static language code into libraries or
executables.

10.9.1. Defining a new .NET class: C#

Let’s jump into an example where you’ll dynamically add a new .NET class at runtime using C#.
You’ll write the code for this class using C#.

Note

Creating a class can also be done directly in PowerShell v5, as you’ll see in chapter 19. The
example in listing 10.8 provides a technique for older versions of PowerShell.

It’s a simple class, so even if you aren’t a C# programmer, you should be able to understand the
code.

Listing 10.8. Creating a class using C#

Add-Type @'

using System;

public static class Example1

{

 public static string Reverse(string s)

 {

 Char[] sc = s.ToCharArray();

 Array.Reverse(sc);

 return new string(sc);

(407)

 }

}

'@

This command should run with no errors. Once it’s run, use the new type that you’ve added:

PS> [example1]::Reverse('hello there')

ereht olleh

And there you go. You now have a new method for reversing strings. You could also have saved
the file externally and then loaded it at runtime.

10.9.2. Defining a new enum at runtime

An enum type in .NET is a way of creating a fixed set of name-value constants. The ability to
define these types is missing from PowerShell prior to version 5.0 (see chapter 19), but you can
work around this by using Add-Type. You’ll define an enum that can be used to specify a coffee
order. You’ll constrain the types of coffee orders you’ll allow to Latte, Mocha, Americano,
Cappuccino, or Espresso. First, set a variable to the list of drink types:

PS> $beverages = 'Latte, Mocha, Americano, Cappuccino, Espresso'

Pass a string to Add-Type that contains the fragment of C# needed to define an enum type:

PS> Add-Type "public enum BeverageType { $beverages }"

It should be easy to see what’s going on. You’re defining a public type called BeverageType using
the list of drinks in $beverages. Now that you have the type defined, you can use it in a function
to create new drink orders:

PS> function New-DrinkOrder ([BeverageType] $beverage)

 {

 "A $beverage was ordered"

 }

This function uses the enum to constrain the type of the argument to the function and then return a
string showing what was ordered. Use the function to order a latte:

PS> New-DrinkOrder latte

A Latte was ordered

And the order goes through. Notice that the casing of the drink name matches what was in the
DrinkOrder enum definition, not what was in the argument. This is because the argument contains
an instance of the DrinkOrder type and not the original string. Let’s try to order something other
than a coffee and see what happens:

PS> New-DrinkOrder coke

New-DrinkOrder : Cannot process argument transformation on parameter

 'beverage'. Cannot convert value "coke" to type "BeverageType".

Error: "Unable to match the identifier name coke to a valid enumerator name.

 Specify one of the following enumerator names and try again:

Latte, Mocha, Americano, Cappuccino, Espresso"

At line:1 char:16

+ New-DrinkOrder coke

+ ~~~~

 + CategoryInfo : InvalidData: (:) [New-DrinkOrder],

 ParameterBindingArgumentTransformationException

 + FullyQualifiedErrorId : ParameterArgumentTransformationError,

New-DrinkOrder

(408)

This results in a somewhat verbose but helpful error message telling you why the order failed
and what the valid drink types are. That’s all well and good, but the customer wants a Coke.
Modify the enum definition to include Coke in the list of beverages:

PS> $beverages += ", Coke"

And call Add-Type again:

PS> Add-Type "public enum BeverageType { $beverages }"

Add-Type : Cannot add type. The type name 'BeverageType' already exists.

At line:1 char:1

+ Add-Type "public enum BeverageType { $beverages }"

+ ~~

 + CategoryInfo : InvalidOperation: (BeverageType:String)

[Add-Type], Exception + FullyQualifiedErrorId : TYPE_ALREADY_

 EXISTS,Microsoft.PowerShell.Commands.AddTypeCommand

This time it fails. Remember what we said about static types: once they’re defined, they can’t be
changed. This is something to consider when using Add-Type to inline static code in a script. Static
type definitions mean that the script isn’t as easy to update as a normal PowerShell-only script.
Now let’s look at how Add-Type can be combined with dynamic modules.

10.9.3. Dynamic binary modules

Like dynamic script modules, a dynamic binary module is constructed in memory rather than
loaded from disk. This is where Add-Type comes in. The content of a binary module is defined by
a compiled assembly, not script text, and Add-Type lets you build these in-memory assemblies.
This script constructs a binary module.

Listing 10.9. The ExampleModuleScript

$code = @' 1

using System.Management.Automation;

[Cmdlet("Write", "InputObject")]

public class MyWriteInputObjectCmdlet : Cmdlet

{

 [Parameter()]

 public string Parameter1;

 [Parameter(Mandatory = true, ValueFromPipeline=true)]

 public string InputObject;

 protected override void ProcessRecord()

 {

 if (Parameter1 != null)

 WriteObject(Parameter1 + ":" + InputObject);

 else

 WriteObject(InputObject);

 }

}

'@

$bin = Add-Type $code -PassThru 2

$bin.Assembly | Import-Module 3

1 Contains cmdlet code
2 Compiles code in memory
3 Gets assembly ref from type

This script packages the C# code for a cmdlet into a here-string 1. It then uses Add-Type to
produce the required in-memory assembly 2, which it passes to Import-Module 3. The one wrinkle

(409)

in this approach is the fact that Add-Type returns type objects, not assemblies. Fortunately, this is
easy to work around: The type object makes its containing assembly available through the
Assembly property. Let’s try out the script. First, load it:

PS>./ExampleModuleScript

then check to see if the module has been created:

PS> Get-Module

ModuleType Version Name ExportedCommands

---------- ------- ---- ----------------

Binary 0.0.0.0 dynamic_code_module... Write-InputObject

and there it is. Next, get the CommandInfo object for the new cmdlet:

PS> $cmd = Get-Command Write-InputObject

PS> $cmd | Format-List

Name : Write-InputObject

CommandType : Cmdlet

Definition :

 Write-InputObject -InputObject <string>

 [-Parameter1 <string>] [<CommonParameters>]

Path :

AssemblyInfo :

DLL :

HelpFile : -Help.xml

ParameterSets : {-InputObject <string> [-Parameter1 <string>]

 [<CommonParameters>]}

ImplementingType : MyWriteInputObjectCmdlet

Verb : Write

Noun : InputObject

Notice that the Path, DLL, and AssemblyInfo fields for this command are empty. Because the
assembly for a dynamic binary module is in-memory only, these items are empty. They need an
assembly that was loaded from disk in order to be defined.

Dynamic binary modules make it possible to get the advantages of a script module (being able to
read the script) along with the advantages of compiled code (speed and static type checking). The
only disadvantage to the user compared with regular binary modules is that the load time may be
a bit longer.

(410)

10.10. Summary

Metaprogramming is a set of powerful techniques that cracks open the PowerShell
runtime.
Metaprogramming allows you to extend the runtime with new keywords and control
structures.
You can directly add properties and methods to objects in PowerShell to adapt or extend
objects logically in specific problem domains.
The fundamental unit of PowerShell code, including the content of all functions, scripts,
and modules, is the scriptblock.
Scriptblocks let you define methods that can be added to objects as script methods.
Scriptblocks don’t necessarily need to be named, and they can be used in many situations,
including as the content of variables.
Scriptblocks are the key to all of the metaprogramming features in PowerShell; they’re
also an everyday feature that users work with all the time when they use the ForEach-Object
and Where-Object cmdlets.
The call operator & allows you to invoke commands indirectly, by reference rather than by
name (a scriptblock is a reference). This also works with the CommandInfo objects returned
from Get-Command.
When using the Update-TypeData cmdlet, you can load type configuration files that allow
you to extend a type instead of a single instance of that type.
PowerShell supports the use of little language, or domain-specific language techniques, to
extend the core language. This allows you to more naturally specify solutions for problems
in a particular domain.
You can employ a variety of techniques for compiling and executing code at runtime. You
can use the Invoke-Expression cmdlet, engine invocation intrinsics on the $ExecutionContext
variable, or the CreateScriptBlock() static method on the [scriptblock] type.
Dynamic modules allow you to do local isolation in a script. They also underlie the
implementation of closures in PowerShell and provide a simpler way to create custom
objects.
The Add-Type cmdlet lets you work with compiled languages from within PowerShell.
Add-Type provides a means to embed code in these languages directly in your scripts. This
ability adds significant power to the environment at some cost in complexity.
Add-Type also makes it possible to create dynamic binary modules, allowing you to
combine some of the benefits of both static and dynamic coding techniques.

This finishes our look at modules and metaprogramming. In the next chapter, we’ll move on to
examine the techniques you can use to work with remote machines.

(411)

Chapter 11. PowerShell remoting
This chapter covers

Commands with built-in remoting
PowerShell remoting subsystem
Using PowerShell remoting
Remoting sessions, persistent connections, and implicit remoting
Remoting considerations and custom remoting sessions

In a day when you don’t come across any problems, you can be sure that you are traveling
in the wrong path.

Swami Vivekananda

PowerShell is a tool intended for enterprise and cloud management but if it can’t manage
distributed systems it isn’t useful. Fortunately, PowerShell has a comprehensive built-in
remoting subsystem. This facility allows you to handle most remoting tasks in any kind of
configuration you might encounter.

In this chapter, we’re going to cover the features of remoting and how you can apply them. We’ll
use an example showing how to combine the features to solve a nontrivial problem: monitoring
multiple remote machines. We’ll then look at some of the configuration considerations you need
to be aware of when using PowerShell remoting.

Let’s start with a quick overview of PowerShell remoting.

(412)

11.1. PowerShell remoting overview

The ultimate goal for remoting is to be able to execute a command on a remote computer. There
are two ways to approach this. First, you could have each command do its own remoting. In this
scenario, the command is still executed locally but uses system-level networking capabilities like
DCOM to perform remote operations. A number of commands do this, which we’ll cover in the
next section. The negative aspect of this approach is that each command has to implement and
manage its own remoting and authentication mechanisms.

PowerShell includes a second, more general solution, allowing you to send a command (or
pipeline of commands or even a script) to the target machine for execution and then retrieve the
results. With this approach, you only have to implement the remoting mechanism once and then
it can be used with any command. This second solution is the one we’ll spend most of our time
discussing. But first let’s look at the commands that implement their own remoting.

11.1.1. Commands with built-in remoting

A number of commands in PowerShell have a -ComputerName parameter, which allows you to
specify the target machine to access. You can discover (some of) these cmdlets by running either
of these commands:

PS> Get-Help * -Parameter ComputerName

PS> Get-Command -ParameterName ComputerName

CIM sessions

Common Information Model (CIM) sessions (see chapter 16) are closely related to PowerShell
remoting—they enable more efficient access to WMI classes on remote machines. The cmdlets
capable of using CIM sessions can be discovered in a similar way:

PS>Get-Command -ParameterName Cimsession

For a new PowerShell v5.1 session on Windows 10, the majority of the cmdlets are listed in table
11.1.

Note

The number of cmdlets you see will depend on the modules you have on your machine. You
won’t necessarily see identical results from the two commands given earlier because Get-Help is
dependent on analyzing the help files.

Table 11.1. Cmdlets with built-in remoting capability

Add-Computer Clear-EventLog Connect-PSSession
Enter-PSSession Get-EventLog Get-HotFix

(413)

Get-Process Get-Service Get-WmiObject
Invoke-Command Invoke-WmiMethod Limit-EventLog
New-EventLog New-PSSession Receive-Job
Receive-PSSession Register-WmiEvent Remove-Computer
Remove-EventLog Remove-PSSession Remove-WmiObject
Rename-Computer Restart-Computer Send-MailMessage
Set-
DscLocalConfigurationManager Set-Service Set-WmiInstance

Show-EventLog Start-DscConfiguration Stop-Computer
Test-Connection Write-EventLog

Note

We’ve deliberately excluded the *WSMan* cmdlets from table 11.1. The *WSMan* cmdlets are
effectively deprecated and have been replaced by the *-CIM* cmdlets (see chapter 16).

These commands do their own remoting because either the underlying infrastructure already
supports remoting or they address scenarios that are of particular importance to system
management. You need to supply only one or more computer names to use them against a remote
target:

PS> Get-Service -Name BITS -ComputerName W16TGT01, W16DSC02

 Status Name DisplayName

 ------ ---- -----------

Stopped BITS Background Intelligent Transfer Service

Stopped BITS Background Intelligent Transfer Service

You don’t get any indication of which result belongs to which machine by default. In this case,
you need to include the MachineName property in the output:

PS> Get-Service -Name BITS -ComputerName W16TGT01, W16DSC02 |

select Status, Name, MachineName

Status Name MachineName

 ------ ---- -----------

Stopped BITS W16DSC02

Stopped BITS W16TGT01

Self-remoting is performed using DCOM and RPC. These protocols will be blocked by default
by firewalls. Also, the set of commands that do self-remoting is quite small, so the remaining
commands must rely on the PowerShell remoting subsystem to access remote computers. We’ll
start looking at that in the next section.

11.1.2. The PowerShell remoting subsystem

You’ve seen a few brief examples of how remoting works in previous chapters. You may
remember that all those examples used the same basic cmdlet: Invoke-Command. This cmdlet allows
you to remotely invoke a scriptblock on another computer and is the building block for most of
the features in remoting. The partial syntax for this command is shown in figure 11.1.

(414)

Figure 11.1. Partial syntax for the Invoke-Command cmdlet, which is the core of PowerShell’s remoting capabilities.
This cmdlet is used to execute commands and scripts on one or more computers. It can be used synchronously or
asynchronously as a job. The VMId, VMName, and ContainerId parameters were introduced with PowerShell 5.1 and
are valid only on Windows 10 and Windows Server 2016 (or later).

The Invoke-Command cmdlet is used to invoke a scriptblock on one or more computers. You do so
by specifying a computer name (or list of names) for the machines on which you want to execute
the command. For each name in the list, the remoting subsystem will take care of all the details
needed to open the connection to that computer, execute the command, retrieve the results, and
then shut down the connection. If you’re going to run the command on a large set of computers,
Invoke-Command will also take care of all resource management details, such as limiting the
number of concurrent remote connections. Our previous example becomes this:

PS> Invoke-Command -ScriptBlock {Get-Service -Name BITS} `

-ComputerName W16TGT01, W16DSC02

Status Name DisplayName PSComputerName

------ ---- ----------- --------------

Stopped BITS Background Intelligent Transfer Service W16DSC02

Stopped BITS Background Intelligent Transfer Service W16TGT01

Note that you now get the computer name that the result refers to in the output.

This is a simple but powerful model if you need to execute only a single command or script on
the target machine. But if you want to execute a series of commands on the target, the overhead
of setting up and taking down a connection for each command becomes expensive. PowerShell
remoting addresses this situation by allowing you to create a persistent connection to the remote
computer called a session. You do so by using the New-PSSession cmdlet.

Both of the scenarios we’ve discussed so far involve what is called noninteractive remoting
because you’re only sending commands to the remote machines and then waiting for the results.
You don’t interact with the remote commands while they’re executing.

Another standard pattern in remoting occurs when you want to set up an interactive session
where every command you type is sent transparently to the remote computer. This is the style of
remoting implemented by tools like Remote Desktop, Telnet, or SSH (Secure Shell).

Note

The PowerShell team has announced that SSH support will be built into PowerShell. Basic

(415)

terminal support will be available with Windows Server 2016. Full SSH integration with the
PowerShell Remoting Protocol will be introduced at a later date. Appendix A demonstrates SSH-
based remoting between Linux and Windows machines using PowerShell v6.

PowerShell allows you to start an interactive session using the Enter-PSSession cmdlet. Use Exit-
PSSession to close the session when you've finished working. If you enter a remote session
created by New-PSSession, then using Exit-PSSession will suspend the session without closing the
remote connection. Because the connection isn’t closed, you can later reenter the session with all
session data preserved by using Enter-PSSession again. An example of an interactive session is
given in figure 11.2.

Figure 11.2. Interactive remoting session to the computer W12R2SUS. Notice how the PowerShell prompt
changes to incorporate the remote machine name when you enter the session.

These cmdlets—Invoke-Command, New-PSSession, and Enter-PSSession—are the basic remoting tools
you’ll be using. But before you can use them, you need to make sure remoting is enabled, so
we’ll look at that next.

11.1.3. Enabling remoting

At this point we have some good news and some bad news for you. The good news is that for
Windows Server 2012 and later (including Windows Server 2012 R2 virtual machines running in
Azure IaaS), PowerShell remoting is enabled by default. The bad news is that for earlier versions
of Window Server and for all versions of the Windows client operating system, PowerShell
remoting is turned off by default and has to be enabled.

Note

You have to turn on PowerShell remoting for a machine to receive and execute remote
administration commands. You don’t need to turn on remoting to send commands, though you
will need to turn it on at least temporarily to change client-side settings such as the TrustedHosts
list on the local machine.

(416)

You enable remoting using the Enable-PSRemoting cmdlet. To run this command, you must have
administrator privileges on the machine you’re going to enable. You need to do the following:

Start the PowerShell session with elevated privileges (Run As Administrator).
Ensure that none of the network connections on the machine has a network profile of
Public. Use Get-NetConnectionProfile | Set-NetConnectionProfile -NetworkCategory Private
to set the network profile.

By default, Enable-PSRemoting runs silently with no output and no input required. You can use the
–Verbose and –Confirm parameters to see what’s happening, as shown in figure 11.3.

Figure 11.3. Enabling PowerShell remoting on a machine

The Enable-PSRemoting command performs all the configuration steps needed to allow users with
local administrator privileges to remote to this computer in a domain environment. In a non-
domain or workgroup environment, as well as for non-admin users, additional steps are required
for remoting to work.

11.1.4. Additional setup steps for workgroup environments

If you’re working in a workgroup environment—for example, at home—you must take a few
additional steps before you can connect to a remote machine. With no domain controller
available to handle the various aspects of security and identity, you have to manually configure
the names of the computers you trust. If you want to connect to the computer computerItrust,
then you have to add it to the list of trusted computers (or TrustedHosts list).

You can do this via the WSMan: drive, as shown in table 11.2. Note that you need to be running as

(417)

administrator to be able to use the WSMan: provider. Once you’ve completed these steps, you’re
ready to start playing with some examples.

Table 11.2. Additional steps needed to enable remote access to a computer in a workgroup environment

Step Command Description

1 cd wsman:\localhost\client

cd’ing into the client configuration node in the
WSMan: drive allows you to access the WS-
MAN configuration for this computer using the
provider cmdlets.

2 $old = (Get-Item
.\TrustedHosts).Value

You’ll want to update the current value of the
TrustedHosts item, so you get it and save the
value in a variable.

3 $old += ',computerItrust'

The value of TrustedHosts is a string containing
a comma-separated list of the computers
considered trustworthy. You add the new
computer name to the end of this list, prefixed
with a comma. (If you’re comfortable with
implicitly trusting any host, then set this string
to *, which matches any hostname.)

4 Set-Item .\TrustedHosts $old

Once you’ve verified that the updated contents
of the variable are correct, you assign it back to
the TrustedHosts item, which updates the
configuration.

A note on security

The computers in the TrustedHosts list are implicitly trusted by the local computer when you add
their names to this list. It’s not an incoming security feature like a firewall. The identity of these
computers won’t be authenticated when you connect to them. Because the connection process
requires sending credential information to these machines, you need to be sure that you can trust
these computers. Also, be aware that the TrustedHosts list on a machine applies to everyone who
uses that computer, not only the user who changed the setting.

That said, unless you allow random people to install computers on your internal network, this
shouldn’t introduce substantial risk most of the time. If you’re comfortable with knowing which
machines you’ll be connecting to, you can put * in the TrustedHosts list, indicating that you’re
implicitly trusting any computer you might be connecting to. As always, security is a principle
tempered with pragmatics.

An alternative way of validating the identity of the target computer is to use HTTPS when
connecting to that computer. This works because, in order to establish an HTTPS connection, the
target server must have a valid certificate installed where the name in the certificate matches the
server name. As long as the certificate is signed by a trusted certificate authority you know that
the server is the one it claims to be. Unfortunately, this process does require that you have a valid
certificate, issued by either a commercial or local CA. This is an entirely reasonable requirement
in an enterprise environment but may not always be practical in smaller or informal

(418)

environments.

11.1.5. Authenticating the connecting user

In the previous section, you saw how the client verifies the identity of the target computer. Now
we’ll explore the converse of this—how the target computer verifies the identity of the
connecting user. PowerShell remoting supports a wide variety of ways of authenticating a user,
including NTLM and Kerberos. Each mechanism has its advantages and disadvantages. The
authentication mechanism also has an important impact on how data is transmitted between the
client and the server. Depending on how you authenticate to the server, the data passed between
the client and server may or may not be encrypted. Encryption is extremely important in that it
protects the contents of your communications with the server against tampering and preserves
privacy. If encryption isn’t being used, you need to ensure the physical security of your network.
No untrusted access to the network can be permitted in this scenario. The possible types of
authentication are shown in table 11.3.

Table 11.3. Possible types of authentication available for PowerShell remoting

Auth type Description Encrypted payload

Default Use the authentication method specified by the WS-
Management Protocol.

Depends on what was
specified.

Basic
Use Basic Authentication, part of HTTP, where the
username and password are sent unencrypted to the
target server or proxy.

No. Use HTTPS to
encrypt the connection.

Digest
Use Digest Authentication, which is also part of HTTP.
This mechanism supersedes Basic Authentication and
encrypts the credentials.

Yes.

Kerberos
The client computer and the server mutually
authenticate using the Kerberos network authentication
protocol.

Yes.

Negotiate

Negotiate is a challenge-response scheme that
negotiates with the server or proxy to determine the
scheme to use for authentication. For example,
negotiation is used to determine whether the Kerberos
protocol or NTLM is used.

Yes.

CredSSP

Use Credential Security Service Provider (CredSSP)
authentication, which allows the user to delegate
credentials. This mechanism, introduced with Windows
Vista, is designed to support the second-hop scenario,
where commands that run on one remote computer need
to hop to another computer to do something.

Yes.

For all the authentication types except Basic, the payload of the messages you send is encrypted
directly by the remoting protocol. If Basic authentication is chosen, you have to use encryption at
a lower layer—for example, by using HTTPS instead of HTTP.

11.1.6. Enabling remoting in the enterprise

(419)

Remote administration is most likely to be performed against the servers in your environment.
As you’ve seen, the newer versions of Windows Server have PowerShell remoting enabled by
default. If you have older servers, you don’t want to have to enable remoting on them
individually because you may be dealing with tens, hundreds, or thousands of machines.
Obviously, you can’t use PowerShell remoting to turn on remoting, so you need another way to
push configuration out to a collection of machines. This is exactly what Group Policy is designed
for. You can use Group Policy to enable and configure remoting as part of the machine policy
that gets pushed out.

PowerShell depends on the WinRM (Windows Remote Management) service for its operation.
Your Group Policy needs to:

Ensure the WinRM service will start automatically and is started.
Configure WinRM to accept remoting requests.
Configure Windows Firewall to allow remoting requests.

Instructions on creating a suitable Group Policy are available at http://mng.bz/3aHW.

(420)

http://mng.bz/3aHW

11.2. Applying PowerShell remoting

With remoting services enabled, you can start to use them to get your work done. In this section,
we’re going to look at ways you can apply remoting to solve management problems. We’ll start
with some simple remoting examples. Next, we’ll work with more complex examples where we
introduce concurrent operations. Then you’ll apply the principles you’ve learned to solve a
specific problem: how to implement a multi-machine configuration monitor. You’ll work
through this problem in a series of steps, adding more capabilities to your solution, resulting in a
simple but fairly complete configuration monitor. Let’s start with the most basic examples.

11.2.1. Basic remoting examples

Building on our “Hello world” example from chapter 1, the most basic example of remoting is

Invoke-Command -ComputerName Servername -ScriptBlock {'Hello world'}

The first thing to notice is that Invoke-Command takes a scriptblock to specify the actions. This
pattern should be familiar by now—you’ve seen it with ForEach-Object and Where-Object many
times. The Invoke-Command does operate a bit differently, though. It’s designed to make remote
execution as transparent as possible. For example, if you want to sort objects, the local command
looks like this:

PS> 1..3 | sort -Descending

Now if you want to do the sorting on the remote machine, you’d do this:

PS> 1..3 |

Invoke-Command -ComputerName localhost -ScriptBlock {sort -Descending}

You’re splitting the pipeline across local and remote parts, and the scriptblock is used to
demarcate which part of the pipeline should be executed remotely.

Note

Localhost is used to set a remote session to your local machine for testing purposes. You could
use the machine name if preferred or $ENV:COMPUTERNAME.

This works the other way as well:

PS> Invoke-Command -ComputerName localhost -ScriptBlock { 1..3 } |

sort -Descending

Here you’re generating the numbers on the remote computer and sorting them locally.
Scriptblocks can contain more than one statement. This implies that the semantics need to change
a bit. Whereas in the simple pipeline case streaming input into the remote command was
transparent, when the remote command contains more than one statement, you have to be
explicit and use the $input variable to indicate where you want the input to go. That looks like
the following:

(421)

PS> 1..3 | Invoke-Command -ComputerName localhost -ScriptBlock {

 'First'

 $input | sort -Descending

 'Last'

}

First

3

2

1

Last

The scriptblock argument to Invoke-Command in this case contains three statements. The first emits
the string 'First', the second does the sort on the input, and the third emits the string 'Last'.

What happens if you don’t specify input? Nothing is emitted between 'First' and 'Last'.
Because $input wasn’t specified, the input objects were never processed. You’ll need to keep this
in mind when you start to build a monitoring solution.

Now let’s look at how concurrency—multiple operations occurring at the same time—impacts
your scripts.

11.2.2. Adding concurrency to the examples

In chapter 1, we talked about how each object passed completely through all states of a pipeline,
one by one. This behavior changes with remoting because the local and remote commands run in
separate processes that are executing concurrently. This means you now have two threads of
execution—local and remote—and that can have an effect on the order in which things are
executed. Consider the following statement:

PS> 1..3 | foreach { Write-Host $_ -ForegroundColor green;

$_; Start-Sleep 5 } | Write-Host

1

1

2

2

3

3

This statement sends a series of numbers down the pipeline. In the body of the foreach
scriptblock, the value of the current pipeline object is written to the screen (in green) and then
passed to the next state in the pipeline. This last stage also writes the object to the screen (in
standard color). Given that you know each object is processed completely by all stages of the
pipeline, the order of the output is as expected. The first number is passed to foreach, where it’s
displayed and then passed to Write-Output, where it’s displayed again, so you see the sequence 1,
1, 2, 2, 3, 3.

Note

Start-Sleep is used to build sufficient pauses into the execution so that you can see what’s
happening. Run the code without Start-Sleep to see the difference.

Now let’s run this command again using Invoke-Command in the final stage:

(422)

PS> 1..3 | foreach {

 Write-Host -ForegroundColor green $_

 $_; Start-Sleep 5 } |

 Invoke-Command -ComputerName localhost -ScriptBlock { Write-Host }

1

2

1

3

2

3

The order has changed—you see 1 and 2 from the local process in green on a color display, then
you see 1 from the remote process (in your normal foreground text color), and so on. The local
and remote pipelines are executing at the same time, which is what’s causing the changes to the
ordering. Predicting the order of the output is made more complicated by the use of buffering and
timeouts in the remoting protocol.

You used the Start-Sleep command in these examples to force these visible differences. If you
take out this command, you’ll get a different pattern:

PS> 1..3 | foreach { Write-Host $_ -ForegroundColor green ; $_ } |

 Invoke-Command -ComputerName localhost -ScriptBlock { Write-Host }

1

2

3

1

2

3

This time, all the local objects are displayed (in green) and then passed to the remoting layer,
where they’re buffered until they can be delivered to the remote connection. This way, the local
side can process all objects before the remote side starts to operate. Concurrent operation and
buffering make it appear a bit unpredictable, but if you didn’t have the Write-Hosts in place, it
would be unnoticeable. The important thing to understand is that objects being sent to the remote
end will be processed concurrently with the local execution. That means the remoting
infrastructure doesn’t have to buffer everything sent from the local end before starting execution.

Up to now, you’ve been passing only simple commands to the remote end. But because Invoke-
Command takes a scriptblock, you can, in practice, send pretty much any valid PowerShell script.
You’ll take advantage of this fact in the next section when you start to build your multi-machine
monitor.

Note

Why does remoting require scriptblocks? Two reasons: Scriptblocks are always compiled locally
so you’ll catch syntax errors as soon as the script is loaded, and using scriptblocks limits
vulnerability to code injection attacks by validating the script before sending it.

11.2.3. Solving a real problem: multi-machine monitoring

In this section, you’re going to build a solution for a real management problem: multi-machine
monitoring. With this solution, you’re going to gather some basic health information from the

(423)

remote host. The goal is to use this information to determine when a server may have problems
such as out of memory, out of disk, or reduced performance due to a high faulting rate. You’ll
gather the data on the remote host and return it as a hashtable so you can look at it locally.

Your requirements are as follows:

Collect the amount of free space on the C: drive from the Get-PSDrive command.
Collect the page fault rate retrieved using CIM (WMI).
Collect the processes consuming the most CPU from Get-Process with a pipeline.
Collect the processes that have the largest working set, also from Get-Process.
Ensure the list of computers you monitor aren’t hardcoded into the script; the computers to
monitor will be listed in a file.
Monitor each computer on specific days with the results stored in the file.
Apply a throttle limit to control how many simultaneous machines are monitored.
Parameterize the script for ease of use.

This listing shows a solution to the problem using the techniques you’ve learned so far in the
book.

Listing 11.1. Parameterized monitoring script

param (1

 [string] $serverFile = 'servers.txt', 1

 [int] $throttleLimit = 10, 1

 [int] $numProcesses = 5 1

)

$gatherInformation ={ 2

 param ([int] $procLimit = 5)

 @{

 Date = Get-Date

 FreeSpace = (Get-PSDrive c).Free

 PageFaults = (Get-WmiObject `

 Win32_PerfRawData_PerfOS_Memory).PageFaultsPersec

 TopCPU = Get-Process |

 Sort-Object CPU -Descending |

 Select-Object -First $procLimit

 TopWS = Get-Process |

 Sort-Object WS -Descending |

 Select-Object -First $procLimit

 }

}

$servers = Import-CSV $serverfile | 3

 Where-Object { $_.Day -eq (Get-Date).DayOfWeek } |

 foreach { $_.Name }

Invoke-Command -ThrottleLimit $throttleLimit -ComputerName $servers `

 -ScriptBlock $gatherInformation `

 -ArgumentList $numProcesses 4

1 Define parameters
2 Create scriptblock
3 Get servers to monitor
4 Perform monitoring

The first two parameters 1 are obvious: $ServerFile is the name of the file containing the list of
servers to check, and $throttleLimit is the throttle limit (number of simultaneous connections the
monitoring script makes to remote machines). The default throttle limit for Invoke-Command is 32.
We’re deliberately lowering that to ensure we don’t overload the local machine.

(424)

The third parameter, $numProcesses, controls the number of process objects to include in the
TopCPU and TopWS entries in the table returned from the remote host. Although you could in theory
trim the list that gets returned locally, you can’t add to it, so you need to evaluate this parameter
on the remote end to get full control. That means it has to be a parameter to the remote
command. This is another reason scriptblocks are useful. You can add parameters to the
scriptblock that’s executed on the remote end.

The scriptblock to be passed to the remote machines is defined 2. Notice the parameter on the
scriptblock that’s executed on the remote end. That’s how the number of processes to return is
passed to the remote server.

The list of servers is derived from the input file 3. The contents of servers.txt would look
something like this:

Name,Day

W16DSC01,Monday

W16TGT01,Tuesday

W16PWA01,Wednesday

W16DSC02,Saturday

W16CN01,Thursday

W16AS01,Friday

When you load the servers, you’ll do some processing on this list to determine the current day of
the week and decide which servers need monitoring.

The final step 4 is to use Invoke-Command to send the scriptblock to the appropriate servers. Figure
11.4 shows the script in action.

Figure 11.4. Listing 11.1 in action

Listing 11.1 was saved as serverhealth.ps1. We decided we needed only the top three processes
rather than the default five. The data is returned as a hashtable. Notice that the process data is
embedded as objects. You’d need to perform further processing locally if you wanted to drill
down into the process objects.

The result is that, with a small amount of code, you’ve created a flexible framework for an
agentless distributed health monitoring system. With this system, you can run this health model
on any machine without having to worry about whether the script is installed on that machine or

(425)

whether the machine has the correct version of the script. It’s always available and always the
right version because the infrastructure is pushing it out to the target machines. You can even
have different files of server names if required.

Note

What we’re doing here isn’t what most people would call monitoring, which usually implies a
continual semi-real-time mechanism for noticing a problem and then generating an alert. This
system is certainly not real time, and it’s a pull model, not a push. This solution is more
appropriate for configuration analysis.

You now have an idea of how to use remoting to execute a command on a remote server. This is
a powerful mechanism, but sometimes you need to send more than one command to a server; for
example, you might want to run multiple data-gathering scripts, one after the other, on the same
machine. Because there’s a significant overhead in setting up each remote connection, you don’t
want to create a new connection for every script you execute. Instead, you want to be able to
establish a persistent connection to a machine, run all the scripts, and then shut down the
connection.

(426)

11.3. PowerShell remoting sessions and persistent connections

In the previous section, you learned how to run individual scriptblocks on remote machines.
From the user’s point of view, the Invoke-Command operation is simple, but under the covers the
system has to do a lot of work creating, using, and deleting the connection, which makes creating
a new connection each time a costly proposition. Also, you can’t maintain any state—things like
variable settings or function definitions—on the remote host.

To address these issues, in this section we’ll show you how to create persistent connections
called sessions that will give you much better performance when you want to perform a series of
interactions with the remote host as well as allow you to maintain remote state. In the simplest
terms, a session is the environment where PowerShell commands are executed. This is true even
when you run the console host, PowerShell.exe. The console host program creates a local session
that it uses to execute the commands you type. This session remains alive until you exit the
program. When you use remoting to connect to another computer, you’re also creating one
remote session for every local session you remote from until explicitly closed. An instance of
wsmprovhost.exe per connecting session will run on the remote host as long as that session is open.

Each session contains all the things you work with in PowerShell—all the variables, all the
functions that are defined, and the history of the commands you typed—and each session is
independent of any other session. If you want to work with these sessions, you need a way to
manipulate them. You do this in the usual way: through objects and cmdlets. PowerShell
represents sessions as objects that are of type PSSession.

By default, every time you connect to a remote computer by name with Invoke -Command, a new
PSSession object is created to represent the connection to that remote machine. If you’re going to
run more than one command on a computer, you need a way to create persistent connections to
that computer. You can do this with New-PSSession; the syntax for this cmdlet is shown in figure
11.5.

Figure 11.5. The syntax for the New-PSSession cmdlet. This cmdlet is used to create persistent connections to a
remote computer.

This command has many of the same parameters that you saw in Invoke-Command. The difference
is that, for New-PSSession, these parameters are used to configure the persistent session instead of
the transient sessions you saw being created by Invoke -Command. The PSSession object returned
from New-PSSession can then be used to specify the destination for the remote command instead of
the computer name.

The lifetime of the session begins with the call to New-PSSession and persists until it’s explicitly
destroyed by the call to Remove-PSSession. Let’s look at an example that illustrates how much of a
performance difference sessions can make. You’ll run Get -Date five times using Invoke-Command

(427)

and see how long it takes using Measure-Command (which measures command execution time).

First, execute the test without sessions:

PS> Measure-Command { 1..5 |

foreach { Invoke-Command W16TGT01 {Get-Date} } } |

Format-Table -AutoSize TotalSeconds

TotalSeconds

 4.7129865

The result from Measure-Command shows that each operation appears to be taking a little under one
second. Modify the example to create a session at the beginning and then reuse it in each call to
Invoke-Command:

PS> Measure-Command {

 $s = New-PSSession W16TGT01

 1..5 |

 foreach { Invoke-Command $s {Get-Date} }

 Remove-PSSession $s

} |

Format-Table -AutoSize TotalSeconds

TotalSeconds

 0.8096949

This output shows that it’s taking about one-sixth the time as the first command. Increasing the
number of remote invocations from 5 to 50 results in an execution time of 1.4997587 seconds.
Clearly, for this simple example, the time to set up and break down the connection totally
dominates the execution time. Other factors affect real scenarios, such as network performance,
the size of the script, and the amount of information being transmitted. Still, it’s obvious that
when multiple interactions are required, using a session will result in substantially better
performance.

The downside is that persistent sessions will monopolize your machine’s limited resources, so if
you forget to close a session, you may soon hit the limits set (max user connections, max
connections per server). Cleaning up unrequired sessions is definitely in your best interest. The
two most expensive penalties with remoting are setting up the session and serializing the return
data. Filtering on the remote machine to reduce the amount of data to be returned can also
significantly improve performance.

11.3.1. Additional session attributes

This section describes some PSSession attributes that can have an impact on the way you write
your scripts.

Sessions and hosts

The host application running your scripts can impact the portability of your scripts if you become
dependent on specific features of that host. (This is why PowerShell module manifests include
the PowerShellHostName and PowerShellHostVersion elements.) Dependency on specific host
functionality is a consideration with remote execution because the remote host implementation is
used instead of the normal interactive host. This is necessary to manage the extra characteristics
of the remote or job environments. This host shows up as a process named wsmprovhost
corresponding to the executable wsmprovhost.exe. This host supports only a subset of the features

(428)

available in the normal interactive PowerShell hosts.

Session isolation

Another point is the fact that each session is configured independently when it’s created, and
once it’s constructed, it has its own copy of the engine properties, execution policy, function
definitions, and so on. This independent session environment exists for the duration of the
session and isn’t affected by changes made in other sessions. This principle is called isolation—
each session is isolated from, and therefore not affected by, any other session.

Only one command runs at a time

A final characteristic of a session instance is that you can run only one command (or command
pipeline) in a session at one time. If you try to run more than one command at a time, a “session
busy” error will be raised. But there’s some limited command queuing: if there’s a request to run
a second command synchronously (one at a time), the command will wait up to four minutes for
the first command to be completed before generating the “session busy” error. But if a second
command is requested to run asynchronously—without waiting—the busy error will be
generated immediately.

With some knowledge of the characteristics and limitations of PowerShell sessions, you can start
to look at how to use them.

11.3.2. Using the New-PSSession cmdlet

In this section, you’ll learn how to use the New-PSSession cmdlet. Let’s start with an example.
First, you’ll create a PSSession on the local machine by specifying localhost as the target
computer:

PS> $s = New-PSSession -ComputerName localhost

Note

By default a user must be running with elevated privileges to create a session on the local
machine. You’ll see how to change the default setting later.

You now have a PSSession object in the $s variable that you can use to execute remote
commands. Earlier we said each session runs in its own process. You can confirm this by using
the $PID session variable to see what the process ID of the session process is. First, run this code
in the remote session

PS> Invoke-Command -Session $s -ScriptBlock {$PID}

9436

and you see that the process ID is 9436. When you get the value in the local session by typing
$PID at the command line, as shown here

PS> $PID

8528

(429)

you see that the local process ID is 8528.

Note

The numbers you see may well be different than those shown here. The important point is that
the $PID values are different when running locally and through a remoting session.

Now define a variable in the remote session:

PS> Invoke-Command -Session $s -ScriptBlock {$x=1234}

With this command, you’ve set the variable $x in the remote session to 1234. This works in much
the same way as it does in the local case—changes to the remote environment are persisted
across the invocations. You can define a function and make it reference the $x variable you
defined earlier:

PS> Invoke-Command -Session $s -ScriptBlock {

 function hi {"Hello there, x is $x"}

}

PS> Invoke-Command -Session $s -ScriptBlock {hi}

Hello there, x is 1234

You get the preserved value.

Note

We’ve had people ask whether other users on the computer can see the sessions we’re creating.
As mentioned earlier, this isn’t the case. Users have access only to the remote sessions they
create and only from the sessions they were created from. There’s no way for one session to
connect to another session that it didn’t itself create. The only aspect of a session that may be
visible to another user is the existence of the wsmprovhost process hosting the session.

As you’ve seen, remote execution is like the local case . . . well, almost. You have to type Invoke-
Command every time. If you’re executing a lot of interactive commands on a specific machine, this
task quickly becomes annoying. PowerShell provides a much better way to accomplish this type
of task, as you’ll see in the next section.

11.3.3. Interactive sessions

In the previous sections, you learned how to issue commands to remote machines using Invoke-
Command. This approach is effective but gets annoying for more interactive types of work. To
make this scenario easier, you can start an interactive session using the Enter-PSSession cmdlet.
Once you’re in an interactive session, the commands you type are automatically passed to the
remote computer and executed without having to use Invoke-Command. Let’s try this out. You’ll
reuse the session you created in the previous section. In that session, you defined the variable $x
and the function hi. To enter interactive mode during this session, you’ll call Enter-PSSession,
passing in the session object, as shown in figure 11.6.

(430)

Note

Only interactive commands are transmitted when you use Enter -PSSession. You can’t use it in a
script and pass commands to the session.

Figure 11.6. Using a PSSession for interactive remoting

As soon as you enter interactive mode, you see that the prompt changes: it now displays the
name of the machine you’re connected to and the current directory.

Note

The default prompt can be changed in the remote session in the same way it can be changed in
the local session. If you have a prompt definition in your profile, you may be wondering why
that wasn’t used. We’ll get to that later when we look at some of the things you need to keep in
mind when using remoting.

You can see from the code being run in the figure that the value of $x is preserved (1234) and the
hi function you defined is also available. Changing the value of $x and then rerunning the hi
function shows the new value displayed in the output.

You can exit an interactive remote session either by using the exit keyword or by using the Exit-
PSSession cmdlet. You see that the prompt changed back and the session still exists. It will persist
until explicitly removed with Remove-PSSession or the PowerShell instance is closed. You can
enter and exit a session as often as you need to as long as it’s not removed in the interim.

Another useful feature to consider is the fact that you can have more than one session open at a
time. This means you can pop back and forth between multiple computers as needed, which
makes dealing with multiple machines convenient.

(431)

More differences exist between the pattern where you used Invoke-Command for each command and
the interactive mode. In the non-interactive Invoke-Command case, the remote commands send
objects back, where they’re formatted on the local machine. In the interactive remoting case, the
objects are formatted on the remote machine, and simple strings are sent to the local machine to
be displayed. Usually this won’t matter, but cultural information such as dates and object
formatting may be impacted.

Finally, as with the non-interactive remoting case, you can run an interactive session in a
temporary session by passing the name of the computer instead of an existing PSSession. Using
the PSSession has the advantage that you can enter and exit the remote session and have the
remote state preserved between activities. If the name of the computer is passed in, the
connection will be torn down when you exit the session. Because a remote session involves
creating a remote host process, forgetting to close your sessions can waste resources. At any
point, you can use Get-PSSession to get a list of the open sessions you currently have and use
Remove-PSSession to close them as appropriate.

By now, you should be comfortable with creating and using persistent remote sessions. What we
haven’t spent much time on yet is how to manage all these connections you’re creating.

11.3.4. Managing PowerShell sessions

Each PSSession is associated with an underlying Windows process. As such, it consumes significant
resources even when no commands are being executed in it. You should delete PSSessions that
are no longer needed. This reduces the memory usage and similar drains on the remote system.
At the same time, creating new PSSessions also puts a load on the system, consuming additional
CPU resources to create each new process. When managing your resource consumption, you
need to balance the cost of creating new sessions against the overhead of maintaining multiple
sessions. There’s no hard-and-fast rule for deciding what this balance should be. In the end, you
should decide on an application-by-application basis.

To get a list of the existing PSSessions, you use the Get-PSSession command, and to remove
sessions that are no longer needed, you use the Remove-PSSession cmdlet. The Remove-PSSession
cmdlet closes the PSSession, which causes the remote process to exit and frees up all the
resources it held. Removing the session also frees up local resources like the network connection
used to connect to the remote session.

With PowerShell v2 you can view the sessions on the local machine, whereas PowerShell v3 and
later enable you to see the sessions on remote as well as local machines. On a local machine,
you’ll see something like this:

PS> Get-PSSession |

Format-List Id, Name, ComputerName, ComputerType, State,

ConfigurationName, Availability

Id : 1

Name : Session1

ComputerName : W16TGT01

ComputerType : RemoteMachine

State : Opened

ConfigurationName : Microsoft.PowerShell

Availability : Available

The remote machine (use the –ComputerName parameter) may give you results like this:

PS> Get-PSSession -ComputerName W16TGT01 |

Format-List Id, Name, ComputerName, ComputerType, State,

(432)

ConfigurationName, Availability

Id : 1

Name : Session1

ComputerName : W16TGT01

ComputerType : RemoteMachine

State : Opened

ConfigurationName : Microsoft.PowerShell

Availability : Available

Id : 3

Name : Session1

ComputerName : W16TGT01

ComputerType : RemoteMachine

State : Disconnected

ConfigurationName : Microsoft.PowerShell

Availability : Busy

In this case, the session with an Id of 1 (state is Opened) is the session created from your local
machine. The session with an Id of 3 is another session to the remote machine—in this case,
created from a third machine. We know this because we created them. Unfortunately, there’s no
way to tell who created a session connected to a remote machine or from which machine it was
created. Notice that session Id 3 is shown with a state of Disconnected. This means you aren’t
connected to it.

Tip

The ID number will change every time you access the sessions on the remote machine created by
a PowerShell session other than your own. It’s worth giving your session distinctive names so
that you can easily distinguish between sessions.

On the client end, if you don’t explicitly remove the sessions or set timeouts, local sessions will
remain open until you end your PowerShell session. But what happens if the client fails for some
reason without closing its sessions? If the PowerShell session is closed or the local machine
crashes, the remote session will be terminated. If network connectivity is lost or the session times
out (the default is two hours), the session may be put into a disconnected state. You can also put
a session into a disconnected state manually.

Note

Commands continue to run in a disconnected session. You can even deliberately create a
disconnected session using the –InDisconnectedSession parameter of Invoke-Command.

The sessions shown earlier in this section have been re-created with distinctive names:

PS> Get-PSSession -ComputerName W16TGT01 |

Format-Table Id, Name, ComputerName, State,

Availability -AutoSize

Id Name ComputerName State Availability

-- ---- ------------ ----- ------------

 4 FromW16AS01 W16TGT01 Opened Available

 5 FromW16DSC01 W16TGT01 Disconnected Busy

(433)

FromW16AS01 is the one from our local machine. That session can be disconnected:

PS> Disconnect-PSSession -Name FromW16AS01

Id Name ComputerName State Availability

-- ---- ------------ ----- ------------

 4 FromW16AS01 W16TGT01 Disconnected None

Notice that state changes to Disconnected and availability changes to None. After closing the
PowerShell session that created the session FromW16AS01 and opening a new PowerShell session,
using Get-PSSession to test for a session will return nothing as expected—we haven’t created any
remoting sessions in that PowerShell session.

Now try getting the sessions on the remote server we were working with:

PS> Get-PSSession -ComputerName W16TGT01 |

Format-Table Id, Name, ComputerName, State,

Availability -AutoSize

Id Name ComputerName State Availability

-- ---- ------------ ----- ------------

 1 FromW16AS01 W16TGT01 Disconnected None

 2 FromW16DSC01 W16TGT01 Disconnected Busy

You can reconnect to the session—in this case session FromW16AS01:

PS> Connect-PSSession -ComputerName W16TGT01

Connect-PSSession : Cannot connect PSSession "FromW16DSC01",

either because it is not in the Disconnected state, or it

is not available for connection.

At line:1 char:1

+ Connect-PSSession -ComputerName W16TGT01

+ ~~

 + CategoryInfo : InvalidOperation: ([PSSession] W16TGT01:PSSession) [Connect-

PSSession],

RuntimeExcept ion

 + FullyQualifiedErrorId :

PSSessionConnectFailed,Microsoft.PowerShell.Commands.ConnectPSSessionCommand

Id Name ComputerName ComputerType State Availability

-- ---- ------------ ------------ ----- ------------

 3 FromW16AS01 W16TGT01 RemoteMachine Opened Available

You can connect to the session FromW16AS01, but you can’t connect to the session from the third
machine because it already has an open connection (hold that thought). Once connected, your
session is available for use again:

PS> $s = Get-PSSession -Name FromW16AS01

PS> Invoke-Command -Session $s -ScriptBlock `

{Get-CimInstance Win32_OperatingSystem}

SystemDirectory BuildNumber Version PSComputerName

--------------- ----------- ------- --------------

C:\Windows\system32 14393 10.0.14393 W16TGT01

<output truncated for brevity>

If a session is disconnected from its original host, you can connect to it from either the original
host or another machine. After disconnecting the session FromW16DSC01 from its original host and
testing available sessions on the local machine,

PS> Get-PSSession -ComputerName W16TGT01 |

Format-Table Id, Name, ComputerName, State,

Availability -AutoSize

Id Name ComputerName State Availability

-- ---- ------------ ----- ------------

 3 FromW16AS01 W16TGT01 Opened Available

(434)

 6 FromW16DSC01 W16TGT01 Disconnected None

you can see that the session FromW16DSC01 is disconnected and availability is shown as None.
Connect to it in a similar way as before:

PS> Connect-PSSession -Name FromW16DSC01 -ComputerName W16TGT01

PS> Get-PSSession -ComputerName W16TGT01 |

Format-Table Id, Name, ComputerName, State,

Availability -AutoSize

Id Name ComputerName State Availability

-- ---- ------------ ----- ------------

 3 FromW16AS01 W16TGT01 Opened Available

 7 FromW16DSC01 W16TGT01 Opened Available

Disconnected sessions created by you on the local or other machine can be reconnected and used
as shown. You can even connect to disconnected sessions created by other people as long as you
have the credential details they used to create the session originally.

You can also use a PowerShell remoting session for copying files to and from a remote machine.

11.3.5. Copying files across a PowerShell remoting session

PowerShell remoting is used to run commands on remote machines, as you saw in earlier
sections, and have the results returned to you. In PowerShell v2–v4 you couldn’t copy files using
a PowerShell remoting session. This changed in PowerShell v5 with the introduction of the -
FromSession and -ToSession parameters on the Copy-Item cmdlet. Both of these new parameters
take a single PSSession object as input.

This concept is best described by an example. Start by creating remoting sessions to two
machines:

PS> $s1 = New-PSSession -ComputerName W16TGT01

PS> $s2 = New-PSSession -ComputerName W16DSC02

Now create a file on a remote machine:

PS> Invoke-Command -Session $s1 -ScriptBlock {

Get-Process | Out-File -FilePath c:\scripts\proc.txt}

You can copy the file from the remote machine to the local machine:

PS> Copy-Item -Path c:\scripts\proc.txt -FromSession $s1

Check that it arrived and then copy it to the second machine:

PS> Copy-Item -Path proc.txt -Destination C:\Scripts\ -ToSession $s2

A simple check confirms that the copy occurred:

PS> Invoke-Command -Session $s2 `

-ScriptBlock {Get-ChildItem -Path C:\Scripts\}

Everyone looks at the sequence of commands and thinks we can combine the copy steps:

PS> Copy-Item -Path c:\scripts\proc.txt -Destination C:\Scripts\ `

-FromSession $s1 -ToSession $s2

Copy-Item : '-FromSession' and '-ToSession' are mutually exclusive and cannot

 be specified at the same time.

At line:1 char:1

(435)

+ Copy-Item -Path c:\scripts\proc.txt -Destination C:\Scripts\ -FromSe ...

+ ~~~

 + CategoryInfo : InvalidArgument:

(Microsoft.Power...namicParameters:CopyItemDynamicParameters) [Copy-Item],

 ArgumentException

 + FullyQualifiedErrorId : InvalidInput,Microsoft.PowerShell.Commands.CopyItemCommand

Unfortunately, we can’t. The -FromSession and -ToSession parameters are mutually exclusive.

Note

This isn’t obvious from the help file because the parameters are shown in the same parameter set
and their mutual exclusivity isn’t mentioned in the text.

You can copy multiple files across a PowerShell remoting session using wildcards to define the
files.

(436)

11.4. Implicit remoting

When doing non-interactive remoting, you have to call Invoke-Command every time you want to
execute a remote operation. You can avoid this task by using Enter-PSSession to set up a remote
interactive session. This approach makes remote execution easy but at the cost of making local
operations difficult. In this section, we’ll look at a mechanism that makes both local and remote
command execution easy. This mechanism is called implicit remoting.

Note

For implicit remoting to work, the execution policy on the client machine has to be configured to
allow scripts to run, typically by setting it to RemoteSigned. This is necessary because implicit
remoting generates a temporary module, and PowerShell must be allowed to execute scripts in
order to load this module. If execution policy is set to Restricted or AllSigned, it won’t be able to
do this. This requirement applies only to the local client machine. A remote server can still use a
more restrictive policy. See section 7.1.1 for more information about execution policy.

The goals of implicit remoting are to make the fact that remote operations are occurring invisible
to the user and to have all operations look as much like local operations as possible. You can
accomplish this goal by generating local proxy functions that run the remote commands under
the covers. The user calls the local proxy, which takes care of the details involved in making the
remote command invocation.

The net effect is that everything looks like a local operation because everything is a local
operation.

11.4.1. Using implicit remoting

To set up the remote proxy functions mentioned in the previous section, use the Import-PSSession
cmdlet. The syntax for this cmdlet is shown in figure 11.7.

Figure 11.7. The syntax for the Import-PSSession cmdlet. This cmdlet is used to create local proxy commands that
invoke the corresponding remote command on the target computer.

Let’s explore how this cmdlet works by walking through an example. You’ll create a PSSession
and then define a function in that session. The goal is to be able to execute this remote function
as though it were defined locally. You want to implicitly remote the function. To do that, you
call Import-PSSession, which generates a function that you can call locally. This local function

(437)

does the remote call on your behalf—it acts as your proxy.

You’ll begin by creating the connection to a remote machine. You may need to get credentials
for the remote host.

Note

In a domain environment, this step is unnecessary as long as your user account has sufficient
privileges to access the remote endpoint. But if you want to log on as a different user, credentials
will be required.

Establish a session on the remote machine, using credentials if necessary, as shown in figure
11.8.

Figure 11.8. Example of implicit remoting

Next, you’ll use Invoke-Command to define a new function on the remote machine. This is the
command you’ll import:

PS> Invoke-Command -Session $s -ScriptBlock {

function Get-Bios {Get-WmiObject Win32_Bios}}

The new remote function, called Get-Bios, uses Windows Management Instrumentation (WMI) to

(438)

retrieve information about the BIOS on the remote machine. Invoke this function through
explicit remoting using Invoke-Command so you can see that it returns a set of information about the
BIOS on the remote machine. Now use Import-PSSession to create a local proxy for this
command:

PS> Import-PSSession -Session $s -CommandName Get-Bios

ModuleType Version Name ExportedCommands

---------- ------- ---- ----------------

Script 1.0 tmp_4qxsxsjw.5m2 Get-Bios

You might recognize the output from this command—it’s the same thing you see when you do
Get-Module. You now have a local Get-Bios command. Try running it:

PS> Get-Bios

SMBIOSBIOSVersion : Hyper-V UEFI Release v1.0

Manufacturer : Microsoft Corporation

Name : Hyper-V UEFI Release v1.0

SerialNumber : 8265-3792-6973-7306-2850-7895-37

Version : VRTUAL - 1

You get the same result you saw when you did the explicit remote invocation but without having
to do any extra work to access the remote machine. The proxy command did that for you. This is
the goal of implicit remoting: to make the fact that the command is being executed remotely
invisible.

Note

This is a useful technique because you need to import the Exchange management module into
your session if you’re administering an Exchange server over a PowerShell remoting session.

Let’s see how it all works.

11.4.2. How implicit remoting works

When the user requests that a command be imported, a message is sent to the remote computer
for processing. The import request processor looks up the command and retrieves the metadata
(the CommandInfo object) for that command. That metadata is processed to simplify it, removing
things like complex type attributes. Only the core remoting types are passed along. This metadata
is received by the local machine’s proxy function generator. It uses this metadata to generate a
function that will implicitly call the remote command.

Let’s take a closer look at what the generated proxy looks like. You can see the imported Get-
Bios command using Get-Command:

PS> Get-Command Get-Bios

CommandType Name Version Source

----------- ---- ------- ------

Function Get-Bios 1.0 tmp_4qxsxsjw.5m2

The output shows that you have a local function called Get-Bios. You can look at the definition of
that function by using the Definition property on the CommandInfo object returned by Get-Command.

(439)

Listing 11.2. Definition of the Get-Bios proxy function

param(

 [switch]${AsJob}

)

Begin {

 try {

 $positionalArguments =

 & $script:NewObject collections.arraylist

 foreach ($parameterName in

 $PSBoundParameters.BoundPositionally)

 {

 $null = $positionalArguments.Add(

 $PSBoundParameters[$parameterName])

 $null = $PSBoundParameters.Remove($parameterName)

 }

 $positionalArguments.AddRange($args)

 $clientSideParameters =

 Get-PSImplicitRemotingClientSideParameters`

 $PSBoundParameters $False

 $scriptCmd = { & $script:InvokeCommand `

 @clientSideParameters `

 -HideComputerName `

 -Session (Get-PSImplicitRemotingSession `

 -CommandName 'Get-Bios') `

 -Arg ('Get-Bios', $PSBoundParameters,

 $positionalArguments) `

 -Script { param($name, $boundParams,

 $unboundParams) & $name @boundParams

 @unboundParams }`

 }

 $steppablePipeline =

 $scriptCmd.GetSteppablePipeline($myInvocation.CommandOrigin)

 $steppablePipeline.Begin($myInvocation.ExpectingInput,

 $ExecutionContext)

 } catch {

 throw

 }

 }

 Process {

 try {

 $steppablePipeline.Process($_)

 } catch {

 throw

 }

 }

 End {

 try {

 $steppablePipeline.End()

 } catch {

 throw

 }

 }

 # .ForwardHelpTargetName Get-Bios

 # .ForwardHelpCategory Function

 # .RemoteHelpRunspace PSSession

Even though this output has been reformatted a bit to make it more readable, it’s a pretty
complex function and uses many of the more sophisticated features covered in previous chapters.
It uses advanced functions, splatting, scriptblocks, and steppable pipelines. Fortunately, you
never have to write these functions yourself.

Note

(440)

You don’t have to create proxy functions for this particular scenario, but in section 11.5.2 you
saw how this technique can be powerful in extending the PowerShell environment.

The Import-PSSession cmdlet does this for you. It will create a proxy function for each command
it’s importing, which could lead to many commands. As well as generating proxy functions on
your behalf, Import-PSSession creates a module to contain these functions.

The module name and path are temporary generated names. This module also defines an OnRemove
handler (see chapter 9) to clean up when the module is removed. To see the contents of the
module, you can look at the temporary file that was created by using the module’s Path property:

PS> Get-Content (Get-Command Get-Bios).Module.Path

Alternatively, you can save the session to an explicitly named module for reuse with Export-
PSSession. You’ll save this session as a module called bios:

PS> Export-PSSession -OutputModule bios -Session $s `

-type function -CommandName Get-Bios -AllowClobber

 Directory: C:\Users\Richard\Documents\WindowsPowerShell\Modules\bios

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 08/05/2017 11:51 99 bios.format.ps1xml

-a---- 08/05/2017 11:51 528 bios.psd1

-a---- 08/05/2017 11:51 11627 bios.psm1

Executing this command creates a new module in your user module directory. It creates the
script module file (.psm1), the module manifest (.psd1), and a file containing formatting
information for the command. You use the -AllowClobber parameter because the export is using
the remote session to gather the data. If it finds a command being exported that already exists in
the caller’s environment, that would be an error. Because Get-Bios already exists, you have to use
-AllowClobber.

Import the module into a new PowerShell session—remember to open it with elevated privileges:

PS> Import-Module bios

It returns right away. It can do this because it hasn’t set up the remote connection yet. This will
happen the first time you access one of the functions in the module. Run Get-Bios:

PS> Get-Bios

Creating a new session for implicit remoting of "Get-Bios" command...

The term 'Get-Bios' is not recognized as the name of a cmdlet, function,

 script file, or operable program. Check the spelling of the name, or if

a path was included, verify that the path is correct and try again.

 + CategoryInfo : ObjectNotFound: (Get-Bios:String) [], CommandNotFoundException

 + FullyQualifiedErrorId : CommandNotFoundException

 + PSComputerName : W16TGT01

When you run this command, you see a message indicating that a new connection is being
created. But then you get an error saying the command Get-Bios isn’t found. That’s because
you’re dynamically adding the function to the remote session. When you establish a new session,
because you’re not adding the function, it isn’t there. In the next section, we’ll describe how to
create remote endpoints that always contain your custom functions. There are a few other issues
you need to be aware of when running commands remotely. We’ll look at those next.

(441)

11.5. Considerations when running commands remotely

When you run commands on multiple computers, you need to be aware, at least to some extent,
of how the execution environment can differ on the target machines. For example, the target
machine may be running a different version of the operating system or it may have a different
processor. There may also be differences in which applications are installed, how files are
arranged, or where things are placed in the registry. In this section, we’ll look at a number of
these issues. Don’t be put off by these issues—they’re not meant to scare you. They’re edge
cases you need to be aware of to get the most out of PowerShell remoting.

11.5.1. Remote session startup directory

When a user connects to a remote computer, the system sets the startup directory for the remote
session to a specific value. This value will change depending on the version of the operating
system on the target machine. If the machine is running Windows Vista, Windows Server 2003
R2, or a later version of Windows, the default starting location for the session is the user’s home
directory, which is typically C:\Users\<UserName>.

On Windows Server 2003, the user’s home directory is also used: C:\Documents\Settings\
<UserName>. For Windows XP, the default user’s home directory is used:
C:\Documents\Settings\Default User.

Note

Windows Server 2003 and Windows XP are no longer supported by Microsoft and so should be
less likely to be found in use with time. But from experience we can say that unsupported
operating systems can easily linger for 10 years or more because of a special application that has
to run on a particular version of Windows.

The default starting location can be obtained from either the $ENV:HOMEPATH environment or the
PowerShell $HOME variable. By using these variables instead of hardcoded paths in your scripts,
you can avoid problems related to these differences.

11.5.2. Profiles and remoting

Most PowerShell users eventually create a custom startup script or profile that they use to
customize their environment. These customizations typically include defining convenience
functions and aliases. Although profiles are a great feature for customizing local interactive
sessions, if the convenience commands they define are used in scripts that you want to run
remotely, you’ll encounter problems. That’s because your profiles aren’t run automatically in
remote sessions, and that means the convenience commands defined in the profile aren’t
available in the remote session. In fact, the $PROFILE variable, which points to the profile file, isn’t
even populated for remote sessions.

As a best practice, for production scripting you should make sure your scripts never become
contaminated with elements defined by your profiles. One way to test this is to run the script

(442)

from PowerShell.exe with the -NoProfile option, which looks like this:

powershell -NoProfile -File myscript.ps1

This command will run the script without loading your profile. If the script depends on anything
defined in the profile, it will generate errors.

But for remote interactive sessions, it’d be nice to have the same environment everywhere. You
can accomplish this by using Invoke-Command with the -FilePath parameter to send your profile file
to the remote machine and execute it there. The set of commands you need to accomplish this
are:

PS> $c = Get-Credential

PS> $s = New-PSSession -Credential $c -ComputerName targetComputer

PS> Invoke-Command -Session $s -FilePath $PROFILE

PS> Enter-PSSession $s

First, you get the credential for the target machine (this typically won’t be needed in the domain
environment). Next, you create a persistent session to the remote computer. Then you use -
FilePath on Invoke-Command to execute the profile file in the remote session. With the session
properly configured, you can call Enter-PSSession to start your remote interactive session with all
your normal customizations.

Alternatively, sometimes you may want to run a profile on the remote machine instead of your
local profile. Because $PROFILE isn’t populated in your remote session, you’ll need to be clever to
make this work. The key is that although $PROFILE isn’t set, $HOME is. You can use this to compose
a path to your profile on the remote computer. The revised list of commands looks like this:

PS> $c = Get-Credential

PS> $s = New-PSSession -Credential $ -ComputerName targetComputer

PS> Invoke-Command -Session $s {

 . "$home\Documents\WindowsPowerShell\profile.ps1" }

PS> Enter-PSSession $s

This command dot-sources (see section 7.1.4) the profile file in the user’s directory on the
remote machine into the session.

Note

This script won’t work on XP or Windows Server 2003. Change the script to use
"$home\Documents and Setting\WindowsPowerShell\profile.ps1" as the profile path.

In this section, you learned how to cause your profile to be used to configure the remote session
environment. Next, we’ll examine another area where these variations can cause problems.

11.5.3. Issues running executables remotely

PowerShell remoting allows you to execute the same types of commands remotely as you can
locally, including external applications or executables. The ability to remotely execute
commands like shutdown to restart a remote host or ipconfig to get network settings is critical for
system management.

(443)

For the most part, console-based commands will work properly because they read and write only
to the standard input, output, and error pipes. Commands that won’t work are ones that directly
call the Windows Console APIs, like console-based editors or text-based menu programs. The
reason is that no console object is available in the remote session. Because these applications are
rarely used any longer, this fact typically won’t have a big impact. But there are some surprises.
For example, the net command will work fine most of the time, but if you do something like this
(which prompts for a password)

PS> net use p: '\\machine1\c$' /user:machine1\user1 *

Type the password for \\machine1\c$:

in a remote session, you’ll get an error:

[machine1]: > net use p: '\\machine1\c$' /user:machine1\user1 *

net.exe : System error 86 has occurred.

 + CategoryInfo : NotSpecified: (System error 86 has

 occurred.:String) [], RemoteException

 + FullyQualifiedErrorId : NativeCommandError

The specified network password is not correct.

Type the password for \\machine1\c$:

[machine1]: >

This command prompts for a password and returns an empty string.

The other kind of program that won’t work properly is commands that try to open a user
interface (also known as “try to pop GUI”) on the remote computer. The program starts, but no
window will appear. If the command eventually completes, control will be returned to the caller
and things will be more or less fine. But if the process is blocked while waiting for the user to
provide some input to the invisible GUI, the command will hang and you must stop it manually
by pressing Ctrl-C. If the keypress doesn’t work, you’ll have to use some other mechanism to
terminate the process.

One thing we can guarantee is that you’ll need to access files—but when you’re working
remotely, how do you know which files you’re using?

11.5.4. Using files and scripts

When you enter an interactive PowerShell session and access a file, such as a script or text file,
you’re obviously using the file on the remote machine. Remember that an interactive session is
effectively like running a PowerShell session directly on the machine. But what about when you
use Invoke-Command either directly or through a remoting session?

We’re going to be running a number of commands to the remote computer (W16TGT01), so we’ll
create a remoting session:

PS> $s = New-PSSession -ComputerName W16TGT01

On the W16TGT01 machine, a file exists with these two lines:

Write-Host 'Run from W16TGT01'

Write-Host $env:COMPUTERNAME

You know that Invoke-Command is used to run commands through a remoting session:

PS> Invoke-Command -Session $s -ScriptBlock {C:\Scripts\PiA3e\FileTest.ps1}

Run from W16TGT01

(444)

W16TGT01

Sometimes you may have a script on your local machine that you need to run on remote
machines. One solution would be to copy the script to the remote machines and run it as in the
previous example. That would be inefficient if you’re dealing with hundreds or thousands of
machines.

You can run a local script through a remoting session. Given a script on the local machine

Write-Host 'Run from W16AS01'

Write-Host $env:COMPUTERNAME

the –FilePath parameter is used to invoke a local script:

PS> Invoke-Command -Session $s -FilePath C:\Scripts\PiA3e\FileTest.ps1

Run from W16AS01

W16TGT01

Notice that the computer name that’s reported is the remote machine rather than the local
machine, even though you’re running the script from your local disk.

One of the tenets of PowerShell remoting is isolation, but you can access local variables as well
as local scripts.

11.5.5. Using local variables in remote sessions

When you use a variable in the scriptblock of a command sent to a remote machine, the
assumption is that the variable is defined only in the session for the remote machine. For
example, define a variable locally:

PS> $myvar = 123

Now, using the remoting session from the previous section (re-create a session if you closed that
session), invoke a command using a variable with the same name:

PS> Invoke-Command -Session $s -ScriptBlock {"myvar is $myvar"}

myvar is

In the output of the command, you can see that the variable value was not made available in the
remote session. In chapters 6 and 7 we discussed scope modifiers and, for instance, how you can
use variables from the global scope in your functions by prefixing them with $global:.
PowerShell remoting provides a similar (but not identical) mechanism to allow you to use local
variables in remote sessions, by using the $using: prefix. Let’s try the previous example again,
but this time we’ll prefix the variable with $using:

PS> Invoke-Command -Session $s -ScriptBlock {"myvar is $using:myvar"}

Myvar is 123

Here’s what’s happening: By prefixing the variable name with $using (introduced in PowerShell
v3), you’re telling PowerShell to copy the local value of the variable into the remote session.
You’re using the local variable in the remote session. Where this differs from scope modifiers is
that it’s one-way only. Changing the variable in the remote session won’t change the value of the
local value. In fact, if you try to change the value of the $using variable in the remote session,
you’ll get an error:

PS> Invoke-Command -Session $s { $using:myvar = 13 }

(445)

At line:1 char:30

+ invoke-command -localhost { $using:myvar = 13 }

+ ~~~~~~~~~~~~

The assignment expression is not valid. The input to an assignment operator

 must be an object that is able to accept assignments, such as a variable

 or a property.

 + CategoryInfo : ParserError: (:) [], ParentContainsErrorRecordException

 + FullyQualifiedErrorId : InvalidLeftHandSide

Now let’s look at more areas where accessing the console can cause problems and how to avoid
these problems.

11.5.6. Reading and writing to the console

As you saw in the previous section, executables that read and write directly to the console won’t
work properly. The same considerations apply to scripts that do things like call the
System.Console APIs directly themselves. For example, call the [Console]::WriteLine() and
[Console]::ReadLine() APIs in a remote session:

[machine1]: > [Console]::WriteLine('hi')

[machine1]: >

[machine1]: > [Console]::ReadLine()

[machine1]: >

Neither of these calls works properly. When you call the [Console]::WriteLine() API, nothing is
displayed, and when you call the [Console]::ReadLine() API, it returns immediately instead of
waiting for input.

It’s still possible to write interactive scripts, but you have to use the PowerShell host cmdlets and
APIs:

[machine1]: > Write-Host Hi

Hi

[machine1]: >

[machine1]: > Read-Host "Input"

Input: some input

some input

If you use these cmdlets as shown in the example, you can read and write to and from the host,
and the remoting subsystem will take care of making everything work.

With console and GUI issues out of the way, let’s explore how remoting affects the objects
you’re passing back and forth.

11.5.7. Remote output vs. local output

Much of the power in PowerShell comes from the fact that it passes around objects instead of
strings. In this section, you’ll learn how remoting affects these objects.

When PowerShell commands are run locally, you’re working directly with the live .NET objects,
which means that you can use the properties and methods on these objects to manipulate the
underlying system state. The same isn’t true when you’re working with remote objects. Remote
objects are serialized—converted into a form that can be passed over the remote connection—
when they’re transmitted between the client and the server, and deserialized when received by
the client machine.

(446)

Note

The biggest difference you’ll find is that the objects returned from a remoting session don’t have
any of the methods you’d have available from the same object generated locally.

Typically, you can use deserialized objects as you’d use live objects, but you must be aware of
their limitations. Another thing to be aware of is that the objects that are returned through
remoting will have had properties added that allow you to determine the origin of the command.

PowerShell serialization

Because you can’t guarantee that every computer has the same set of types, the PowerShell team
chose to limit the number of types that serialize with fidelity, where the remote type is the same
type as the local type and the object is fully re-created at the receiving end. To address the
restrictions of a bounded set of types, types that aren’t serialized with fidelity are serialized as a
collection of properties, also called a property bag. This property bag has a special property,
TypeNames, which records the name of the original type. The serialization code takes each object
and adds all its properties to the property bag. Recursively, it looks at values of each the
members. If the member value isn’t one of the ones supported with fidelity, a new property bag
is created, with members of the member’s values added to it, and so on. This approach preserves
structure if not the type and allows remoting to work uniformly everywhere.

Default serialization depth

The approach we have described allows any object to be encoded and transferred to another
system. But there’s another thing to consider: objects have members that contain objects that
contain members, and so on. The full tree of objects and members can be complex. Transferring
all the data makes the system unmanageably slow. This is addressed by introducing the idea of
serialization depth. The recursive encoding of members stops when this serialization depth is
reached. The default for objects is 1.

The final source of issues when writing portable, remotable scripts has to do with processor
architectures and the operating system differences they entail. We’ll work through this final set
of issues in the next section of this chapter.

11.5.8. Processor architecture issues

The last potential source of problems we’ll explore is the fact that the target machine may be
running on a different processor architecture (64-bit versus 32-bit) than the local machine. If the
remote computer is running a 64-bit version of Windows and the remote command is targeting a
32-bit session configuration, such as Microsoft.PowerShell32, the remoting infrastructure loads a
Windows 32-bit process on a Windows 64-bit (WOW64) process, and Windows automatically
redirects all references to the $ENV:Windir\System32 directory to the
$ENV:WINDIR\SysWOW64 directory. For the most part, everything will still work (that’s the
point of the redirection), unless you try to invoke an executable in the System32 directory that
doesn’t have a corresponding equivalent in the SysWOW64 directory.

To find the processor architecture for the session, you can check the value of the
$ENV:PROCESSOR_ARCHITECTURE variable. The following command finds the processor architecture of

(447)

the session in the $s variable. Try this first with the 32-bit configuration:

PS> Invoke-Command -ConfigurationName microsoft.powershell32 `

-ComputerName localhost { $ENV:PROCESSOR_ARCHITECTURE }

x86

You get the expected x86 result, indicating a 32-bit session, and on the 64-bit configuration

PS> Invoke-Command -ConfigurationName microsoft.powershell `

-ComputerName localhost { $ENV:PROCESSOR_ARCHITECTURE }

AMD64

you get AMD64, indicating a 64-bit configuration.

This is the last remoting consideration we’re going to look at in this chapter. Don’t let these
issues scare you—remember, they’re mostly edge cases. With some attention to detail, the
typical script should have no problems working as well remotely as it does locally. The
PowerShell remoting system goes to great lengths to facilitate a seamless remote execution
experience. But it’s always better to have a heads-up on some of the issues so you’ll know where
to start looking if you run into a problem.

Up to now we’ve been using the default remoting configuration. In the next section, we’ll look at
how you can create and configure your own specialized remoting configuration.

(448)

11.6. Building custom remoting services

So far, we’ve looked at remoting from the service consumer perspective. It’s time for you to take
on the role of service creator instead.

The most common remoting scenario for administrators is the one-to-many configuration, in
which one client computer connects to a number of remote machines in order to execute remote
commands on those machines. This is called the fan-out scenario because the connections fan out
from a single point, and this is what you’ve been using in the previous sections.

In enterprises and hosted solution scenarios, you’ll find the opposite configuration, where many
client computers connect to a single remote computer, such as a file server or a kiosk. This
many-to-one arrangement is known as the fan-in configuration. This mechanism is used when
remote connecting to Exchange servers or Active Directory domain controllers.

Windows PowerShell remoting supports both fan-out and fan-in configurations. In the fan-out
configuration, PowerShell remoting connects to the remote machine using the WinRM service
running on the target machine. When the client connects to the remote computer, the WS-MAN
protocol is used to establish a connection to the WinRM service. The WinRM service then
launches a new process (wsmprovhost.exe) that loads a plug-in that hosts the PowerShell engine.

PowerShell remoting protocols

The transport mechanism used in PowerShell remoting consists of a five-layer stack. The stack
(from top to bottom) consists of the following:

The PowerShell Remoting Protocol (MS-PSRP)—https://msdn.microsoft.com/en-
us/library/dd357801.aspx
WS-MAN (implemented by the WinRM service)—http://mng.bz/DB74 and
https://msdn.microsoft.com/en-us/library/cc251395.aspx.
Simple Object Access Protocol (SOAP)—Provides an XML-based messaging framework
HTTP and HTTPS
TCP/IP

Creating a new process for each session is fine if there aren’t many users connecting to the
service. But if several connections are expected, as is the case for a high-volume service, the one-
process-per-user model won’t scale well. To address this issue, an alternate hosting model,
targeted at developers, is available for building custom fan-in applications on top of PowerShell
remoting. Instead of using the WinRM service to host WS-MAN and the PowerShell plug-in,
Internet Information Services (IIS) is used. In this model, instead of starting each user session in
a separate process, all the PowerShell sessions are run in the same process along with the WS-
MAN protocol engine.

Having all the sessions running in the same process has certain implications. Because
PowerShell lets you get at pretty much everything in a process, multiple users running
unrestricted in the same process could interfere with one another. On the other hand, because the
host process persists across multiple connections, it’s possible to share process-wide resources
like database connections between sessions.

(449)

https://msdn.microsoft.com/en-us/library/dd357801.aspx
http://mng.bz/DB74
https://msdn.microsoft.com/en-us/library/cc251395.aspx

Given the lack of session isolation, this approach isn’t intended for full-featured general-purpose
PowerShell remoting. Instead, it’s designed for use with constrained, special-purpose
applications using PowerShell remoting. To build these applications, you need two things:

A way to create a constrained application environment
A way to connect to PowerShell remoting so the user gets the environment you’ve created
instead of the default PowerShell configuration

We’ll start with the second one first and look at how you specify custom remoting endpoints.

11.6.1. Working with custom configurations

When connecting to a computer by name through PowerShell remoting, the remoting
infrastructure will always connect to the default PowerShell remoting service. In the non-default
connection case, you also have to specify the configuration on the target computer to connect to.
A configuration is made up of three elements:

The name you use to connect to the endpoint
A script that will be run to configure the sessions that will run in the endpoint
An ACL used to control who has access to the endpoint

When using the Invoke-Command, New-PSSession, or Enter-PSSession cmdlets, you can use the -
ConfigurationName parameter to specify the name of the session configuration you want to connect
to. Alternatively, you can override the normal default configuration by setting the
$PSSessionConfigurationName preference variable to the name of the endpoint you want to connect
to.

When you connect to the named endpoint, a PowerShell session will be created, and then the
configuration script associated with the endpoint will be executed. This configuration script
should define the set of capabilities available when connecting to that endpoint. For example,
there may be different endpoints for different types of management tasks—managing a mail
server, managing a database server, or managing a web server. For each task, a specific endpoint
would be configured to expose the appropriate commands (and constraints) required for
performing that task.

11.6.2. Creating a custom configuration

Continuing our theme of remote monitoring from section 11.2.3, let’s create a configuration that
exposes a single custom command, Get-PageFaultRate. This command will return the page fault
rate from the target computer.

Session configuration

Every remoting connection will use one of the named configurations on the remote computer.
These configurations set up the environment for the session and determine the set of commands
visible to users of that session.

When remoting is initially enabled, a default configuration is created on the system called
Microsoft.PowerShell (on 64-bit operating systems, there’s also the Microsoft.PowerShell32
endpoint). This endpoint is configured to load the default PowerShell configuration with all

(450)

commands enabled. The security descriptor for this configuration is set so that only members of
the local Administrators group can access the endpoint.

You can use the session configuration cmdlets to modify these default session configurations, to
create new session configurations, and to change the security descriptors of all the session
configurations. These cmdlets are shown in table 11.4.

Table 11.4. The cmdlets for managing the remoting endpoint configurations

Cmdlet Description

Disable-PSSessionConfiguration

Denies access to the specified session
configuration on the local computer by adding
an “Everyone AccessDenied” entry to the
access control list (ACL) on the configuration

Enable-PSSessionConfiguration Enables existing session configurations on the
local computer to be accessed remotely

Get-PSSessionConfiguration Gets a list of the existing, registered session
configurations on the computer

Register-PSSessionConfiguration Creates and registers a new session
configuration

Set-PSSessionConfiguration Changes the properties of an existing session
configuration

Unregister-PSSessionConfiguration Deletes the specified registered session
configurations from the computer

New-PSSessionConfigurationFile
Creates a PowerShell data language file (see
module manifests) with a .pssc extension that
defines a session configuration

Test-PSSessionConfigurationFile
Validates the contents of a session configuration
file, verifying that the keys and values in the file
are all valid (introduced in PowerShell v4).

Registering the endpoint configuration

Endpoints are created using the Register-PSSessionConfiguration cmdlet and are customized by
registering a startup script. In this example, you’ll use a simple startup script that defines a single
function, Get-PageFaultRate. The script looks like this:

PS> @'

function Get-PageFaultRate {

 (Get-WmiObject Win32_PerfRawData_PerfOS_Memory).PageFaultsPersec

}

'@ > Initialize-HMConfiguration.ps1

Before you can use this function, you need to register the configuration, specifying the full path
to the startup script. Call this new configuration wpia1. From an elevated PowerShell session, run
the following command to create the endpoint:

PS> Register-PSSessionConfiguration -Name wpia1 `

-StartupScript $pwd/Initialize-HMConfiguration.ps1 -Force

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Plugin

(451)

Type Keys Name

---- ---- ----

Container {Name=wpia1} wpia1

The output of the command shows that you’ve created an endpoint in the WSMan plug-in folder.
To confirm this use (see figure 11.9), run the following:

PS> dir wsman:\localhost\plugin

Figure 11.9. Remoting endpoints including the newly created wpia1

This shows a list of all the existing endpoints, including the one you created, wpia1. Now test this
endpoint with Invoke-Command and run the function defined by the startup script:

PS> Invoke-Command localhost -ConfigurationName wpia1 {

Get-PageFaultRate }

68200956

This code verifies that the endpoint exists and is properly configured. Now clean up by
unregistering the endpoint:

PS> Unregister-PSSessionConfiguration -Name wpia1 -Force

Rerun the dir command in figure 11.9 to verify that the endpoint has been removed.

This covers the basic tasks needed to create a custom PowerShell remoting endpoint using a
configuration script to add additional functionality to the session defaults. Our ultimate goal,
though, is to create a custom endpoint with reduced functionality, exposing a restricted set of
commands to qualified users, so clearly, we aren’t finished yet. There are two remaining pieces
to look at: controlling individual command visibility, which we’ll get to in a while, and
controlling overall access to the endpoint, our next topic.

11.6.3. Access controls and endpoints

By default, only members of the Administrators group on a computer have permission to use the
default session configurations. To allow users who aren’t part of the Administrators group to

(452)

connect to the local computer, you have to give those users Execute permissions on the session
configurations for the desired endpoint on the target computer. For example, if you want to
enable non-administrators to connect to the default remoting Microsoft.PowerShell endpoint, you
can do so by running the following command:

PS> Set-PSSessionConfiguration Microsoft.PowerShell `

-ShowSecurityDescriptorUI

This code launches the dialog box shown in figure 11.10.

Figure 11.10. This dialog box is used to enable the Execute permission on the default remoting configuration.
Use this dialog box to allow a user who isn’t a member of the Administrators group to connect to this computer
using PowerShell remoting.

You add the name of a user or a group you want to enable to the list, then select the Execute
(Invoke) check box. Then dismiss the dialog box by clicking OK. At this point, you’ll get a
prompt telling you that you need to restart the WinRM service for the change to take effect. Do
so by running Restart-Service winrm as shown here:

PS> Restart-Service winrm

(453)

Once the service is restarted, the user or group you’ve enabled can connect to the machine using
remoting.

Setting security descriptors on configurations

When Enable-PSRemoting creates the default session configuration, it doesn’t create explicit
security descriptors for the configurations. Instead, the configurations inherit the security
descriptor of the RootSDDL. The RootSDDL is the security descriptor that controls remote access to
the listener, which is secure by default. To see the RootSDDL security descriptor, run the Get-Item
command as shown:

PS> Get-Item wsman:\localhost\Service\RootSDDL

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Service

Type Name SourceOfValue Value

---- ---- ------------- -----

System.String RootSDDL O:NSG:BAD:P(A;;GA;;;BA)

 (A;;GR;;;IU)

 S:P(AU;FA;GA;;;WD)

 AU;SA;GXGW;;;WD)

The string format shown in the Value output in the example uses the syntax defined by the
Security Descriptor Definition Language (SDDL), which is documented in the Windows Data
Types specification MS-DTYP in section 2.5.1 at http://mng.bz/QpKC.

To change the RootSDDL, use the Set-Item cmdlet in the WSMan: drive. To change the security
descriptor for an existing session configuration, use the Set-PSSessionConfiguration cmdlet with
the -SecurityDescriptorSDDL or -ShowSecurityDescriptorUI parameter.

At this point, you know how to create and configure an endpoint and how to control who has
access to that endpoint. But in your configuration, all you’ve done is add new commands to the
set of commands you got by default. You haven’t addressed the requirement to constrain the
environment.

11.6.4. Constraining a PowerShell session

In section 11.6.2 you saw how to create a new remoting endpoint using Register -
PSSessionConfiguration, and in the previous section you saw how to control who can access a
particular endpoint. In this section, you’ll learn how to control, or constrain, what can be done
through a particular endpoint. This involves limiting the variables and commands available to the
user of the session. You accomplish this by controlling command and variable visibility. You’re
creating a constrained endpoint.

The idea behind a constrained endpoint is that it allows you to provide controlled access to
services on a server in a secure manner. This is the mechanism that the hosted Exchange product
Outlook.com uses to constrain who gets to manage which sets of mailboxes. The mechanism can
also be used in PowerShell Web Access to control access to a server and the commands that can
be run on that server.

In PowerShell v2 you had to create a complex script to configure a new endpoint. The script
involved manipulating the visibility of cmdlets and variables plus the definition of any new
functionality you required.

(454)

http://mng.bz/QpKC

In PowerShell v3 and later this task became much simpler thanks to the introduction of the New-
PSSessionConfigurationFile cmdlet; the syntax is shown in figure 11.11.

Figure 11.11. New-PSSessionConfigurationFile syntax

The only required parameter is the path to the new configuration file:

PS> New-PSSessionConfigurationFile -Path .\Defaults.pssc

Configuration files are given a .pssc extension. The .pssc file structure is similar to a module
manifest; it’s a big PowerShell hashtable with name-value pairs. If you examine defaults.pssc
(see download) produced by the example, you’ll see that you can control a large number of
configuration items, including these:

Execution policy (controls which, if any, scripts can be run)
Language mode
Session type
PowerShell version
Existing aliases, cmdlets, functions, and providers that are visible in the endpoint
New aliases, functions, and variables to create for the endpoint
Format and type files to load and scripts to process

Language mode for a session configuration controls the types of things that can be executed in a
session. The more secure you need the session to be, the more restrictive the language mode
session should be. The options are shown in table 11.5.

Table 11.5. Remoting endpoint language options

Option Meaning

FullLanguage All PowerShell language elements are permitted.

ConstrainedLanguage

Commands that contain scripts to be evaluated are not allowed.
User access is restricted to .NET framework types, objects, or
methods. (This is the mode that PowerShell runs in on WinRT
devices.)
Users may run cmdlets and functions. Scriptblocks aren’t

(455)

RestrictedLanguage

allowed. Only the following variables are allowed: $PSCulture,
$PSUICulture, $True, $False, and $Null. Basic comparison
operators are allowed. Assignment statements, property
references, and method calls aren’t permitted. (This is the
language mode used in module manifests, sometimes also called
data language mode because it can only describe data.)

NoLanguage
Users may run simple pipelines containing cmdlets and
functions. No language elements such as scriptblocks, variables,
or operators are permitted in the pipeline.

As you progress down the table, the things you can do in the endpoint become more limited until
Nolanguage, when you’re only allowed to run basic pipelines containing cmdlets and functions.
The session capabilities are also controllable by restricting the list of cmdlets and functions
available to a user. For example, you can restrict the functionality of an endpoint so that a user
can only reset their password in Active Directory!

The session type works in conjunction with the language mode. The session type options are
listed in table 11.6.

Table 11.6. Session options for remoting endpoints

Option Meaning Default language mode

Default

Adds the
Microsoft.PowerShell.Core
snap-in to the session. This
includes the Import-Module
and Add-PSSnapin cmdlets so
users can import other modules
and snap-ins unless you
explicitly prohibit the use of the
cmdlets.

FullLanguage

RestrictedRemoteServer

Includes only the following
proxy functions: Exit-
PSSession, Get-Command,
Get-FormatData, Get-Help,
Measure-Object, Out-Default,
and Select-Object. Use New -
PSSessionConfigurationFile to
add modules, functions, scripts,
and other features to the
session.

NoLanguage

No modules or snap-ins are
added to the session by default.
Use New-
PSSessionConfigurationFile to
add modules, functions, scripts,
and other features to the
session. This option is designed

(456)

Empty for you to create custom
sessions by adding selected
commands. If you don’t add
commands to an empty session,
the session is limited to
expressions and might not be
usable.

NoLanguage

You can explicitly control the visibility of PowerShell elements using the –Visible* parameters
shown in figure 11.11. This is a “white list” action. If a cmdlet or other element isn’t on the list,
you won’t see it and therefore you won’t be able to use it directly.

Tip

When using the –Visible* parameters, if you don’t want to make anything visible for a particular
type of command, don’t use the parameter. A commented-out default value will be written to the
.pssc file.

An example of an extremely constrained endpoint is provided in the following listing.

Listing 11.3. ComplexConstrainedConfiguration.ps1

New-PSSessionConfigurationFile `

-Path .\ComplexConstrainedConfiguration.pssc `

-Schema '1.0.0.0' `

-Author 'Richard' `

-Copyright '(c) PowerShell in Action Third Edition. All rights reserved.' `

-CompanyName 'PowerShell in Action' `

-Description 'Complex Constrained Configuration.' `

-ExecutionPolicy RemoteSigned `

-PowerShellVersion '5.0' `

-LanguageMode NoLanguage `

-SessionType RestrictedRemoteServer `

-FunctionDefinitions @{Name='Get-HealthModel';ScriptBlock={@{

 Date = Get-Date

 FreeSpace = (Get-PSDrive c).Free

 PageFaults = (Get-WmiObject `

 Win32_PerfRawData_PerfOS_Memory).PageFaultsPersec

 TopCPU = Get-Process | Sort-Object -Descending CPU

 TopWS = Get-Process | Sort-Object -Descending WS

 }};Options='None'} `

-VisibleProviders 'FileSystem','Function','Variable'

The execution policy is set to RemoteSigned, but in reality, you won’t be able to run scripts, as
you’ll see in a while. Language mode is set to NoLanguage (see table 11.5) and session type to
RestrictedRemoteServer (table 11.6). Three providers are made visible, but no modules, cmdlets,
aliases, or variables are made available in the session.

A function to get the health of the system is defined and will be created when the endpoint is
created. Run the script in listing 11.3 to create a configuration file. The fidelity of a configuration
file can be tested:

PS> Test-PSSessionConfigurationFile -Path `

.\ComplexConstrainedConfiguration.pssc -Verbose

True

(457)

In the event of an error in the file, you will see the error only if you use the –Verbose parameter:

PS> Test-PSSessionConfigurationFile -Path .\ErrorConfiguration.pssc `

-Verbose

VERBOSE: The member 'LanguageMode' must be a valid enumeration type "System.

 Management.Automation.PSLanguageMode".

Valid enumeration values are "FullLanguage,RestrictedLanguage,NoLanguage,

ConstrainedLanguage". Change the member to the correct type in the file C:\

 MyData\PowerShellinAction3e\Code\Chapter11\ErrorConfiguration.pssc.

False

Creating the endpoint is performed with Register-PSSessionConfiguration. In the following
example, any existing instances of the endpoint are removed—a useful technique when testing:

PS> Unregister-PSSessionConfiguration -Name wpiaccs -Force

PS> Register-PSSessionConfiguration –Path ` .\

 ComplexConstrainedConfiguration.pssc -Name wpiaccs -Force

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Plugin

Type Keys Name

---- ---- ----

Container {Name=wpiaccs} wpiaccs

You can see the new endpoint:

PS> dir WSMan:\localhost\Plugin\

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Plugin

Type Keys Name

---- ---- ----

Container {Name=Event Forwarding Plugin} Event Forwarding Plugin

Container {Name=microsoft.powershell} microsoft.powershell

Container {Name=microsoft.powershell.w... microsoft.powershell.workflow

Container {Name=microsoft.powershell32} microsoft.powershell32

Container {Name=microsoft.windows.serv... microsoft.windows.server...

Container {Name=SEL Plugin} SEL Plugin

Container {Name=WMI Provider} WMI Provider

Container {Name=wpiaccs} wpiaccs

A remoting session can be created to the new endpoint. Notice that you have to give the name of
the configuration (endpoint) that you used when performing the registration:

PS> $s = New-PSSession -ComputerName localhost -ConfigurationName wpiaccs

The session can now be used as normal. Let’s start by checking the commands available:

PS> Invoke-Command -Session $s -ScriptBlock {Get-Command | select Name}

Name PSComputerName RunspaceId

---- -------------- ----------

Clear-Host localhost 0377a4f9-5924-4cb0-83f9-a87f8a335147

Exit-PSSession localhost 0377a4f9-5924-4cb0-83f9-a87f8a335147

Get-Command localhost 0377a4f9-5924-4cb0-83f9-a87f8a335147

Get-FormatData localhost 0377a4f9-5924-4cb0-83f9-a87f8a335147

Get-HealthModel localhost 0377a4f9-5924-4cb0-83f9-a87f8a335147

Get-Help localhost 0377a4f9-5924-4cb0-83f9-a87f8a335147

Measure-Object localhost 0377a4f9-5924-4cb0-83f9-a87f8a335147

Out-Default localhost 0377a4f9-5924-4cb0-83f9-a87f8a335147

Select-Object localhost 0377a4f9-5924-4cb0-83f9-a87f8a335147

Note

When you look at this list of commands, you may wonder why some of them are included. For

(458)

example, Measure-Object seems like a strange thing to have on the list. The reason these
commands are included is that they’re needed to implement some of the elements of the
PowerShell Remoting Protocol. In particular, they’re used to help with the command-discovery
component described in the PowerShell Remoting Protocol Specification (MS-PSRP) section
3.1.4.5, “Getting Command Metadata.”

Compare that with the results on the machine we’re using to test the code for this book:

PS> Get-Command | Measure-Object | select Count

Count

 2658

Our session is constrained! You’ll notice that the function we defined, Get-HealthModel, is in the
list of commands. Let’s check that it works:

PS> Invoke-Command -Session $s -ScriptBlock {get-healthmodel}

Name Value

---- -----

Date 08/05/2017 12:57:29

TopWS {System.Diagnostics.Proces...

PageFaults 146394771

FreeSpace 67302338560

TopCPU {System.Diagnostics...

The observant reader will have noticed that we used Get-Date in the function, but it isn’t in the
list of commands we obtained from Get-Command. Does this mean we can use it directly even
though we didn’t explicitly make it visible in our configuration definition?

PS> Invoke-Command -Session $s -ScriptBlock {Get-Date}

The term 'Get-Date' is not recognized as the name of a cmdlet, function,

script file, or operable program. Check the spelling of the name, or if a

path was included, verify that the path is correct and try again.

And the answer is no! This is an important point to understand because it’s the key to creating a
restricted special-purpose endpoint: an external call can only access visible commands, but these
commands, because they’re defined as part of the configuration, can see all the other commands
in the configuration. This means that an externally visible command can call any internal
commands in the session. If the user makes an external call to a visible command, that visible
command is able to call the private commands.

Note

All the error messages in this section will be truncated to show only the error text for brevity.

What about using it in a script block or function?

PS> Invoke-Command -Session $s -ScriptBlock { & {Get-Date}}

The syntax is not supported by this runspace. This can occur if the runspace is in no-language

mode.

PS> Invoke-Command -Session $s -ScriptBlock {function MyGetDate { [string] (Get-Date) };

MyGetDate}

The syntax is not supported by this runspace. This can occur if the runspace is in no-language

(459)

mode.

If you want to be able to create functions and scriptblocks, you need to be using FullLanguage
mode in your endpoint. What about adding extra modules into the endpoint—modules provide
extra functionality? Let’s see what modules you have available:

PS> Invoke-Command -Session $s -ScriptBlock {Get-Module -ListAvailable}

The term 'Get-Module' is not recognized as the name of a cmdlet, function,

script file, or operable program. Check thespelling of the name, or if a path

was included, verify that the path is correct and try again.

You can’t see any modules so you can’t load them because you don’t know what’s on the
system. You might think about trying to import modules that you know are present, but it will
fail. The endpoint is locked down to prevent any further functionality being imported. The
function we defined as part of our configuration used variables. Can you use variables in your
endpoint?

PS> Invoke-Command -Session $s -ScriptBlock {$x = 123; $x}

The syntax is not supported by this runspace. This can occur if the runspace

is in no-language mode.

No, they’re not allowed. There’s still a lot of functionality in legacy commands that you may
think to use:

PS> Invoke-Command -Session $s -ScriptBlock {ping 127.0.0.1}

The term 'PING.EXE' is not recognized as the name of a cmdlet, function,

script file, or operable program. Check the spelling of the name, or if a path was included,

verify that the

path is correct and try again.

Notice that the full name of the executable was recognized—but you’re not allowed to run it. The
final piece of functionality you may try is to run a script. You can try a simple script testch11.ps1
consisting of

Get-Service | Sort-Object Status

Try this:

PS> Invoke-Command -Session $s -ScriptBlock {C:\TestScripts\testch11.ps1}

The term 'C:\TestScripts\testch11.ps1' is not recognized as the name of a

cmdlet, function, script file, or operable program. Check the spelling of the

name, or if a path was included, verify that the path is correct and try again.

Again, the endpoint won’t allow you to run anything beyond what it’s been told is allowed. You
do have a constrained remoting session.

Note

The example we’ve used is extreme but was designed to illustrate that you can create an endpoint
and control exactly what functionality is exposed.

Step back and think about what you’ve accomplished here. With a few lines of code, you’ve
defined a secure remote service. From the users’ perspective, by using Import -PSSession they’re
able to install the contents of the session to use the services you expose—by connecting to the
service.

(460)

Constrained sessions combined with implicit remoting results in an extremely flexible system,
allowing you to create precise service boundaries with little server-side code and no client code.
Consider how much code would be required to create an equivalent service using alternate
technologies!

We’ll close the chapter with a new remoting feature introduced with PowerShell v5.

(461)

11.7. PowerShell Direct

You normally use the computer name to define the remote machine for PowerShell remoting,
whether you’re using an interactive session, a persistent session, or Invoke -Command in standalone
mode (no persistent session). PowerShell v5.1 supplies some new options. You can use a Hyper-
V virtual machine name (not necessarily the same as the computer name) or the virtual machine
ID (a GUID).

The options to use a virtual machine name or ID apply only under these circumstances:

The virtual machine must be running on the local host.
You must be logged on to the Hyper-V host as a Hyper-V administrator.
You must supply valid credentials for the virtual machine—not domain credentials.
The host operating system must be Windows 10, Windows Server 2016, or later.
The virtual machine operating system must be Windows 10, Windows Server 2016, or
later.

You can use the virtual machine name or ID to connect, but it’s usually easier to use the name:

PS> Get-VM | where State -eq 'Running' |

select Name, Id

Name Id

---- --

W16AS01 2a1eabc2-e3cd-495c-a91f-51a1ad43104c

W16DSC01 867c8460-a4fb-4785-9b7c-f27c9351db3c

W16TGT01 be4a5a3f-fc20-49f9-bb0f-b575c85e5734

Create a credential for the administrator account on the remote machine and then use the virtual
machine name to connect:

PS> $cred = Get-Credential -Credential W16TGT01\Administrator

PS> Invoke-Command -VMName W16TGT01 -ScriptBlock {Get-Process} `

-Credential $cred

Either of these options will also work:

PS> Invoke-Command -VMId be4a5a3f-fc20-49f9-bb0f-b575c85e5734 `

-ScriptBlock {Get-Process} -Credential $cred

PS> Invoke-Command -VMGuid be4a5a3f-fc20-49f9-bb0f-b575c85e5734 `

-ScriptBlock {Get-Process} -Credential $cred

Note

VMGuid is an alias for VMId.

You can create a persistent remoting session:

PS> $s = New-PSSession -VMName W16TGT01 -Credential $cred

PS> Invoke-Command -Session $s -ScriptBlock {Get-Process}

Or you can work interactively:

(462)

PS> Enter-PSSession -VMName W16TGT01 -Credential $cred

[W16TGT01]: PS C:\Users\Administrator\Documents>

Use Exit-PSSession to close the interactive session.

There are a few things you need to remember when using PowerShell Direct:

It’s only for Hyper-V virtual machines.
You can ignore network and firewall configurations; you’re connecting over the VM bus
rather than the network.
PowerShell must be run with elevated privileges.

And with this, we’ve come to end of our coverage of the remoting features in PowerShell.

(463)

11.8. Summary

Many PowerShell commands have built-in remoting using a -ComputerName parameter.
Cmdlets with built-in remoting use a variety of connectivity mechanisms including DCOM
and RPC.
Invoke-Command uses WS-MAN for remote connectivity.
You can create an interactive remoting session with Enter-PSSession.
Interactive remoting sessions are closed with Exit-PSSession.
Windows Server 2012 and later enable remoting by default. Azure IAAS virtual machines
running Server 2012 R2 or higher also enable PowerShell remoting by default.
All client operating systems and Windows Server 2008 R2 and earlier need remoting
enabled by running Enable-PSRemoting.
Additional configuration may be required in a non-domain environment.
Users are authenticated using Kerberos in a domain environment when creating remoting
sessions.
Other authentication mechanisms are available for non-domain scenarios.
New-PSSession is used to create a persistent remoting session.
Invoke-Command and interactive sessions can use an existing session created with New-
PSSession.
PowerShell sessions can be disconnected and later reconnected. The reconnection can
happen on the machine on which the session was created or another machine.
You can connect to a disconnected session created by another user if you have the correct
credential information.
Copy-Item has -FromSession and -ToSession parameters that enable you to copy files across
PowerShell remoting sessions.
Implicit remoting enables you to import functionality from the remote system into your
session. You can save the imported commands as a module.
Profiles don’t run by default in remoting sessions.
Scripts on the local or remote machine can be run through a remoting session.
Local variables can be accessed in a remoting session via the $using scope modifier.
Custom endpoints can be created to constrain the functionality available to a user through
a specific remoting connection.
PowerShell Direct enables remoting over the VM bus from a Hyper-V host to a virtual
machine on that host.

In the next chapter, we’ll look at a feature introduced in PowerShell v3: PowerShell workflows.

(464)

Chapter 12. PowerShell workflows
This chapter covers

Workflow overview and architecture
Workflow keywords
Workflow parameters
Workflow cmdlets

“Hi ho, hi ho. It’s off to work we go!”

Snow White and the Seven Dwarfs

At the beginning of every new release of PowerShell, a planning cycle takes place during which
a number of major themes are identified for the release. During the planning cycle for
PowerShell v3, one of the key themes was identified as multi-machine management—the ability
to provision, manage, and monitor a large number of machines in a datacenter. Accomplishing
this goal, however, would require changing not only PowerShell but also some related products
such as Server Manager.

In Windows 7, which included PowerShell v2 and the first version of Server Manager, the focus
was mainly on machine-to-machine management. Server Manager could attach to a remote
machine but could manage only one machine at a time. PowerShell was a bit more sophisticated
in that it could deal with multiple machines but only if you wanted to do the same thing to each
machine.

The key element that was missing was orchestration. In an orchestra, the conductor doesn’t play
any music. Instead, they direct the orchestra members, each of whom has a specialized role to
play and a time to play that role (music). This direction of the orchestra is called, not
surprisingly, orchestration. A central control point sequences the flow of work to the individual
workers. It was clear that workflow management had to become part of the overall management
stack to achieve large-scale multi-machine management.

PowerShell workflows were introduced in PowerShell v3. Workflows give you another option
when deciding how you’ll tackle a task with PowerShell. We’ll start with the high-level view of
workflows and explain why you need them, their strengths and weaknesses, and the constraints
you’ll face when using workflows.

Note

We’ll come back to this point a number of times throughout the chapter, but you need to be
aware that although workflows look like PowerShell code, they’re not PowerShell—they’re code
written with a PowerShell-like-syntax.

Before we get to the deep technicalities of PowerShell workflows, we need to give you the
overview we promised.

(465)

12.1. Workflow overview

In this section, we’ll give you an overview of when you should consider using workflows. We’ll
then use the ever-popular “Hello world” approach to create your first workflow. The section
closes by looking at the differences between workflows and PowerShell code, followed by the
restrictions imposed on your code by using PowerShell.

Workflows introduce a number of keywords that we’ll explain. The foreach keyword you’ve seen
already gains new functionality in workflows that we’ll demonstrate. Once you have a sound
grasp of workflow features and syntax, we’ll provide some examples of using workflows. These
will include nested workflows, how workflows interact with the PowerShell job engine, and the
large set of parameters you can use with workflows. We’ll introduce and explain a number of
cmdlets for working directly with workflows.

First, though, why should you think about using workflows?

12.1.1. Why use workflows

PowerShell workflows are designed for scenarios where you have processes that meet the
following criteria:

Run for a long time, potentially for days.
Execute unattended.
Run in parallel across one or more machines.
Are interruptible. They can be stopped and restarted through the use of checkpoints, which
means the state of the process can be persisted to disk.
Need to survive a reboot of the system against which the workflow is executing.
Need to track execution.

So, what kind of task would fit this model? A few real-world examples should help establish
when using workflows would be beneficial:

You need to test hundreds or thousands of servers for the presence of a particular piece of
software—a typical compliance issue in many organizations.
You need to make a series of modifications to the configuration of many servers that
involves rebooting the servers in the middle of the process.
You need to modify the configuration of multiple servers with a process that involves
many steps. Capturing the state of the workflow with a series of checkpoints enables you
to restart the process from the point of an error rather than from the beginning

By now you are probably thinking, “I can do that already.” That’s true; there are ways to solve
all of these problems without using workflows, but workflows make it easier for you to solve
these problems.

There’s nothing to stop you solving any of these problems by using non-workflow solutions, but
we recommend that you definitely consider using workflows for these three areas:

You need to interrupt and restart tasks.
You need to checkpoint the task (persistence).
You have a mixture of sequential and parallel tasks.

(466)

You’ll see how workflows solve these problems as we progress through the chapter, but now it’s
time to discover the architecture of PowerShell workflows.

12.1.2. Workflow architecture

In this section, we’re going to look at the internal architecture of PowerShell workflow. Having
some knowledge of the architecture will help you understand and predict the behavior of a
workflow script. Figure 12.1 shows all the pieces of the PowerShell workflow architecture.

Figure 12.1. PowerShell workflow architecture

This diagram is rather complex, so we’ll go through it one piece at a time. On the left side of the
picture is a box labelled Main PowerShell runspace. This is your interactive PowerShell session.
In workflows, it does only one thing: takes a PowerShell workflow script and translates it into
workflow XAML (eXtensible Markup Language). The workflow engine requires this XAML
representation in order to execute the workflow. The XAML is then passed to the workflow host
component for execution. At this point, the involvement of the main runspace ends (other than to
wait for the workflow to finish).

Inside the workflow host, the workflow execution engine is the element that executes the
program logic, but there are a couple of other important parts. First is the variable store. The
workflow engine has its own way of dealing with variables that’s completely separate from the
PowerShell runspace variable store. (You’ll see why this matters when we get to writing
workflows.) The other major component is the persistence store. One of the signature features of

(467)

a workflow is that it can halt execution, save all state to the persistence, and be resumed at a later
time. In the case of a PowerShell workflow, that persistence store is the file system. By default
the persistence store is located at
$env:LOCALAPPDATA\Microsoft\Windows\PowerShell\WF\PS. This location can be modified
by the New-PSWorkflowExecutionOption cmdlet if required.

After receiving the XAML, the workflow execution engine starts processing the steps in the
workflow. These individual steps are called activities, which include not only imperative actions
but also the if statements, loops, and other flow-control statements that make up the workflow.
PowerShell workflow exposes PowerShell commands as activities so the workflow engine can
run them, but the control statements are specific to the workflow engine. For each PowerShell
command, there is a corresponding activity wrapper that will call it. These wrappers are
generated using tools that produce a C# wrapper for the command. The C# wrappers for all the
commands in a module are compiled into a new binary module with the word activities inserted
into the name (see table 12.2).

To recap, the workflow engine runs the activity, which in turn runs the command. But as you
know, PowerShell commands can run only in runspaces. This is shown on the right side of figure
12.1. PowerShell workflow maintains several pools of runspaces that are used to execute the
individual commands. Of particular interest is the out-of-process runspace pool. This is used by
default and guarantees that a failing command won’t cause the workflow host process to fail.
This approach makes the workflow execution significantly more reliable—but at a cost. Running
commands out of process adds a lot of overhead because of the need to serialize data between the
workflow host process and the out-of-process runspace host. To improve performance, you can
also choose to run activities in process but at some risk of destabilizing the engine (usually a
pretty small risk).

Also note that these are runspace pools, not individual runspaces, which is what allows for
parallel operations. The workflow engine dispatches each command to a runspace in a pool and
then waits until the operations are complete. If there are more operations to execute than there
are available runspaces, then the workflow engine will queue the remaining commands and
they’ll be processed as a runspace becomes available.

Okay, enough about architecture; let’s start writing workflows. We’ll refer to the architecture as
needed in the remainder of the chapter.

12.1.3. Your first workflow

In earlier chapters we introduced new functionality by creating a “Hello world” example.
Workflows are no different. This is “Hello world” presented as a workflow:

workflow hello

{

 'Hello World'

}

Executing this workflow gives the following output:

PS> hello

Hello World

If you’re thinking, “This looks like a function definition,” at this point you’re correct. In many
cases, workflows look exactly like a function except that the function keyword is replaced by the

(468)

workflow keyword. You can see if a function is a workflow by using Get-Command on the command
name, which in this case gives the following:

PS> Get-Command hello

CommandType Name Version Source

----------- ---- ------- ------

Workflow hello

Let’s drill down into our hello workflow. A number of interesting features are exposed when you
examine the full output from

PS> Get-Command hello | Format-List *

Note

Running this command will give you all the information about the workflow, including the
XAML representation of the workflow. The resulting output is too large to include in the book,
but we’ve included a copy in the download available from the book’s website.

The XAML definition of the workflow is worth examining. If you look through the scriptblock
definition you’ll see this line:

function hello {

When a PowerShell workflow is created, the command is persisted as a function. You can test
this:

PS> Get-ChildItem -Path Function:\hello

CommandType Name Version Source

----------- ---- ------- ------

Workflow hello

The command type is set as a Workflow even though the command is in the function drive.
Referring to the architecture, this function is the piece that runs in the main PowerShell runspace.
Unlike a regular function, which executes the actions in its body, the job of a workflow function
is to pass the XAML definition to the workflow engine, which ultimately does all the execution.
This means that the function you defined is quite different than the function that’s run in the
main runspace. You can view this generated function dispatcher function by running

PS> Get-Command hello | select -ExpandProperty Scriptblock

Once again, the output of this command is too long to include in the text of the book, but the
bulk of the function is a large number of parameter definitions. You can look at these parameters
by doing

PS> Get-Command hello | select -ExpandProperty Parameters

This list of parameters is shown in table 12.1.

Table 12.1. Default workflow parameters

PSParameterCollection PSComputerName PSCredential

(469)

PSConnectionRetryCount PSConnectionRetry-
IntervalSec

PSRunningTimeoutSec

PSElapsedTimeoutSec PSPersist PSAuthentication
PSAuthenticationLevel PSApplicationName PSPort
PSUseSSL PSConfigurationName PSConnectionURI
PSAllowRedirection PSSessionOption PSCertificate-Thumbprint
PSPrivateMetadata AsJob JobName
InputObject ErrorAction WarningAction
InformationAction Verbose Debug
ErrorVariable WarningVariable InformationVariable
OutVariable OutBuffer PipelineVariable

You should recognize some of the parameters such as Verbose and Debug from Power-Shell
functions. Others, such as PSPersist and PSPort, are new workflow-specific parameters that are
automatically defined, and available, for every workflow you write without you having to do any
extra work!

Note

The full definition of each of the workflow parameters can be found in the help file
about_WorkflowCommonParameters.

We’ve mentioned the XAML definition corresponding to the workflow function several times.
This is the XamlDefinition that was generated for our hello workflow.

Listing 12.1. Xamldefinition of hello workflow

<Activity

 x:Class="Microsoft.PowerShell.DynamicActivities.Activity_1303329265"

 xmlns="http://schemas.microsoft.com/netfx/2009/xaml/activities"

 xmlns:sad="clr-namespace:System.Activities.Debugger;assembly=

System.Activities"

 xmlns:local="clr-namespace:Microsoft.PowerShell.DynamicActivities"

 xmlns:mva="clr-namespace:Microsoft.VisualBasic.Activities;assembly=

System.Activities"

 mva:VisualBasic.Settings="Assembly references and imported namespaces serialized as XML

namespaces"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:ns0="clr-namespace:System;assembly=mscorlib"

 xmlns:ns1="clr-namespace:Microsoft.PowerShell.Utility.Activities;

assembly=Microsoft.PowerShell.Utility.Activities"

 xmlns:ns2="clr-namespace:Microsoft.PowerShell.Activities;

assembly=Microsoft.PowerShell.Activities"

 xmlns:ns3="clr-namespace:System.Activities;assembly=System.Activities"

 xmlns:ns4="clr-namespace:System.Management.Automation;

assembly=System.Management.Automation"

 >

 <Sequence>

 <ns2:SetPSWorkflowData>

 <ns2:SetPSWorkflowData.OtherVariableName>Position

 </ns2:SetPSWorkflowData.OtherVariableName>

 <ns2:SetPSWorkflowData.Value>

 <ns3:InArgument x:TypeArguments="ns0:Object">

 <ns2:PowerShellValue

 x:TypeArguments="ns0:Object"

(470)

 Expression="'2:2:hello'" />

 </ns3:InArgument>

 </ns2:SetPSWorkflowData.Value>

 </ns2:SetPSWorkflowData>

 <ns1:WriteOutput>

 <ns1:WriteOutput.NoEnumerate>[

 System.Management.Automation.SwitchParameter.Present]

 </ns1:WriteOutput.NoEnumerate>

 <ns1:WriteOutput.InputObject>

 <InArgument x:TypeArguments="ns4:PSObject[]">

 <ns2:PowerShellValue x:TypeArguments="ns4:PSObject[]"

 Expression="'Hello World'" />

 </InArgument>

 </ns1:WriteOutput.InputObject>

 </ns1:WriteOutput>

 <Sequence.Variables>

 <Variable Name="WorkflowCommandName"

 x:TypeArguments="ns0:String" Default = "hello" />

 </Sequence.Variables>

 </Sequence>

</Activity>

The XAML consists of a series of definitions and then, starting at the <Sequence> tag, comes the
body of the workflow. Reading through the Sequence section you’ll recognize a number of
activities such as WriteOutput that correspond to PowerShell commands.

XAML, PowerShell, and workflows

XAML is the language used in Windows Workflow Foundation (WF), which is part of the .NET
framework. Although XAML was primarily designed for creating GUIs, it’s also used as a
common markup across multiple Microsoft products such as SharePoint and Team Foundation
Server workflows.

The WF provides an API, a workflow engine, and a designer. Each step in your workflow is
modeled as an activity—either from the .NET library or custom-created. Activities are assembled
into workflows using the Workflow Designer in Visual Studio.

You can import PowerShell workflows into the Workflow Designer—see http://mng.bz/473s—
but the result is not too intelligible because of all of the boilerplate code generated by PowerShell
WF. One of the advantages that PowerShell brings to workflow is a much more concise notation
for expressing workflows.

(Trivia: Windows Workflow Foundation is abbreviated as WF instead of WWF because WWF
conflicted with the World Wildlife Federation trademark. Yes, wildlife, not wrestling.

Now that you’ve seen under the covers of a PowerShell workflow, how are the various parts
generated?

12.1.4. Running a workflow

When you run a PowerShell workflow, the built-in script-to-workflow compiler generates the
XAML for you. The user experience is simplified by creating a PowerShell function (with the
same parameters) that wraps the XAML. The function’s job is to coordinate the execution of the
workflow within the PowerShell workflow engine.

A PowerShell workflow is executed as a PowerShell job (see chapter 13), which provides the

(471)

http://mng.bz/473s

asynchronous capability of workflows. A job executes in a separate PowerShell process. You can
test this by running the code in the following listing.

Listing 12.2. Demonstration of workflow PowerShell processes

workflow Invoke-ParallelForEach 1

{

 foreach -parallel ($i in 1..10) 2

 {

 InlineScript 3

 {

 "foo: $using:i"

 }

 $count = Get-Process -Name PowerShell* |

 Measure-Object |

 Select-Object -ExpandProperty Count

 "Number of PowerShell processes = $count" 4

 }

}

$startcount = Get-Process -Name PowerShell* | 5

 Measure-Object |

 Select-Object -ExpandProperty Count

"Number of starting PowerShell processes = $startcount"

Invoke-ParallelForEach 6

1 Define workflow
2 Create loop
3 Output loop counter
4 Process count during execution
5 Initial process count
6 Execute workflow

Note

The workflow keywords in listing 12.2 are explained in detail in section 12.2. For now, we’ll tell
you what they do.

The workflow keyword 1 defines the start of the workflow. A foreach statement 2creates a loop.
The –parallel parameter ensures the loop’s iterations are run in parallel rather than sequentially.
An InlineScript 3 is used to write out the current iteration details and Get-Process 4 is used to
determine the number of PowerShell processes in use.

Before the workflow is invoked Get-Process is used to determine the initial number of
PowerShell processes 5. The workflow is invoked 6 and you’ll see something like the following:

Number of starting PowerShell processes = 2

foo: 9

foo: 6

foo: 10

foo: 7

foo: 3

Number of PowerShell processes = 7

Number of PowerShell processes = 7

Number of PowerShell processes = 7

foo: 4

foo: 5

foo: 2

Number of PowerShell processes = 7

Number of PowerShell processes = 7

(472)

Number of PowerShell processes = 7

foo: 8

foo: 1

Number of PowerShell processes = 7

Number of PowerShell processes = 7

Number of PowerShell processes = 7

Number of PowerShell processes = 7

The first thing to note is the output is not sequential. You have a mixture of the iteration number
and the number of processes. Also note that the iteration numbers look random.

Note

This is extremely important to remember. When running tasks in parallel in a workflow, you
have no control over the order in which data is returned. If you can’t identify where the data
comes from, you won’t reap the benefit of running the workflow.

The second point to note is the number of PowerShell processes. It immediately jumps from 2 (at
the start) to 7, suggesting that the workflow created another 5 processes and used them to
perform its tasks. The PowerShell job system will automatically close the sessions that were
created. This isn’t immediate; there’s a slight delay.

We’ve mentioned that you’re not using PowerShell cmdlets when writing workflows; you’re
using workflow activities. What do we mean by that?

12.1.5. Cmdlets vs. activities

When you look at listing 12.2 you see a script written in PowerShell syntax. It uses some cmdlets
including Get-Process, Measure-Object, and Select-Object. This all looks familiar, but as you know
from your study of the workflow architecture, these aren’t cmdlets, and the important phrase in
the first sentence of this section is “PowerShell syntax.” When you’re executing inside a
workflow, you’re not using the PowerShell runtime (unless you’re in an InlineScript block) and
you’re not using cmdlets directly; you’re using workflow activities, which are cmdlets with a WF
wrapper, as you discovered in the architecture section.

The workflow activities are contained in assemblies (located in the global assembly cache) that
correspond to PowerShell modules, as shown in table 12.2.

Table 12.2. PowerShell modules and corresponding activities

PowerShell module PowerShell activity assembly

n/a Microsoft.PowerShell.Activities
Microsoft.PowerShell.Core Microsoft.PowerShell.Core.Activities
Microsoft.PowerShell.Diagnostics Microsoft.PowerShell.Diagnostics.Activities
Microsoft.PowerShell.Management Microsoft.PowerShell.Management.Activities
Microsoft.PowerShell.Security Microsoft.PowerShell.Security.Activities
Microsoft.PowerShell.Utility Microsoft.PowerShell.Utility.Activities

(473)

Microsoft.WSMan.Management Microsoft.WSMan.Management.Activities

The assembly Microsoft.PowerShell.Activities doesn’t have a corresponding cmdlet module
because it contains a set of activities that are part of the PowerShell workflow runtime and is
loaded when workflows are used.

Each activity has a similar (almost identical) syntax to the corresponding command because the
activity wrappers are generated from the cmdlets directly; the properties on the generated
activities are a strict superset of the parameters on the command. The difference is in the
common parameters. Table 12.3 lists the common parameters found on workflow activities.

Table 12.3. Common activity parameters

AppendOutput Debug DisplayName ErrorAction

Input MergeError-ToOutput PSActionRetry-Count PSActionRetry-
IntervalSec

PSActionRunning-
TimeoutSec PSApplication-Name PSAuthentication PSCertificate-

Thumbprint

PSComputerName PSConfiguration-
Name

PSConnection-
RetryCount

PSConnection-
RetryIntervalSec

PSConnectionURI PSCredential PSDebug PSDisable-
Serialization

PSDisable-
Serialization-
Preference

PSError PSPersist PSPort

PSProgress PSProgress-Message PSRemoting-Behavior PSRequired-Modules
PSSessionOption PSUseSSL PSVerbose PSWarning
Result UseDefaultInput Verbose WarningAction

We’re not going to explain each parameter, but we do need to make a couple of points:

PSActionRetryIntervalSec relates to retrying actions in the workflow, not network retries.
PSRequiredModules is used by the activity wrapper generator code to tell the WF runtime
what module it needs to load in order to run the wrapped command.

In many cases, the parameters match cmdlet parameters you’ve already seen. Notice that many
of them have a PS prefix. This can cause confusion where a cmdlet has a –ComputerName parameter
and the workflow activity has a –PSComputerName parameter. The parameters are described in detail
in the about_ActivityCommonParameters help file.

Note

You’ve been warned. You will trip over the difference in parameter names at some time when
writing workflows.

One important point is that not all cmdlets have corresponding workflow activities. For example,

(474)

this workflow will work:

workflow test1

{

 Get-CimInstance -ClassName Win32_ComputerSystem

}

test1

But see what happens if you try to use Format-Table:

workflow test1

{

 Get-CimInstance -ClassName Win32_ComputerSystem |

 Format-Table Name, Model

}

test1

At line:3 char:5

+ Format-Table Name, Model

+ ~~~~~~~~~~~~~~~~~~~~~~~~

Cannot call the 'Format-Table' command. Other commands from this module have

 been packaged as workflow activities, but this command was specifically

 excluded. This is likely because the command requires an interactive

 Windows PowerShell session, or has behavior not suited for workflows. To

 run this command anyway, place it within an inline-script

(InlineScript { Format-Table }) where it will be invoked in isolation.

 + CategoryInfo : ParserError: (:) [], ParseException

 + FullyQualifiedErrorId : CommandActivityExcluded

The error message explains why you’re getting an error and how you can use the cmdlet in a
workflow. Table 12.4 lists the unsupported cmdlet groups.

Table 12.4. Unsupported cmdlet groups

Unsupported cmdlet (group) Reason

*Alias, *FormatData, *History, *Location,
*PSDrive, *Transcript, *TypeDate, *Variable,
Connect/Disconnect-Wsman

Change only PowerShell session, so not needed
in workflow because each activity runs in its
own runspace instance.

Show-Command, Show-ControlPanelItem, Get-
Credential, Show-EventLog, Out-Gridview,
Read-Host, Debug-Process

Workflows don’t support interactive cmdlets.

*BreakPoint, Get-PSCallStack, Set-PSDebug These commands are session-specific, but
workflow commands each run in isolation.

*Transaction Workflows don’t support transactions.

Format*

Workflows are intended to be run in a
distributed and asynchronous manner.
Excluding the formatting cmdlets ensures a
remote scenario isn’t broken by accident.

*PSsession, *PSsessionoption Remoting controlled by workflow.

Export-Console,Get-ControlPanelItem, Out-
Default, Out-Null, Write-Host, Export-
ModuleMember, Add-PSSnapin, Get-PSSnapin,
Remove-PSSnapin, Trace-Command

These are excluded because they affect the
current session, excluded because the workflow
is non-interactive, excluded because the
workflow handles remoting itself, or excluded
because they might break the remote
asynchronous pattern for workflow.

(475)

Some cmdlets, by default, can only be executed locally in workflows, as listed in table 12.5.

Table 12.5. Cmdlets that can only be executed locally in workflows

Add-Member Compare-Object ConvertFrom-Csv ConvertFrom-Json
ConvertFrom-
StringData Convert-Path ConvertTo-Csv ConvertTo-Html

ConvertTo-Json ConvertTo-Xml ForEach-Object Get-Host
Get-Member Get-Random Get-Unique Group-Object

Measure-Command Measure-Object New-PSSessionOption New-
PSTransportOption

New-TimeSpan Out-Default Out-Host Out-Null
Out-String Select-Object Sort-Object Update-List
Where-Object Write-Debug Write-Error Write-Host
Write-Output Write-Progress Write-Verbose

If you need to use a cmdlet that doesn’t have a matching workflow activity or you want to
execute one of the cmdlets from table 12.5 remotely, you have to use an InlineScript (see section
12.2.3).

12.1.6. Workflow restrictions

Given the architectural considerations of the PowerShell workflow runtime, there are a number
of restrictions you need to be aware of in PowerShell workflows:

Language restrictions
Aliases and positional parameters
Object serialization and deserialization
Variable usage

We’ll be covering variable usage in section 12.3.1.

Language restrictions

A number of PowerShell keywords and techniques aren’t supported in workflows. Table 12.6
provides a summary.

Table 12.6. PowerShell language and techniques not supported in workflows

Begin, Process, End Break, Continue Subexpressions
Multiple assignment Modify loop variable Dynamic parameters
Set properties Dot-sourcing Advanced parameter validation
Single #requires Switch statement Trap statement

Inline help Setting drive qualified
variables Method invocation on objects

New-Object with –COMobject

(476)

parameter

Some of the language restrictions can be overcome by using an InlineScript block, as you’ll see
later, but the others you need to avoid. They’re a restriction imposed by Windows Workflow
Foundation, and you’ll get an error if you try to use them.

Using aliases in workflows

When workflows were first introduced in PowerShell v3 this would have failed:

workflow test1

{

 gps powershell*

}

test1

The reason for the failure was twofold:

Aliases weren’t allowed.
Positional parameters weren’t allowed.

In addition, in PowerShell v3 you had to use full parameter names. These restrictions were
relaxed in PowerShell v4. PowerShell workflows aren’t a command-line activity, and its best
practice in your scripts to not use aliases, positional parameters, or parameter abbreviations, so
we recommend that you adhere to the original restriction.

The objects you receive from a workflow add an additional restriction.

Objects returned from workflows

Workflows use PowerShell remoting for access to remote machines, so the objects returned to
you have been serialized and then deserialized. A deserialized object gives you the properties of
the object but not the methods—it’s inert. Lots of PowerShell code does something like this:

$prc = Get-Process -Name notepad

$prc.Kill()

You create an object and then call a method on that object. This approach isn’t going to work in
your workflows:

workflow test2

{

 $prc = Get-Process -Name notepad

 $prc.Kill()

}

It will throw an error about method invocation not being supported:

At line:4 char:3

+ $prc.Kill()

+ ~~~~~~~~~~~

Method invocation is not supported in a Windows PowerShell Workflow.

To use .NET scripting, place your commands in an inline script:

InlineScript { <commands> }.

 + CategoryInfo : ParserError: (:) [], ParentContainsErrorRecordException

 + FullyQualifiedErrorId : MethodInvocationNotSupported

The InlineScript activity is your get-out-of-jail card for a lot of workflow issues—you’ll see how

(477)

it works later and how to perform this technique.

We’ve spent some time explaining how workflows look like PowerShell, but are different, yet
use a PowerShell-like syntax. It’s time to dig deeper into workflow syntax and see how to use the
workflow keywords.

(478)

12.2. Workflow keywords

You need to understand a number of keywords in order to get the most out of workflows. These
keywords are valid only inside the body of a workflow function. They enable parallel or
sequential execution of commands, enable execution of cmdlets that don’t have workflow
activities, allow embedding pure PowerShell code in workflows, and allow parallel execution
inside a foreach loop. Each of these keywords will have a block containing one or more
commands.

One of the major reasons for using a workflow is to enable commands to execute in parallel, so
we’ll start with that.

12.2.1. Parallel

By default, the commands within a workflow execute in sequence. Run the following workflow:

workflow p1

{

 foreach ($i in 1..4){$i}

 foreach ($j in 4..1){$j}

}

p1

You’ll see the screen output count up from 1 to 4 and then down from 4 to 1. That’s exactly the
same output as if you’d run the commands in a function:

function f1 {

 foreach ($i in 1..4){$i}

 foreach ($j in 4..1){$j}

}

f1

If you need simultaneous execution of commands, you have to use the parallel keyword to
instruct the workflow to run commands in parallel. The syntax is shown in figure 12.2.

Figure 12.2. Syntax of the parallel keyword

Using the parallel keyword, our previous example becomes this:

workflow p2 {

 parallel {

 foreach ($i in 1..4){$i}

(479)

 foreach ($j in 4..1){$j}

 }

}

"$(p2)"

This time you’ll see a mixture of numbers counting up and counting down, something like this:

1 4 2 3 3 2 4 1

Parallel execution can be more efficient and can reduce run times:

PS> Measure-Command {p1} | Select Milliseconds

PS> Measure-Command {p2} | Select Milliseconds

Milliseconds

 269

 160

You can see that the workflow executing commands in parallel finished in a shorter time. This is
governed by the hardware where the workflow is running. Also, parallelism is much more
effective in the remoting scenario where the real work is done on the remote machine. This is the
primary scenario for using it. Simple local parallelism in a workflow isn’t terribly useful because
there’s a lot of overhead in running a workflow.

The ability to execute commands in parallel is great, but as we showed earlier, you have no
control over the order in which commands are executed and so you can’t predict the order in
which the results will be returned. Sometimes you need to be able to control the order in which
commands execute.

12.2.2. Sequence

The sequence keyword is used to run a set of activities in sequence—in the order in which they
are written, which is the default for workflow, so the sequence statement is intended to be nested
inside parallel blocks so that you can execute multiple statements in parallel. An activity in a
sequence scriptblock will execute only when the preceding activity has completed.

Note

When you include a sequence block in a parallel block, you have no control over when the
sequence block executes within the parallel block. You can control the execution only within the
sequence block.

Figure 12.3 shows alternate syntaxes for using the sequence block.

Figure 12.3. Alternate syntaxes of a workflow sequence block

(480)

This needs an example to clarify. Consider this workflow:

workflow ps1

{

 parallel {

 foreach ($i in 1..4){$i}

 sequence {

 foreach ($k in 65..68){[char][byte]$k}

 foreach ($k in 87..90){[char][byte]$k}

 }

 foreach ($j in 4..1){$j}

 }

}

"$(ps1)"

Executing this workflow will produce the following output:

1 A 4 2 B 3 3 C 2 4 D 1 W X Y Z

The workflow from section 12.2.1 has been modified by inserting a sequence block between the
two foreach blocks. The workflow will execute the foreach blocks and the sequence block in
parallel. The commands inside the sequence block execute in order.

The outputs of the foreach blocks and the sequence block are intermixed, as you’d expect from
parallel execution. The important point is that the output from the sequence block is ordered as
expected, namely A–D followed by W–Z.

You now know how to execute commands in parallel and force execution to be sequential when
required. In the next section, you’ll learn about dealing with cmdlets and PowerShell features
that aren’t supported by workflows.

12.2.3. InlineScript

Workflows are written in PowerShell that has new keywords and some language restrictions.
How do you incorporate “pure, traditional” PowerShell into a workflow?

This is where InlineScript comes to the rescue. An InlineScript block can contain any and all
valid PowerShell commands irrespective of their being normally supported in workflows.

(481)

Note

In many cases InlineScript (or inline functions) are the only practical way to use workflow.
Using the workflow activity to get a registry key is ludicrously slow. Workflow is best used to
sequence largish blocks of code that you don’t want to repeat.

You can use an InlineScript block in the main body of the workflow, inside a loop or control
statement, or nested inside a parallel or sequential block. The syntax is illustrated in figure 12.4.

Figure 12.4. Workflow InlineScript syntax

An InlineScript block has the activity common parameters including –PSPersist, but the
PowerShell commands inside the InlineScript block don’t gain any of the activity common
parameters or workflow features such as checkpointing.

Variables defined in a workflow aren’t visible to an InlineScript block, but the $using scope
modifier can be used to access those variables; see section 12.3.2.

Using an InlineScript block is illustrated here.

Listing 12.3. Using an InlineScript block

workflow is1

{

 parallel {

 'BootTime from Parallel:' 1

 Get-CimInstance -ClassName Win32_OperatingSystem `

 -PSComputerName $env:COMPUTERNAME |

 Select-Object -ExpandProperty LastBootUpTime

 InlineScript { 2

 $os = Get-WmiObject -Class Win32_OperatingSystem `

 -ComputerName $env:COMPUTERNAME

 'BootTime from InlineScript: '

 $($os.ConvertToDateTime($os.LastBootUpTime))

 }

 }

}

is1

1 Parallel block
2 InlineScript block

(482)

Running the workflow gives these results:

BootTime from Parallel:

16 April 2017 22:45:29

BootTime from InlineScript:

16 April 2017 22:45:29

The parallel block 1 uses Get-CimInstance to retrieve the Win32_OperatingSystem WMI class and
return the LastBootUpTime property. The property is returned as a date as shown in the output (one
of the reasons for using the CIM cmdlets rather than the WMI cmdlets). We’re using a workflow
activity in this block (the –PSComputerName parameter).

Note

When creating workflows, the PowerShell ISE IntelliSense will work out if you’re using a
workflow activity or a PowerShell cmdlet and show you the correct parameters.

Conversely, in the InlineScript block 2 we’re using a PowerShell cmdlet, Get -WmiObject. It also
retrieves the Win32_OperatingSystem WMI class but has to use the ConvertToDateTime method to
return the date in a readable format. We deliberately wrapped the method in a subexpression to
show PowerShell functionality normally not supported in workflows. We’re also using the –
ComputerName parameter on Get -WmiObject as you’d expect.

You’ve seen workflows that execute in parallel and sequentially, but we haven’t looked at
iterating over collections yet. Guess what’s next!

12.2.4. Foreach -parallel

Loops are an important part of coding; they enable you to repeatedly execute a set of commands
with minimal coding effort. We discussed the standard PowerShell looping constructs in chapter
5. Those constructs can also be used in PowerShell workflows.

Listing 12.4. Using loops in workflows

workflow fe

{

 'Do loop'

 $i = 1

 $j = @()

 do {

 $j += $i

 $i++

 } while ($i -le 10)

 "$j"

 'While loop'

 $i = 1

 $j = @()

 while ($i -le 10) {

 $j += $i

 $i++

 }

 "$j"

 'For loop'

(483)

 $j = @()

 for ($i = 1; $i -le 10; $i++) {

 $j += $i

 }

 "$j"

 'Foreach loop'

 $j = @()

 foreach ($i in 1..10){$j += $i}

 "$j"

}

fe

When you execute the workflow, you’ll see results like this:

Do loop

1 2 3 4 5 6 7 8 9 10

While loop

1 2 3 4 5 6 7 8 9 10

For loop

1 2 3 4 5 6 7 8 9 10

Foreach loop

1 2 3 4 5 6 7 8 9 10

You’ll immediately notice that each individual loop executes sequentially. You could try to put
the loop inside a parallel block, but it wouldn’t make any difference.

In the examples in listing 12.4 we’re only listing numbers, so parallel versus sequential
processing isn’t a great issue. If, on the other hand, you’re iterating through a collection of
computers and needing to perform some actions on them, such as setting a registry key or pulling
WMI data, being able to process the loop in parallel would be a significant time saver.

Note

If all the tasks in your workflow need to access the same set of remote machines, use the –
PSComputerName parameter on the workflow, which will force parallel processing across the
machines for each command.

The answer is to use foreach with the –parallel parameter, as shown in figure 12.5.

Figure 12.5. Foreach –parallel syntax

As an example consider the following:

workflow fep {

 foreach -parallel ($i in 1..10){$i}

}

(484)

"$(fep)"

This gave the following results when we tested it:

10 9 8 7 6 5 4 3 1 2

You can see that the results aren’t sequential when compared to the results obtained from listing
12.4. The –parallel parameter runs the commands in the script block once, in sequence, for each
item in the collection; the parallelization occurs at the item level. The collection must be created,
and the variable defined, before the foreach –parallel statement.

This example is more practical:

workflow fs {

 $fileshares = Get-FileShare

 foreach -parallel ($fileshare in $fileshares){

 InlineScript {

 Get-Volume -FileShare $using:fileshare |

 Select-Object @{N='Share'; E={$using:fileshare.Name}},

 DriveLetter, FileSystem, HealthStatus,

 @{N='FreePercent';

 E={[math]::Round(($($_.SizeRemaining) / $($_.Size)) * 100, 2)}}

 }

 }

}

fs

The collection of file shares on a machine is generated using Get-FileShare. For each file share in
the collection, the volume data is retrieved and displayed. The shares are processed in parallel.
Note that because the InlineScript activity runs code in a separate runspace (see figure 12.1), as
in remoting, the $using: scope modifier is required to access the $fileshare variable. Each share
produces results similar to this:

Share : C$

DriveLetter : C

FileSystem : NTFS

HealthStatus : Healthy

FreePercent : 39.51

PSComputerName : localhost

PSSourceJobInstanceId : ac7a4655-397c-483c-be73-6db80e4ae204

Notice that the computer name and the job instance identifier are automatically added.

You now have a good understanding of how workflows are constructed and how they work.
Let’s look at how you use them.

(485)

12.3. Using workflows effectively

In this section, we’ll look at the parameters available on workflows; this is a separate but
overlapping set of parameters to those available on individual activities. We’ll then look at using
variables in workflows and the scoping issues this introduces, followed by showing you how
workflows can be called from other workflows and even nested. We’ve said that workflows are
run as jobs and we’ll cover that in chapter 13.

First, you need to know about the parameters available on workflows.

12.3.1. Workflow parameters

Workflows have a large number of parameters by default. You saw the list of parameters in
section 12.1.2. The default parameters can be split into two sets, as shown by the syntax of a
simple workflow:

PS> workflow test {'Hello'}

PS> Get-Command test -Syntax

test [<WorkflowCommonParameters>] [<CommonParameters>]

The common parameters are those that you also see on functions and cmdlets. These are listed in
table 12.7.

Table 12.7. Workflow common parameters

InputObject ErrorAction WarningAction InformationAction
Verbose Debug ErrorVariable WarningVariable
InformationVariable OutVariable OutBuffer PipelineVariable

You’ve seen these parameters in use throughout the previous chapters. Much more interesting
are the parameters that are unique to workflows, as presented in table 12.8.

Table 12.8. Parameters unique to workflows

PSParameterCollection PSComputerName PSCredential

PSConnectionRetryCount PSConnectionRetry-
IntervalSec PSRunningTimeoutSec

PSElapsedTimeoutSec PSPersist PSAuthentication
PSAuthenticationLevel PSApplicationName PSPort
PSUseSSL PSConfigurationName PSConnectionURI
PSAllowRedirection PSSessionOption PSCertificateThumbprint
PSPrivateMetadata AsJob JobName

Note

(486)

Workflows that are nested three or more levels deep don’t support any common parameters.

These parameters are described in the help file about_WorkflowCommonParameters. You should
compare the contents of tables 12.7 and 12.8 with table 12.3 (activity common parameters) to see
the differences and overlaps.

Note

Workflow (and activity) common parameters are all optional and named. None of them can be
used as a positional parameter. They also don’t take input from the pipeline.

We won’t describe all these parameters in detail because many overlap with the remoting session
parameters you’ve already seen—which is not surprising because workflows use WS-MAN to
communicate with remote machines. Some of the parameters need to be discussed, starting with
the way you pass computer names to workflows.

PSComputerName

This parameter specifies a list of computers on which the workflow will be run. You can use the
name, IP address, or fully qualified domain name with the same approach as PowerShell
remoting; that is, if you use an IP address you have to supply the appropriate credentials and the
remote computer must use HTTPS or the IP address must be in the trusted hosts list.

All workflows and activities have -PSComputerName available as a parameter, so where should you
put it? As usual, it depends.

If you put it at the workflow level

workflow test-remoteaccess {

 Get-WmiObject -Class Win32_ComputerSystem

}

test-remoteaccess -PSComputerName W16TGT01, W16DSC01

you’ll receive results like these for each machine:

Domain : Manticore.org

Manufacturer : Microsoft Corporation

Model : Virtual Machine

Name : W16TGT01

PrimaryOwnerName : Windows User

TotalPhysicalMemory : 1116749824

PSComputerName : localhost

Notice that the Get-WmiObject activity has no mention of remote machines. This is one advantage
of using –PSComputerName at the workflow level in that you can easily use the same workflow
locally and add the –PSComputerName parameter when you need to access remote machines.

Compare this to running Get-WmiObject directly against the local machine:

PS> Get-WmiObject -Class Win32_ComputerSystem

Domain : Manticore.org

(487)

Manufacturer : Microsoft Corporation

Model : Virtual Machine

Name : W16AS01

PrimaryOwnerName : Windows User

TotalPhysicalMemory : 2429566976

The workflow adds a PSComputerName property to the output. This is the name of the computer on
which you’re running the workflow. It is not the name of the remote machine even though the
workflow has a –PSComputerName parameter! The remote machine name is in the Name property.

Note

This is one of those confusing points you’ll have to remember.

Using –PSComputerName at the workflow level is probably best kept for situations where you have
simple data return requirements or you’re predominantly performing actions against the remote
machine with minimal or no data returned.

When you use the –PSComputerName parameter, it effectively replaces the –ComputerName parameter
on the cmdlet. You don’t get free connectivity! You’ll also find that you’re connecting over the
native mechanism used by the cmdlet that corresponds to the workflow activity. If the remote
machine doesn’t support that particular mode of connectivity, your workflow will fail for that
machine.

Moving the –PSComputerName to the activity results in this code:

workflow test-remoteaccess {

 param(

 [string[]]$computername

)

 foreach -parallel ($computer in $computername) {

 Get-WmiObject -Class Win32_ComputerSystem -PSComputerName $computer

 }

}

test-remoteaccess -computername W16TGT01, W16DSC01

This workflow defines a parameter that takes a list of computer names. The foreach –parallel
statement is used to iterate over the computer names. The computers in the list are processed in
parallel, and the commands within the foreach –parallel block are processed sequentially for
each computer. You’re back to using the native connectivity (DCOM in this case). This approach
would be useful when you have a number of activities in your workflow, not all of which need to
access a remote machine.

You need to consider one last scenario: running a workflow with an InlineScript block where the
cmdlets in the block need to connect to remote machines. The big thing for you to remember in
this scenario is that you’re running cmdlets, not workflow activities, so you need to use the
cmdlet’s native parameter –ComputerName.

workflow Test-RemoteAccess

{

 param(

 [string[]]$computername

)

 inlinescript {

(488)

 foreach ($computer in $using:computername) {

 Get-WmiObject -Class Win32_ComputerSystem -ComputerName $computer

 }

 }

}

test-remoteaccess -computername W16TGT01, W16DSC01

The workflow has a -computername parameter that takes a list of computer names. Within the
InlineScript block a foreach loop iterates over the list of computers. You have to define the
foreach loop like this:

 foreach ($computer in $using:computername)

The $using modifier enables the loop to access the variable that was defined in a higher scope
within the workflow; you’ll learn about that in the next section.

You will have to decide, based on what your workflow is doing, how you will pass computer
names into the workflow and which parameters you need to use.

PSConfigurationName

This parameter specifies the session configuration used when connecting to remote computers.
The default is Microsoft.PowerShell.Workflow, as shown in figure 12.6.

Figure 12.6. Remoting endpoints on a Windows Server 2012 R2 system

The endpoints shown in figure 12.6 are created by default when PowerShell remoting is enabled
either explicitly by running Enable-PSRemoting or implicitly through installation of Windows
Server 2012 (or later). Microsoft.PowerShell.Workflow is used by workflows, whereas
Microsoft.PowerShell and Microsoft.PowerShell32 are used by PowerShell remoting.

You can drill down further into the endpoint configuration by examining the contents of the
InitializationParameters, Resources, and Quotas containers.

The vast majority of the time you can use the default endpoint. If you need to create a new
endpoint, you can use the approach outlined in section 11.6.4.

Possibly the most interesting parameter is –Persist, but we’ll delay talking about that until

(489)

chapter 13 because we first need to look at using variables in workflows.

12.3.2. Variables in workflows

You’ve seen variables used in various workflows in the earlier sections of this chapter. We’ve
also shown you the $using and $workflow scoping modifiers that are used in workflows. Now it’s
time to bring this together and show the rules for using variables in workflows. It’s not
complicated—honest!

Workflows use lexical scoping, so a variable defined inside a block is visible only in that block
and nested blocks. This leads to the following restrictions on the use of variables:

Variables defined in a higher scope are visible to lower workflow scopes but not
InlineScript scopes.
You can’t have a variable in a lower scope with the same name as a variable in a higher
scope—an aspect of lexical scoping caused by the underlying workflow engine.
If you define or redefine a variable, you can use it in that scope without problems.
There is no $global scope because workflows always run as jobs, so they have a new
global context.
Use the $workflow scope modifier to access, or modify, a variable defined in a higher scope,
except in InlineScript blocks.
Use the $using scope modifier in InlineScript blocks to access, or modify, variables
defined in a higher scope.
Modification of a variable from a higher scope in an InlineScript requires the use of a
temporary variable.
You can’t use subexpressions in workflows.

That probably sounds confusing, so let’s work through an example of using variables in
workflows that’ll bring the rules into focus.

Listing 12.5. Using variables in workflows

workflow demo-scope

{

 # This is a workflow top-level variable

 $a = 22

 "Initial value of A is: $a"

 # Access $a from Inlinescript (bringing a workflow

 #variable to the PowerShell session) using $using

 inlinescript {"PowerShell variable A is: $a"}

 inlinescript {"Workflow variable A is: $using:a"}

 ## changing a variable value

 $a = InlineScript {$b = $Using:a+5; $b}

 "Workflow variable A after InlineScript change is: $a"

 parallel {

 sequence {

 # Reading a top-level variable

 "Value of A inside parallel is: $a"

 # Updating a top-level variable with

 # $workflow:<variable name>

 $workflow:a = 3

 }

 }

 "Updated value of A is: $a"

}

demo-scope

(490)

When you run this workflow, you should see this output:

Initial value of A is: 22

PowerShell variable A is:

Workflow variable A is: 22

Workflow variable A after InlineScript change is: 27

Value of A inside parallel is: 27

Updated value of A is: 3

The workflow starts by defining a variable - $a = 22 and then displaying its value. In an
InlineScript if you try to access a variable defined in a higher scope, you get nothing, as shown
in the second line of the output. You have to use $using:a to access the variable. If you want to
change that variable, you’ll have to use a second variable and return it to the original variable:

$a = InlineScript {$b = $Using:a+5; $b}

The output shows the variable now has a value of 27.

Moving into the parallel block, you can read the variable without any scope issues. If you need to
change the variable’s value, you can access it via the $workflow scope modifier. The bottom line
with variables in workflows is keep it simple and be careful.

So far, you’ve seen single workflows. When using scripts or functions, you can call other scripts
or functions (or even nest functions). How do workflows handle this?

12.3.3. Nested workflows

Think about how you use your PowerShell scripts and functions; you probably build a number of
functions that you reuse and call from other functions and scripts. The whole concept of
reusability should permeate your PowerShell code so that you maximize the return from the time
and effort you put into developing your code. How can PowerShell functions and PowerShell
workflows be used inside other workflows?

The mechanisms available to reuse existing functionality break down into three broad groups:

PowerShell workflows called from your workflow or nested in your workflow
PowerShell functions either in the same script file as the workflow or through a
PowerShell module
PowerShell scripts on the local or remote machine

Let’s start by looking at how your workflow can interact with other workflows using a practical
example from standard Active Directory administration tasks. It’s generally regarded as good
practice to clean up the accounts in your Active Directory. You would normally look at disabled
accounts, expired accounts, and accounts with passwords that never expire. You can make a
decision on what to do with each account once you’ve identified accounts that match your
criteria.

To find disabled accounts, run the following:

PS> Search-ADAccount -AccountDisabled |

Select-Object -Property DistinguishedName |

Export-Csv -Path c:\ADReports\DisabledAccounts.csv -NoTypeInformation

To find expired accounts, do this:

PS> Search-ADAccount -AccountExpired |

(491)

Select-Object -Property DistinguishedName |

Export-Csv -Path c:\ADReports\ExpiredAccounts.csv -NoTypeInformation

To find accounts whose passwords never expire, use this:

PS> Search-ADAccount -PasswordNeverExpires |

Select-Object -Property DistinguishedName |

Export-Csv -Path c:\ADReports\PsswdNeverExpireAccounts.csv `

-NoTypeInformation

These three simple scripts will be familiar to Active Directory administrators. Using these is
more efficient that trying to perform the task by hand, but you have to run them sequentially. Can
workflows help you introduce some parallelism?

The most direct approach would be to wrap the scripts into a single workflow:

workflow Get-ADReport

{

 parallel {

 Search-ADAccount -AccountDisabled |

 Select-Object -Property DistinguishedName |

 Export-Csv -Path c:\ADReports\DisabledAccounts.csv `

 -NoTypeInformation

 Search-ADAccount -AccountExpired |

 Select-Object -Property DistinguishedName |

 Export-Csv -Path c:\ADReports\ExpiredAccounts.csv `

 -NoTypeInformation

 Search-ADAccount -PasswordNeverExpires |

 Select-Object -Property DistinguishedName |

 Export-Csv -Path c:\ADReports\PsswdNeverExpireAccounts.csv `

 -NoTypeInformation

 }

}

Get-ADReport

The three CSV files are produced more or less simultaneously. This is great if this task runs once
in a while but not if you need a more granular approach and want to run each search individually.
One approach that also has the benefit of making maintenance easier is to move the individual
workflows out of the main workflow, like this:

workflow get-disabled

{

 Search-ADAccount -AccountDisabled |

 Select-Object -Property DistinguishedName |

 Export-Csv -Path c:\ADReports\DisabledAccounts.csv `

-NoTypeInformation

}

workflow get-expired

{

 Search-ADAccount -AccountExpired |

 Select-Object -Property DistinguishedName |

 Export-Csv -Path c:\ADReports\ExpiredAccounts.csv `

-NoTypeInformation

}

workflow get-passwordneverexpire

{

 Search-ADAccount -PasswordNeverExpires |

 Select-Object -Property DistinguishedName |

 Export-Csv -Path c:\ADReports\PsswdNeverExpireAccounts.csv `

-NoTypeInformation

}

workflow Get-ADReport

{

 parallel {

 get-disabled

(492)

 get-expired

 get-passwordneverexpire

 }

}

Get-ADReport

You can take this a stage further and separate your workflows into individual files and create a
.psm1 file to load them as a module. You can then add further functionality in a granular manner
without affecting the bulk of your code.

Note

In reality, nested workflows can cause problems if you try to nest complicated workflows. The
preferred and recommended reuse strategy is to use functions instead of nested workflows.

Functions can be embedded in a workflow or in the script used to create the workflow. In the
following workflow, a list of computer names is passed in through the -computerName parameter.
A foreach –parallel loop is used to iterate over the list of computers. Test-Connection is used to
determine if the remote system is contactable, and if so, the function is called.

In this case, the function is defined outside the workflow. You could as easily have defined it
inside the workflow. Similarly, you could put the functions into a separate script and load them
and the workflow as part of a module.

The important point is that the workflows or functions you want to call are loaded, or defined,
before you want to use them:

function get-fcomputersystem {

 param ([string]$fcomputer)

 Get-WmiObject -Class Win32_ComputerSystem -ComputerName $fcomputer

}

workflow get-computersystem

{

 param([string[]]$computerName)

 ## Alternate location for function

 # The contents of the foreach block will be executed in parallel

 foreach -parallel($computer in $computerName) {

 if (Test-Connection -ComputerName $computer -Quiet -Count 1) {

 get-fcomputersystem -fcomputer $computer

 }

 else {

 "$computer unreachable"

 }

 }

}

Get-ComputerSystem -ComputerName $ENV:COMPUTERNAME

Scripts are the third and last of the methods you can utilize to reuse existing code. Take the three
scripts utilizing Search-ADAccount introduced at the top of the section and put each into a script
file:

get-disabledaccount.ps1

get-expiredaccount.ps1

get-passwordNexpire.ps1

(493)

You still want these to run in parallel, so you might try this:

workflow get-ADReport

{

 parallel {

 c:\adreports\get-disabledaccount.ps1

 c:\adreports\get-expiredaccount.ps1

 c:\adreports\get-passwordNexpire.ps1

 }

}

Unfortunately, this won’t work and you’ll see an error:

At line:3 char:4

+ c:\adreports\get-disabledaccount.ps1

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Cannot find the 'c:\adreports\get-disabledaccount.ps1' command. If this

 command is defined as a workflow, ensure it is defined before the workflow

 that calls it. If it is a command intended to run directly within

 Windows PowerShell (or is not available on this system), place it in an

 InlineScript: 'InlineScript { c:\adreports\get-disabledaccount.ps1 }'

 + CategoryInfo : ParserError: (:) [], ParseException

 + FullyQualifiedErrorId : CommandNotFound

You want the scripts to run using an InlineScript block but also ensure parallelism, so run each
script separately:

workflow get-ADReport {

 parallel {

 inlinescript {c:\adreports\get-disabledaccount.ps1}

 inlinescript {c:\adreports\get-expiredaccount.ps1}

 inlinescript {c:\adreports\get-passwordNexpire.ps1 }

}

}

What about the situation where you want to run a script that exists on a remote system? The
answer is to put the scripts in the C:\ADReports folder on the remote machine and run your local
workflow as shown here:

Get-ADReport –PSComputerName W16TGT01

The scripts will run on the remote machine and, because you haven’t modified them, that’s
where the output will be produced.

Workflows as jobs

We’ve said that workflows use the PowerShell job engine a number of times and that workflows
are interruptible. We’ll look at those two ideas in chapter 13.

You now have a good understanding of workflows and how to use them. The workflows you’ve
seen so far have been scripts. A few cmdlets are also available for working with workflows.

(494)

12.4. Workflow cmdlets

PowerShell provides you with two workflow modules:

PS> Get-Module -ListAvailable *workflow* | Format-Table -AutoSize

 Directory: C:\WINDOWS\system32\WindowsPowerShell\v1.0\Modules

ModuleType Version Name ExportedCommands

---------- ------- ---- ----------------

Manifest 2.0.0.0 PSWorkflow {New-PSWorkflowExecutionOption,

 New-PSWorkflowSession, nwsn}

Manifest 1.0.0.0 PSWorkflowUtility Invoke-AsWorkflow

New-PSWorkflowExecutionOption and New-PSWorkflowSession from the PSWorkflow module are
analogous to the remoting management cmdlets New-PSSessionOption and New-PSSession
respectively. Invoke-AsWorkflow is a way to test your code in a workflow without any further
modification.

Let’s start by looking at the options you have for executing workflows.

12.4.1. Workflow execution options

The syntax for New-PSWorkflowExecutionOption is shown in figure 12.7.

Figure 12.7. Syntax of the New-PSWorkflowExecutionOption cmdlet

An object created with New-PSWorkflowExecutionOption is used to configure the options for
workflow sessions. You’ll learn how to create a session for workflows in the next section. The
cmdlet common parameters are available on this cmdlet but not the workflow common
parameters. Table 12.9 lists the parameters and their meaning.

Table 12.9. New-PSWorkflowExecutionOption parameters

Parameter Meaning

PersistencePath

Path on disk for storing persistence data. Default is
$env:LocalAppData\Microsoft\Windows\PowerShell\WF\PS.
Persistence data is created when a workflow is checkpointed
or suspended (see chapter 13).

(495)

MaxPersistenceStoreSizeGB
Maximum space, in GB, allocated to workflows running in
the session. Default is 10 GB. If the size is exceeded, the
store is expanded and warnings are displayed.

PersistWithEncryption Encrypts data in persistence store. Default is false.

MaxRunningWorkflows Maximum number of running workflows in session. Default
is 30.

AllowedActivity
Namespace qualified activities that can be run in the session.
Wildcards are allowed. Default is built-in WF activities and
activities matching PowerShell core cmdlets.

OutOfProcessActivity Which allowed activities (specified in AllowedActivity) are
run out of process. Default is InlineScript.

EnableValidation Verifies all workflow activities in session are included in
allowed activities list. Default is true.

MaxDisconnectedSessions
Maximum number of remote sessions that are in
disconnected state across all remote computers. Default is
100.

MaxConnectedSessions Maximum number of remote sessions that are in operational
state across all remote computers. Default is 100.

MaxSessionsPerWorkflow Maximum number of sessions created to support each
workflow. Default is 5.

MaxSessionsPerRemoteNode Maximum number of sessions that can be connected to each
remote computer. Default is 5.

MaxActivityProcesses Maximum processes that can be created in a session to
support workflow activities. Default is 5.

ActivityProcessIdleTimeoutSec Determines the time before an activity host process is closed
once the process becomes idle. Default is 60 seconds.

RemoteNodeSessionIdleTimeoutSec Specifies timeout on an idle session connected to a remote
computer. Default is 60 seconds.

SessionThrottleLimit Number of operations created to support all workflows
started in a session. Default is 100.

WorkflowShutdownTimeoutMSec Time session is maintained after all workflows are forcibly
suspended. Default is 500 seconds.

As an example, we’ll modify the code from listing 12.2 to give this:

workflow Invoke-ParallelForEach

{

 foreach -parallel ($i in 1..10)

 {

 InlineScript

 {

 "foo: $using:i"

 }

 $count = Get-Process -Name PowerShell* |

 Measure-Object |

 Select-Object -ExpandProperty Count

 "Number of PowerShell processes = $count"

 }

}

You can create a new workflow execution option object like this:

PS> $wfopt = New-PSWorkflowExecutionOption -MaxSessionsPerWorkflow 20 `

-MaxSessionsPerRemoteNode 20 -MaxActivityProcesses 20

PS> $wfopt

SessionThrottleLimit : 100

(496)

PersistencePath : C:\Users\Richard\AppData\Local\

 Microsoft\Windows\PowerShell\WF\PS

MaxPersistenceStoreSizeGB : 10

PersistWithEncryption : False

MaxRunningWorkflows : 30

AllowedActivity : {PSDefaultActivities}

OutOfProcessActivity : {InlineScript}

EnableValidation : True

MaxDisconnectedSessions : 1000

MaxConnectedSessions : 100

MaxSessionsPerWorkflow : 20

MaxSessionsPerRemoteNode : 20

MaxActivityProcesses : 20

ActivityProcessIdleTimeoutSec : 60

RemoteNodeSessionIdleTimeoutSec : 60

WorkflowShutdownTimeoutMSec : 500

You can then create a new endpoint:

PS> Register-PSSessionConfiguration -Name PiAWorkflows `

-SessionTypeOption $wfopt -SessionType Workflow -Force

WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Plugin

Type Keys Name

---- ---- ----

Container {Name=PiAWorkflows} PiAWorkflows

The workflow endpoints can be explicitly accessed using the –PSConfiguration parameter on your
workflow. The default endpoint can be accessed by leaving the parameter off or explicitly
providing the endpoint name:

PS> Invoke-ParallelForEach `

-PSConfigurationName Microsoft.PowerShell.Workflow

If you want to access your new endpoint, then use its name:

PS> Invoke-ParallelForEach -PSConfigurationName PiAWorkflows

You can modify an endpoint:

PS> Set-PSSessionConfiguration -Name PiAWorkFlows `

-SessionTypeOption (New-PSWorkflowExecutionOption `

-SessionThrottleLimit 500) -Force

You can review the change:

PS> Get-PSSessionConfiguration -Name PiAWorkflows |

select SessionThrottleLimit

SessionThrottleLimit

500

If you need to remove a workflow endpoint, use this command:

PS> UnRegister-PSSessionConfiguration -Name PiAWorkflows –Force

Note

You can modify the settings on the default workflow endpoint, but they work well in all but the
most exceptional cases. If you want to experiment, it’s best to create a new endpoint.

(497)

You’ve seen how to use workflows against remote machines using the –PSComputerName
parameter. You can also create workflow sessions to remote computers in a similar manner to
PowerShell remoting.

12.4.2. Workflow sessions

Workflow sessions are similar to the remoting sessions you saw in chapter 11. You use them to
create a permanent connection to the remote machine rather than creating and destroying
connections as needed.

Creating a session is similar to PowerShell remoting:

PS> $wfs = New-PSWorkflowSession -ComputerName W16TGT01

As with PowerShell remoting, the commands you call have to exist on the remote machine or
you must supply them to the session. You’ll create a scriptblock containing your workflow
(including the command to execute the workflow):

$sb = {

workflow Invoke-ParallelForEach

{

 foreach -parallel ($i in 1..10)

 {

 InlineScript

 {

 "foo: $using:i"

 }

 $count = Get-Process -Name PowerShell* |

 Measure-Object |

 Select-Object -ExpandProperty Count

 "Number of PowerShell processes = $count"

 }

}

Invoke-ParallelForEach

}

The scriptblock is executed through the session:

PS> Invoke-Command -Session $wfs -ScriptBlock $sb

When the workflow commences, you’ll see a warning like this:

WARNING: [localhost]:This workflow job cannot be suspended because there are

 no checkpoints (also called persistence points) in the workflow. To make

 the workflow job suspendable, add checkpoints to the workflow.

For more information about how to add checkpoints, see the help topics for

 Windows PowerShell Workflow.

When you’ve finished with your session, its best practice to remove it:

PS> Remove-PSSession -Session $wfs

Using non-default workflow endpoints remotely

New-PSWorkflowSession doesn’t give you a way to access any workflow endpoints other than the
default one. The –SessionOption takes remoting options, not workflow execution options, from
New-PSWorkflowExecutionOption!

If you need to access a workflow endpoint that you’ve created, you need to use New-PSsession to

(498)

create the session. In this case we’ve used the technique from the previous section to create an
endpoint called PiAWorkflows on a remote machine. A remote session is created to the endpoint:

PS>$ts = New-PSSession -ComputerName W16TGT01 `

-ConfigurationName PiAWorkflows

PS>Invoke-Command -Session $ts -ScriptBlock $sb

When you run the workflow, you’ll see that the number of processes being used has increased. In
our test we saw this:

Number of PowerShell processes = 11

Workflow sessions provide another option when running against remote machines. You can run
workflows through standard remoting sessions, in which case they’ll use the default workflow
endpoint on the remote machine.

PowerShell, and therefore workflow, remoting works against the machine or machines to which
you’ve connected, but if you try to connect to a third machine from your remote machine, you’ll
hit the double-hop problem.

Double-hop problem

The usual scenario in remote administration is that you’re working locally on machine A and
connect remotely to machine B to perform one or more tasks. If you try to perform an action on
machine C from your session on machine B, you’ll receive an error. Let’s see what happens.
Start with a standard call to a remote machine:

PS> Invoke-Command -ScriptBlock {Get-Process lsass} `

-ComputerName W16TGT01

This works as expected. Now try accessing another machine from the session on W16TGT01:

PS> Invoke-Command -ScriptBlock {

 Invoke-Command -ScriptBlock {

 Get-Process lsass } -ComputerName W16DSC01

} -ComputerName W16TGT01

[W16DSC01] Connecting to remote server W16DSC01 failed with the following

 error message : WinRM cannot process the request. The following error

 with errorcode 0x8009030e occurred while using Kerberos authentication:

 A specified logon session does not exist. It may already have been

 terminated. Possible causes are:

 -The user name or password specified are invalid.

 -Kerberos is used when no authentication method and no user name are specified.

 -Kerberos accepts domain user names, but not local user names.

 -The Service Principal Name (SPN) for the remote computer name and port does not exist.

 -The client and remote computers are in different domains and there is no trust between the

two domains.

 After checking for the above issues, try the following:

 -Check the Event Viewer for events related to authentication.

 -Change the authentication method; add the destination computer to the WinRM TrustedHosts

configuration setting or use HTTPS transport.

 Note that computers in the TrustedHosts list might not be authenticated.

 -For more information about WinRM configuration, run the following command: winrm help

config. For more

information, see the about_Remote_Troubleshooting Help topic.

 + CategoryInfo : OpenError: (W16DSC01:String) [], PSRemotingTransportException

 + FullyQualifiedErrorId : 1312,PSSessionStateBroken

 + PSComputerName : W16TGT01

This rather long error message boils down to saying that Kerberos authentication failed to

(499)

connect you to the second machine: your credentials weren’t available to the session on machine
B (W16TGT01) when it attempted to create a session on machine C (W16DSC01).

One solution to this problem is to use the Credential Security Support Provider (CredSSP), but
because that involves sending your password in clear text across the network, this solution isn’t
acceptable to many organizations. A more acceptable solution is use the RunAS configuration
option on a PowerShell remoting session. First, create a credential object on machine B for the
account you’ll use to connect to machine C:

PS> $cred = Get-Credential manticore\richard

Then use that credential when you create the remoting endpoint on machine B:

PS> Register-PSSessionConfiguration -Name DHsol -RunAsCredential $cred

WARNING: When RunAs is enabled in a Windows PowerShell session configuration,

 the Windows security model cannot enforce a security boundary between

 different user sessions that are created by using this endpoint. Verify

 that the Windows PowerShell runspace configuration is restricted to only

 the necessary set of cmdlets and capabilities.

WARNING: Register-PSSessionConfiguration may need to restart the WinRM

 service if a configuration using this name has recently been unregistered,

 certain system data structures may still be cached. In that case, a

 restart of WinRM may be required.

All WinRM sessions connected to Windows PowerShell session configurations,

 such as Microsoft.PowerShell and session configurations that are created

 with the Register-PSSessionConfiguration cmdlet, are disconnected.

Reading the warning that’s issued when you create an endpoint with a credential gives you some
additional information.

Note

The credential used for the endpoint is stored as an encrypted secure string on the machine.

You can now use the endpoint and successfully perform a double hop:

PS> $tsd = New-PSSession -ComputerName W16TGT01 -ConfigurationName DHsol

PS> Invoke-Command -ScriptBlock {Invoke-Command -ScriptBlock {Get-Process

 lsass } -ComputerName W16DSC01 } -Session $tsd

Remote access for workflows works the same way. Use the -RunAsCredential parameter when
you create a new workflow endpoint on machine B:

PS> Register-PSSessionConfiguration -Name PiAWorkflows `

-RunAsCredential $cred -SessionType Workflow -Force

Alternatively, if you have an existing endpoint, you can modify it to add a credential:

PS> Set-PSSessionConfiguration -Name PiAWorkflows -RunAsCredential $cred

Modify your workflow to access a remote machine by adding the -PSComputerName parameter to
the Get-Process activity:

$sb = {

workflow Invoke-ParallelForEach

{

(500)

 foreach -parallel ($i in 1..10)

 {

 InlineScript

 {

 "foo: $using:i"

 }

 $count = Get-Process -Name PowerShell* -PSComputerName W16DSC01 |

 Measure-Object |

 Select-Object -ExpandProperty Count

 "Number of PowerShell processes = $count"

 }

}

Invoke-ParallelForEach

}

Re-create the remote session and run your workflow:

PS> $ts = New-PSSession -ComputerName W16TGT01 `

-ConfigurationName PiAWorkflows

PS> Invoke-Command -Session $ts -ScriptBlock $sb

Your workflow will now perform the double hop and connect to the third machine. The
drawback to this technique is that you need to maintain the credential used on the endpoint. If the
password changes, you need to update the endpoint with the new credential. If you need to
configure a number of machines in this manner, consider using a service account approach and
use an account with a strong password that’s changed infrequently.

12.4.3. Invoking as workflow

Creating and testing workflows is a nontrivial task, but help is available within PowerShell
through the Invoke-AsWorkflow cmdlet in the PSWorkflowUtility module.

The cmdlet runs any command or expression as an inline script in a workflow. You get these
benefits of workflows: interruptability, persisting, tracking, and the workflow common
parameters. You don’t get access to the parallel or foreach –parallel options.

These examples show how to use the cmdlet:

PS> Invoke-AsWorkflow -CommandName Get-Process `

-Parameter @{Name = 'powershell'}

PS> Invoke-AsWorkflow -Expression 'ping 127.0.0.1'

This concludes our examination of PowerShell workflows, a powerful tool that in the correct
circumstances can be an efficient way to work with multiple remote machines.

(501)

12.5. Summary

PowerShell v3 introduced the workflow keyword, and although workflows are written with
a PowerShell-like syntax, they aren’t PowerShell.
Workflows are excellent when you need to interrupt tasks or have mixture of parallel and
sequential tasks.
Workflows execute as PowerShell jobs.
You have no control over the order in which data is returned when running tasks in parallel
in a workflow.
Workflows use workflow activities that correspond to PowerShell cmdlets, but not all
cmdlets have corresponding activities because they may not make sense in the context of a
workflow.
Workflows and workflow activities have overlapping sets of common parameters.
A number of PowerShell language options and techniques aren’t supported in workflows.
Workflows run tasks sequentially by default.
Use the parallel block to run commands in parallel.
Use the sequence block to run commands sequentially inside a parallel block.
An InlineScript block can run standard PowerShell commands, including those not
supported in workflows.
Foreach -parallel iterates over a collection of objects in parallel.
The workflow engine allows for nested lexical scope, which PowerShell does not support
by default, so the $workflow: scope modifier is required to modify a variable defined in a
higher scope.
When using the InlineScript activity, you need to use the $using: prefix. Note that $using:
variables are read-only. Workflow-scope variables can’t be modified in an InlineScript
activity.
You can’t use subexpressions in workflows.
Workflows can be nested and called from other workflows, but it’s not recommended that
workflows be nested to more than two levels because of the overhead of workflow calling
workflow.
New-PSWorkflowExecutionOption can create an object to configure workflow endpoints.
A new workflow endpoint can be created with Register-PSSessionConfiguration.
-PSConfigurationName allows you to specify the workflow endpoint to use.
Workflow sessions are remoting sessions. Use Set-PSSessionConfiguration to modify a
workflow endpoint.
New-PSWorkflowSession connects to the default workflow endpoint. New-PSSession is used to
connect to non-default endpoints, including any end user–created workflow endpoints.
Invoke-AsWorkflow is used to run PowerShell commands and expressions as workflows,
providing all the benefits of workflow execution without having to create a workflow to
wrap a single command.

In the next chapter, we’ll build on what you saw in this chapter when we look at pausing
workflows and dig further into PowerShell jobs.

(502)

Chapter 13. PowerShell Jobs
This chapter covers

Asynchronous processing
PowerShell jobs
Job cmdlets
Job types
Workflow jobs
Scheduled jobs

Exit pursued by a bear

—William Shakespeare Stage directions from The Winter’s Tale

So far, most of the techniques we’ve shown you have been synchronous, meaning you type in the
command—be it a cmdlet, script, or function—and wait for the results. The results are back in a
few seconds at most, usually far quicker. Synchronous execution is perfect for ad hoc, interactive
working, but what about when you’re executing a long-running process against many remote
machines that could take hours to run? Waiting for those to finish locks you out of further work
in that console. You could open additional instances of PowerShell or you could run the tasks
asynchronously.

An asynchronous task is one that’s started and left to run to completion in the background as you
carry on working at other tasks. Asynchronous execution is supplied to PowerShell by using
PowerShell jobs.

Note

In PowerShell v2, PowerShell jobs depended heavily on PowerShell remoting. Those
dependencies were removed in PowerShell v3.

In this chapter, we’ll show you how to use PowerShell’s job engine to perform tasks
asynchronously. We’ll start with a look at the types of jobs available in PowerShell and the
cmdlets you can use to work with jobs. We’ll build on chapter 12 and show how PowerShell jobs
are used to manage interruptions to workflows including reboots. We’ll close the chapter by
looking at how you can combine PowerShell jobs with the scheduler to perform asynchronous
tasks without manual intervention—great for those long jobs that run through the middle of the
night.

(503)

13.1. Background jobs in PowerShell

When you run a command in a PowerShell session, the session is effectively blocked until the
command completes and returns its results (or fails). You’re prevented from running new
commands until the command completes. If you change things so that the caller doesn’t block,
then other commands can run in parallel. This is how PowerShell background jobs work. With
background jobs, the arrangement of executing commands and processes is shown in figure 13.1.

Figure 13.1. The user sends interactive commands to be executed by the foreground loop. Background
commands are executed in separate processes; each process has its own command loop. For each background
job the user creates, a new instance of PowerShell.exe is run to host the command loop for that job. This means
that if there are three background jobs as shown, then four processes are running—three for the background
jobs and one for the interactive foreground job.

Note

Some commands have built-in job support. For example, the WMI commands have an -AsJob
parameter that allows one or more WMI operations to execute in the background. This type of
job doesn’t rely on the background-execution mechanism we’re describing in this section.
Instead, it uses its own implementation of background execution. In the case of WMI jobs, they
run in a new process but on a separate thread. The PowerShell job infrastructure was explicitly
designed to support this kind of extension. If third parties expose their job abstractions as
subclasses of the PowerShell Job type, these extension jobs can be managed using the built-in job
cmdlets like native PowerShell jobs.

There’s more to background jobs than executing multiple things at the same time. Background
jobs are designed to be commands that run asynchronously while you continue to do other things

(504)

at the console. This means there needs to be a way to manage these background jobs—starting
and stopping them as well as retrieving the output in a controlled way.

Note

Background jobs are implemented using processes that are children of your interactive
PowerShell process. This means that if you end your PowerShell session, causing the process to
exit, this will also cause all the background jobs to be terminated, because child processes are
terminated when the parent process exits.

In this section, we’ll cover the cmdlets that are used to manage background jobs. We’ll look at
starting, stopping, and waiting for jobs. We’ll explore the Job objects used to represent a running
job. Finally, you’ll learn how to combine remoting with jobs to run jobs on remote machines.

13.1.1. The job commands

PowerShell jobs are managed with a set of cmdlets, shown in table 13.1.

Table 13.1. The cmdlets for working with PowerShell jobs

Cmdlet Description

Start-Job Used to start background jobs. It takes a scriptblock as the
argument representing the job to execute.

Stop-Job Stops a job based on the JobID.

Get-Job Returns a list of currently executing jobs associated with the
current session.

Wait-Job Waits for one or more jobs to complete.
Receive-Job Gets the results for a specific job.

Remove-Job Removes a job from the job table so the resources can be
released.

Debug-Job Debugs the scriptblock executed by a job. See section 15.6.1.

Suspend-Job Saves the state and pauses execution of a job—only used with
workflow jobs. See section 13.2.

Resume-Job Restarts a previously suspended job—only used with workflow
jobs. See section 13.2.

A background job runs commands asynchronously. It’s used to execute long-running commands
in a way that the interactive session isn’t blocked until that command completes.

Note

You can use the PowerShell APIs explained in chapter 20 as another way to perform actions

(505)

asynchronously.

When a synchronous command runs, PowerShell waits until that command has completed before
accepting any new commands. When a command is run in the background, instead of blocking,
the command returns immediately, emitting an object that represents the new background job.

Although you get back control immediately (a new prompt) with the Job object, you obviously
won’t get the results of that job even if the job runs quickly. Instead, you use a separate
command to get the job’s results. You also have commands to stop the job, to wait for the job to
be completed, and to delete the job. Let’s see how these commands are used.

13.1.2. Working with the job cmdlets

You use the Start-Job command to start a background job on a local computer. Let’s try this with
a simple example that prints a string to the console.

Note

We’re deliberately using simple examples so that the job concepts are stressed rather than the
clever code the job is running. In the real world, you wouldn’t run most of our examples as jobs.

You’ll start a job and then pipe the resulting Job object through Format-List so you can see all of
the members on the object:

PS> Start-Job -ScriptBlock {'Hi'} | Format-List

HasMoreData : True

StatusMessage :

Location : localhost

Command : 'Hi'

JobStateInfo : Running

Finished : System.Threading.ManualResetEvent

InstanceId : 7590daa0-de23-4b65-ae4c-6c69970399f1

Id : 3

Name : Job3

ChildJobs : {Job4}

PSBeginTime : 09/05/2017 10:31:15

PSEndTime :

PSJobTypeName : BackgroundJob

Output : {}

Error : {}

Progress : {}

Verbose : {}

Debug : {}

Warning : {}

Information : {}

State : Running

As with the remoting cmdlets, the command to execute is specified by a scriptblock. When the
command runs, you see that an object is returned, containing a wealth of information about the
job. We’ll look at this object in detail later on. For now, we’ll keep looking at the cmdlets. Now
that you’ve started a job, you can use the Get-Job cmdlet to get information about that job:

PS> Get-Job | Format-List

(506)

HasMoreData : True

StatusMessage :

Location : localhost

Command : 'Hi'

JobStateInfo : Completed

Finished : System.Threading.ManualResetEvent

InstanceId : 7590daa0-de23-4b65-ae4c-6c69970399f1

Id : 3

Name : Job3

ChildJobs : {Job4}

PSBeginTime : 09/05/2017 10:31:15

PSEndTime : 09/05/2017 10:31:15

PSJobTypeName : BackgroundJob

Output : {}

Error : {}

Progress : {}

Verbose : {}

Debug : {}

Warning : {}

Information : {}

State : Completed

This cmdlet returned the same Job object that you saw returned from Start-Job. (You can tell it’s
the same object by looking at the InstanceId, which is a GUID and is guaranteed to be unique for
each job.) There’s one significant difference in this output: If you look at the State property,
you’ll see that it has changed from Running to Completed.

The first thing to note is that a job remains in the job table even after it has completed and will
remain there until it’s explicitly removed using the Remove-Job cmdlet. To get the results of the
job, you can use another cmdlet: Receive-Job. This cmdlet will return the results of the command
that was executed:

PS> Receive-Job -Id 3

Hi

This returns the string that was emitted by the scriptblock passed to Start-Job. Using Receive-Job
in this manner strips the data from the completed job. If you want to retain the data on the job for
future processing, you need to use the -Keep parameter:

PS> Start-Job -ScriptBlock {'Hi'}

Id Name PSJobTypeName State HasMoreData Location Command

-- ---- ------------- ----- ----------- -------- -------

5 Job5 BackgroundJob Running True localhost 'Hi'

PS> Receive-Job -Id 5 -Keep

Hi

PS> Get-Job

Id Name PSJobTypeName State HasMoreData Location Command

-- ---- ------------- ----- ----------- -------- -------

3 Job3 BackgroundJob Completed False localhost 'Hi'

5 Job5 BackgroundJob Completed True localhost 'Hi'

Notice the HasMoreData property is False for job Id 3 and True (you used the -Keep parameter) for
job Id 5.

Note

Depending on the activity on your system the jobs you run may have a different Id and Name to
those we show.

(507)

This isn’t an interesting example, so let’s try something that will take a bit longer to run. First,
define the scriptblock you want to run in the $jsb variable:

PS> $jsb = {

foreach ($i in 1..10) { Start-Sleep 5; "i is $i" }

}

Now start the job. The command is too big to display in the default formatting. The compressed
output doesn’t matter because the only thing you want at this point is the job’s Id:

PS> Start-Job -ScriptBlock $jsb

Id Name PSJobTypeName State HasMoreData Location Command

-- ---- ------------- ----- ----------- -------- -------

9 Job9 BackgroundJob Running True localhost ...

Wait 10 seconds or so and start calling Receive-Job with the job’s Id:

PS> Receive-Job 9

i is 1

i is 2

The first call returned the first 2 items out of the 10 you’re expecting. Wait another 10 seconds
and call it again

PS> Receive-Job 9

i is 3

i is 4

i is 5

and you get another three items. Keep calling it until you get all the items:

PS> Receive-Job 9

i is 6

i is 7

PS> Receive-Job 9

i is 8

i is 9

i is 10

PS> Receive-Job 9

PS>

This last call didn’t return anything because the job has completed and all items have already
been returned. You can verify this by calling Get-Job

PS> Get-Job 9

Id Name PSJobTypeName State HasMoreData Location Command

-- ---- ------------- ----- ----------- -------- -------

9 Job9 BackgroundJob Completed False localhost ...

and you see that its state is Completed. Because the job is running asynchronously, the number of
items that are returned depends on when you call Receive-Job.

Waiting for jobs to complete

So how do you wait until the job has completed? You could write a loop to keep checking the
State property, but that would be annoying and inefficient. Instead, you can use the Wait-Job
cmdlet:

(508)

PS> $jb = Start-Job $jsb; Wait-Job $jb ; Receive-Job $jb

Id Name PSJobTypeName State HasMoreData Location Command

-- ---- ------------- ----- ----------- -------- -------

11 Job11 BackgroundJob Completed True localhost ...

i is 1

i is 2

i is 3

i is 4

i is 5

i is 6

i is 7

i is 8

i is 9

i is 10

In this example, you’re capturing the job object emitted by Start-Job in the $jb variable so you
can use it in the subsequent Wait-Job and Receive-Job commands. Because of the Wait-Job, when
you call Receive-Job you get all the input.

Note

If you use Wait-Job, the PowerShell session is blocked until the job is completed.

Notice that Wait-Job returns the object representing the job that has finished. You can use this to
simplify the example a bit:

PS> Start-Job $jsb | Wait-Job | Receive-Job

i is 1

i is 2

i is 3

i is 4

i is 5

i is 6

i is 7

i is 8

i is 9

i is 10

In this example, Start-Job passes the Job object to Wait-Job. When the job completes, Wait-Job
passes the Job object to Receive-Job to get the results. This eliminates the need for an intermediate
variable.

Removing jobs

So far, you’ve been creating jobs but haven’t removed any. This means that when you call Get-
Job, you’ll see that there are a number of jobs still in the job table:

PS> Get-Job

Id Name PSJobTypeName State HasMoreData Location Command

-- ---- ------------- ----- ----------- -------- -------

3 Job3 BackgroundJob Completed False localhost 'Hi'

5 Job5 BackgroundJob Completed True localhost 'Hi'

7 Job7 BackgroundJob Completed False localhost ...

9 Job9 BackgroundJob Completed False localhost ...

11 Job11 BackgroundJob Completed False localhost ...

13 Job13 BackgroundJob Completed False localhost ...

(509)

Each time you start a job, it gets added to the job table. You can clean things up using the Remove-
Job cmdlet. To empty the table, use Remove-Job with a wildcard:

PS> Remove-Job *

or you could use this:

PS> Get-Job | Remove-Job

Now when you call Get-Job, nothing is returned. This is probably not the best way to clean things
up. A better solution would be to look for jobs that have completed and have no more data. That
would look like the following:

function Clear-CompletedJobs {

 Get-Job |

 where { $_.State -eq "Completed" -and -not $_.HasMoreData } |

 Remove-Job

}

This function calls Get-Job to get the list of all jobs, filters that list based on the State and
HasMoreData properties, and then pipes the filtered list into Remove-Job. By doing this, only
completed jobs for which all data has been received will be removed. This allows you to clean up
the job table without worrying about losing information or getting errors. If you do want to kill
all the jobs immediately, you can use the -Force parameter on Remove-Job.

Running the Clear-CompletedJobs function will remove all the jobs in the previous job table
except job Id 5. You can remove an individual job:

PS> Remove-Job -Id 5

PS> Get-Job

PS>

In the next section, we’ll look at ways you can apply concurrent jobs to solve problems.

13.1.3. Working with multiple jobs

So far, we’ve looked at simple patterns working with one job at a time, but you can run a number
of jobs at the same time. Doing so complicates things—you have to be able to handle the output
from multiple jobs, but you get the benefit of running tasks in parallel, which makes you more
efficient. Let’s look at how to do this.

Listing 13.1. Example of running multiple jobs

1..5 | foreach {

 Start-Job -name "job$_" -ScriptBlock {

 param($number)

 $waitTime = Get-Random -Minimum 4 -Maximum 10

 Start-Sleep -Seconds $waitTime

 "Job $number is complete; waited $waitTime"

 } -ArgumentList $_ > $null }

Wait-Job job* | Receive-Job

This example starts a number of jobs that will run concurrently, waits for all of them to complete,
and then gets all the results. Run the code in listing 13.1 and you’ll see results like this:

Job 1 is complete; waited 9

Job 2 is complete; waited 5

Job 3 is complete; waited 8

(510)

Job 4 is complete; waited 9

Job 5 is complete; waited 7

As you can see, all the results are captured, ordered by the job name. Now let’s look at a more
useful application of this pattern. This listing shows a function that searches multiple directories
in parallel looking for a specific pattern.

Listing 13.2. A function that searches a collection of folders in parallel

function Search-FilesInParallel

{

 param (

 [parameter(mandatory=$true, position=0)]

 $Pattern,

 [parameter(mandatory=$true, position=1)]

 [string[]]

 $Path,

 [parameter()]

 $Filter = "*.txt",

 [parameter()]

 [switch]

 $Any

)

 $jobid = [Guid]::NewGuid().ToString() 1

 $jobs = foreach ($element in $path)

 {

 Start-Job -name "$Srch{jobid}" -scriptblock { 2

 param($pattern, $path, $filter, $any)

 Get-ChildItem -Path $path -Recurse -Filter $filter

 Select-String -list:$any $pattern 3

 } -ArgumentList $pattern,$element,$filter,$any

 }

 Wait-Job -any:$any $jobs | Receive-Job 4

 Remove-Job -force $jobs

}

1 Generate GUID to use for job ID.
2 Start search job for each path
3 Pass -any switch to Select-String.
4 Wait for any or all jobs.

This function takes a list of folder paths to search, along with a pattern to search for. By default,
the function will only search TXT files. It also has a switch, -Any, that controls how the search is
performed. If the switch isn’t specified, all matches from all folders will be returned. If it’s
specified, only the first match will be returned and the remaining incomplete jobs will be
canceled.

This function seems like a useful tool. Unfortunately, jobs are implemented by creating new
processes for each job, and this is an expensive operation—so expensive, in fact, that generally
it’s much slower than searching all the files serially.

Note

If the creation of the new process is a significant fraction of your job run time, then you probably
don’t need to use a job. Keep jobs for long-running tasks.

(511)

In practice, PowerShell jobs are a way of dealing with latency (the time it takes for an operation
to return a result) and not throughput (the amount of data that gets processed). This is a good
trade-off for remote management tasks when you’re talking to many machines more or less at
once. The amount of data is frequently not large, and the overall execution time is dominated by
the time it takes to connect to a remote machine. With that in mind, let’s look at how remoting
and jobs work together.

13.1.4. Starting jobs on remote computers

PowerShell is designed for administering remote computers, so it follows that you can also create
and manage jobs on remote computers.

Note

To work with remote jobs, remoting must be enabled on the remote machine.

The easiest way to do this is to use the -AsJob parameter on Invoke-Command. Alternatively, the
scriptblock passed to Invoke-Command can call Start-Job explicitly. Let’s see how this works.

Child jobs and nesting

So far we’ve talked about Job objects as atomic—one Job object per job. In practice, it’s a bit
more sophisticated than that. There are scenarios when you need to be able to aggregate
collections of jobs under a single master, or executive, job. We’ll get to those situations soon. For
now, know that background jobs always consist of a parent job and one or more child jobs.

For jobs started using Start-Job or the -AsJob parameter on Invoke-Command, the parent job is the
executive. It doesn’t run any commands or return any results.

Note

The executive does no work—it supervises. All the work is done by the subordinates. That
sounds familiar somehow

This collection of child jobs is stored in the ChildJobs property of the parent Job object. The child
Job objects have a name, ID, and instance ID that differ from the parent job so that you can
manage the parent and each child job individually or as a single unit.

To see the parent and all the children in a Job, use the Get-Job cmdlet to get the parent Job object
and then pipe it to Format-List, which displays the Name and ChildJobs as properties of the objects.
Here’s what that looks like:

PS> Get-Job | Format-List -Property Name, ChildJobs

Name : Job3

ChildJobs : {Job4}

(512)

You can also use a Get-Job command on the child job, as shown in the following command

PS> Get-Job -Name Job4

Id Name PSJobTypeName State HasMoreData Location Command

-- ---- ------------- ----- ----------- -------- -------

4 Job4 Completed True localhost 'Hi'

and so on until you get to a Job that has no children.

Child jobs with Invoke-Command

Let’s look at the scenario where you need to have more than one child job. When Start-Job is
used to start a job on a local computer, the job always consists of the executive parent job and a
single child job that runs the command. When you use the -AsJob parameter on Invoke-Command to
start a job on multiple computers, you have the situation where the job consists of an executive
parent job and one child job for each command running on a remote server, as shown in figure
13.2.

Figure 13.2. The relationship between the executive job and the nested jobs created when Invoke-Command -AsJob is
used to run commands on multiple remote computers. The user calls Invoke-Command to start a job with multiple
nested jobs, one for each target node in $list.

When you use Invoke-Command to explicitly run Start-Job on the remote machines, the result is the
same as a local command run on each remote computer. The command returns a Job object for
each computer. The Job object consists of an executive parent job and one child job that runs the
command.

The parent job represents all the child jobs. When you manage a parent job, you also manage the
associated child jobs. For example, if you stop a parent job, all child jobs are also stopped.
Similarly, when you get the results of a parent job, you’re also getting the results of all child
jobs.

Most of the time, you don’t need to be concerned with the fact that there are parent and child
jobs, but it’s possible to manage the child jobs individually. This approach is typically used only
when you want to investigate a problem with a job or get the results of only one of a number of
child jobs started by using the -AsJob parameter of Invoke-Command.

The following command uses Invoke-Command with -AsJob to start background jobs on the local
computer and two remote computers. The command saves the job in the $j variable:

(513)

PS> $j = Invoke-Command -ComputerName localhost, W16DC01, W16TGT01 `

-ScriptBlock {Get-Date} -AsJob

When you display the Name and ChildJob properties of the object in $j, it shows that the command
returned a Job object with three child jobs, one for each computer:

PS> $j | Format-List Name, ChildJobs

Name : Job1

ChildJobs : {Job2, Job3, Job4}

When you display the parent job, it shows that the overall job was considered to have failed:

PS> $j

Id Name PSJobTypeName State HasMoreData Location Command

-- ---- ------------- ----- ----------- -------- -------

1 Job1 RemoteJob Failed True localhost,W16DC01... Get-Date

But on further investigation, when you run Get-Job on each of the child jobs, you find that only
one of them has failed:

PS> Get-Job -Name job2, job3, job4

Id Name PSJobTypeName State HasMoreData Location Command

-- ---- ------------- ----- ----------- -------- -------

2 Job2 Failed False localhost Get-Date

3 Job3 Completed True W16DC01 Get-Date

4 Job4 Completed True W16TGT01 Get-Date

Note

The job running on localhost failed because the PowerShell console wasn’t running with elevated
privileges. Use Run As Administrator to start PowerShell when you want to access the local
machine in this manner.

To get the results of all child jobs, use the Receive-Job cmdlet to obtain the results of the parent
job. But you can also get the results of a particular child job, as shown in the following
command:

PS> Receive-Job -Id 3 -Keep |

Format-Table PSComputerName, DateTime -AutoSize

PSComputerName DateTime

-------------- --------

W16DC01 09 May 2017 10:50:19

In this example, you’re using the -Keep parameter, which allows you to read, but not remove,
output from a job. When you use -Keep, the output from the job is retained in the output buffer
for that job. You’re using it here so that when you do a Receive-Job on the executive job, you’ll
get the output of all jobs in a single collection. In effect, this is a way of peeking at the output of
one of the child jobs. By using child jobs, you have much more granular control over the set of
activities you have running.

The way you’ve been working with jobs so far has been much like when you were using Invoke-
Command and specifying the name of a computer. Each time you contacted the computer, Invoke-
Command created a new session. You’re doing much the same thing when you use Start-Job. With

(514)

Invoke-Command, you were able to improve your efficiency by creating sessions. In the next section
you’ll see how sessions work with jobs.

13.1.5. Running jobs in existing sessions

Each background job runs in its own PowerShell session, paralleling the way each remote
command is also executed in its own session. As was the case with remoting, this session can be
a temporary one that exists only for the duration of the background job, or it can be run in an
existing PSSession. But the way to do this isn’t obvious because the Start-Job cmdlet doesn’t
have a -Session parameter. Instead, you have to use Invoke-Command with the -Session and -AsJob
parameters. Here’s what that looks like. First, create a PSSession object:

PS> $s = New-PSSession -ComputerName W16DC01

Now pass that session object to Invoke-Command with -AsJob specified:

PS> $j = Invoke-Command -Session $s -ScriptBlock {$PID} -AsJob

The scriptblock that you’re passing in returns the process ID of the session. Use Receive-Job to
retrieve it:

PS> Receive-Job $j

788

You can call Invoke-Command without -AsJob with the same session object and scriptblock:

PS> Invoke-Command -Session $s -ScriptBlock {$PID}

788

You get the same process ID back, which is expected because the session is persistently
associated with the same process.

Start-Job and sessions

Why is there no -Session parameter on Start-Job? This parameter did exist at one point in the
development of PowerShell v2. At that time, jobs and remoting used the same message
transport. Using the same transport was found to be problematic for a number of reasons:

It was inefficient for communication with local jobs.
It required that the remoting service be enabled on the local machine, which has security
implications.
It required users to be running with admin privileges to be able to use the job feature.

To resolve these issues, the existing WS-MAN-based transport used by jobs was replaced with
anonymous pipes. This change solved these problems, but it had the unfortunate side effect that
jobs could no longer be directly run within PSSession instances because the PSSession object was
tied to WS-MAN remoting.

Keep in mind that when a job is run in an existing PSSession, that session can’t be used to run
additional tasks until the job has completed. This means you have to create multiple PSSession
objects if you need to run multiple background tasks but want to avoid the overhead of creating
new processes for each job. As always, it’s up to the script author to decide how best to manage

(515)

resources for their script.

13.1.6. Job types

If you look closely at the output from Get-Job in sections 13.1.2 through 13.1.5 you’ll see that
jobs have a PSJobTypeName property. You’ll notice that jobs run on the local machine have a
PSJobTypeName of BackgroundJob, whereas jobs run on remote machines have RemoteJob.

There are other job types. The full list of job types is shown in table 13.2.

Table 13.2. PowerShell job types

Job Type Description

BackgroundJob Job created with Start-Job.
RemoteJob Job created with -AsJob parameter of Invoke-Command.

PSWorkflowJob Job created with -AsJob parameter of a workflow. See section
13.2.

PSScheduledJob Job created by a scheduled job trigger. See section 13.3.

CIMJob Job created with -AsJob parameter of a member of a CDXML
module.

WMIJob Job created with -AsJob parameter of a WMI cmdlet. Note the
CIM cmdlets don’t have an -AsJob parameter.

PSEventJob Job created by running Register-ObjectEvent and specifying an
action with the -Action parameter. See section 17.2.3.

ConfigurationJob Job created by Start-DSCconfiguration. Visible only if -Wait
parameter of Start-DSCconfiguration is not used.

Once a job has been created, it’s managed by the standard job cmdlets.

Using -AsJob with Get-WmiObject will return a WMIJob type if the target is the local machine or a
remote machine:

PS> Get-WmiObject -Class Win32_ComputerSystem -AsJob

PS> Get-WmiObject -Class Win32_ComputerSystem -AsJob -ComputerName W16DC01

Get-Job will always show the job type (PSJobTypeName) in the default output:

PS> Get-Job

Id Name PSJobTypeName State HasMoreData Location Command

-- ---- ------------- ----- ----------- -------- -------

1 Job1 RemoteJob Failed True localhost,... Get-Date

5 Job5 RemoteJob Completed False W16DC01 $PID

8 Job8 WmiJob Completed True localhost Get-Wm...

10 Job10 WmiJob Completed True W16DC01 Get-Wm...

14 Job14 PSWorkflowJob Completed True localhost hi

Unfortunately, Get-Job doesn’t have a parameter that allows you to filter on job type, so you need
to do something like this:

Get-Job | where PSJobTypeName -eq 'WmiJob'

(516)

or use whichever job type you’re interested in.

Now that you understand how jobs work, let’s look at combining jobs with workflows, as we
promised in chapter 12.

(517)

13.2. Workflows as jobs

We stated at the top of the chapter that workflows could be used in situations where the
execution of the process needed to be paused. This pause could include the reboot of a remote
machine or even the reboot of the machine on which the workflow is running. Making a
workflow pause and then resume is dependent on checkpointing the workflow (persisting the
data and execution state to disk) and then reading that data to restart the workflow. Dealing with
a reboot is an extension of that approach. The first thing is to understand workflow checkpoints.

13.2.1. Checkpoints

The simplest way to checkpoint a workflow is to use the Checkpoint-Workflow activity:

workflow test-cw1

{

 foreach ($i in 1..10) {$i}

 Checkpoint-Workflow

 foreach ($j in 50..60){$j}

}

test-cw1

Running test-cw1 you’ll see the numbers 1–10 and then 50–60 listed with no apparent break.
You won’t be able to find any persisted data because workflows remove their persisted data on
completion—unless they’re run as a job, in which case the persisted data is removed when the
job is deleted.

Note

Checkpoint-Workflow doesn’t have any parameters. You have no control over how the checkpoint
is performed or where the data is stored.

Checkpoint-Workflow can be used after any activity but not inside an InlineScript block. It takes an
immediate checkpoint. When using checkpoints make sure of the following:

The time taken to rerun the section you’ve checkpointed is longer (preferably a lot longer)
than the time it takes to write the checkpoint to disk.
You take checkpoints after critical steps so the workflow can be resumed rather than
restarted.
You take a checkpoint after steps that aren’t idempotent
If your activity is in a pipeline and it’s checkpointed, the checkpoint doesn’t apply until the
pipeline completes.
Within parallel blocks the checkpoint doesn’t apply until the parallel processing has been
applied to all items.
In a sequence block checkpoints are applied after each activity.

You can create a checkpoint in three other ways. The first way is to use the –PSPersist workflow
parameter:

workflow test-cw2 {

(518)

 Get-Process

 Get-Service

}

test-cw2 -PSPersist $true

In PowerShell v3 -PSPersist was a switch parameter. It’s now a Boolean with three possible
states:

Default— The -PSPersist parameter is not used. A checkpoint is taken at the beginning
and end of the workflow together with any checkpoints explicitly created in the workflow.
$true— Adds a checkpoint to the beginning and end of the workflow and after every
activity, in addition to any checkpoints explicitly created in the workflow.
$false— Adds no checkpoints. Only those checkpoints explicitly created in the workflow
are taken.

Your second option is to use the –PSPersist activity parameter:

workflow test-cw3 {

 Get-Process -PSPersist $true

 Get-Service -PSPersist $true

}

test-cw3

When used at the activity level, setting –PSPersist to $true (the parameter was a switch in
PowerShell v3) causes a checkpoint to be taken after the activity has completed. A value of
$false, or if the parameter isn’t present, means a checkpoint won’t be taken.

The third option is to use the $PSPersistPreference preference variable:

workflow test-cw4 {

 $PSPersistPreference = $true

 Get-Process

 Get-Service

 $PSPersistPreference = $false

}

test-cw4

Setting $PSPersistPreference to $true causes a checkpoint to be taken after every activity until it’s
set back to $false or the workflow ends.

Now that you know how to take checkpoints, how can you use them? You need to run your
workflow as a job:

workflow test-cw5 {

 foreach ($b in 1..1000) {

 $b

 Checkpoint-Workflow

 }

}

test-cw5 -AsJob

The workflow will count from 1 to 1000, taking a checkpoint after each value. Count slowly to
five and then shut down PowerShell. That’s right! Click the cross in the top-right corner and shut
down the console.

Now open another PowerShell console that’s running with elevated privileges and use Get-Job.
You’ll find your job has been suspended:

PS> Get-Job

Id Name PSJobTypeName State HasMoreData Location Command

(519)

-- ---- ------------- ----- ----------- -------- -------

5 Job4 PSWorkflowJob Suspended True localhost test-cw5

You can use Resume-Job to restart the workflow. Allow it to run for a few seconds and then stop
the workflow job with Stop-Job. You can use Receive-Job to get the data back from the job.
You’ll receive the warning shown in figure 13.3 because you’ve stopped the job before
completion.

Figure 13.3. Commands to resume a checkpointed workflow

Figure 13.3 illustrates the sequence of commands required to restart a workflow. If you run

PS> $count = Receive-Job -Id 4 -Keep

PS> $count.Length

you’ll be able to check that your results are contiguous—there are no breaks in the number
sequence, showing that the data was protected even though the workflow was forcibly stopped.

Note

If your workflow has output data prior to being checkpointed, that data won’t be present when
you use Receive-Job.

This is too good a technique to be restricted to inadvertent workflow suspension. You need to be
able to force a workflow into suspension as well.

13.2.2. Suspending workflows

Deliberately suspending a workflow is a simple matter of using the Suspend-Workflow activity:

workflow test-ws1 {

 Get-Process

 Suspend-Workflow

 Get-Service

(520)

}

test-ws1

The process information will be displayed and then the workflow will checkpoint and suspend.
You can view the jobs with Get-Job and resume the job with Resume-Job. The data from the Get-
Service activity can be viewed using Receive-Job. If you don’t want to see any results during the
running of workflow, run it as a job:

workflow test-ws2 {

 Get-Process -PSPersist $true

 Suspend-Workflow

 Get-Service

}

test-ws2 -AsJob -JobName swtest

The process data will be saved to disk with the workflow state, and once the workflow job has
been resumed and run to completion you can view all your data. Saving the data until execution
is complete is a good technique for long-running (overnight?) workflows.

You can use another PowerShell session to resume the job if required, as discussed in the
previous section. It’s possible to use the Suspend-Job cmdlet to force the suspension of a
workflow that’s running as a job. You’ll need to ensure that you’ve checkpointed the workflow if
required so that your data is protected. You’ll also need to be able to get progress reports from
the job so that you know when to perform the suspension. It’s usually easier to suspend the
workflow from within the workflow using Suspend-Workflow.

Note

Suspend-Job and Resume-Job work only on workflow jobs.

You can also get your workflows to suspend automatically if there’s a terminating error within
the workflow:

workflow test-ws3 {

 Get-Process

 Get-Service

}

test-ws3 -ErrorAction Suspend

Any errors that occur in the workflow will cause the workflow to suspend. Again, think about
checkpointing to protect your data.

Suspending workflows solves the problem of making workflows interruptible, but we also said
that workflows can survive reboots.

13.2.3. Workflows and reboots

No, it’s not a role-playing game—in this section we’ll show you how workflows can survive a
reboot. There are two scenarios you need to understand: a reboot on the target remote machine
and a reboot on the local machine on which the workflow is executing. Let’s start with the easier
case where you need to reboot the remote machine you’ve targeted with your workflow.

A machine can be rebooted using Restart-Computer. The following example retrieves the last time

(521)

a machine was rebooted, forces a reboot, and then waits for the machine to become available
before fetching the last boot time again:

workflow test-restart {

 Get-CimInstance -ClassName Win32_OperatingSystem |

 Select-Object -ExpandProperty LastBootupTime

 Restart-Computer -Wait

 Get-CimInstance -ClassName Win32_OperatingSystem |

 Select-Object -ExpandProperty LastBootupTime

}

test-restart -PSComputerName W16TGT01

The key to pausing the workflow while the remoted machine reboots is the –Wait parameter on
Restart-Computer. Using –Wait suppresses the PowerShell prompt and blocks the pipeline until all
machines involved in the process have rebooted.

Waiting for restart

The –Wait parameter on Restart-Computer will cause your code to wait indefinitely for the remote
machine to reboot (it has no effect when rebooting the local machine). You can modify the action
of –Wait with the –For parameter, which causes the code to wait for a specific service or feature to
be available. Here are your options:

Default—Waits for Windows PowerShell to restart
PowerShell—Can run commands in a Windows PowerShell remote session on the
computer
WMI—Receives a reply to a Win32_ComputerSystem query for the computer
WinRM—Can establish a remote session to the computer by using WS-Management

Alternatively, you can opt for a time delay by using the –TimeOut parameter, which enables you
specify a number of seconds to wait for the remote machine to respond.

Figure 13.4 shows this workflow in progress

Figure 13.4. Workflow paused while waiting for a remote machine to restart

(522)

While Restart-Computer is waiting for the remote machine to respond, a progress bar is shown, as
can be seen in figure 13.4. The messages on the progress bar indicate the following:

Waiting for the restart to begin
Verifying the computer has restarted
Waiting for WMI connectivity
Waiting for PowerShell connectivity
Waiting for WinRM connectivity

These states correspond to the options available on the –For parameter of Restart-Computer. Figure
13.5 shows the results of the workflow post completion.

Figure 13.5. Workflow restarting a remote computer

If you want to save the output or suppress the progress bar, run the workflow as a job.

You have two options when rebooting the local machine:

Resume the workflow manually
Resume the workflow automatically

In both cases a suspended job is produced when the reboot occurs. This job then has to be
resumed either manually or via a scheduled job. Let’s start with the manual resumption. The
previous workflow is modified to produce this code:

workflow test-restart {

(523)

 Get-CimInstance -ClassName Win32_OperatingSystem |

 Select-Object -ExpandProperty LastBootupTime

 Restart-Computer

 Suspend-Workflow

 Get-CimInstance -ClassName Win32_OperatingSystem |

 Select-Object -ExpandProperty LastBootupTime

}

The –Wait parameter has been removed from Restart-Computer (it doesn’t work when applied to
the local machine), and a Suspend-Workflow activity is added immediately after the restart
command. If you don’t force the suspension of the workflow, it will carry through and complete
the tasks.

Run the workflow:

PS> test-restart -AsJob -JobName boottime

Once the machine has rebooted, open an elevated PowerShell console and run

PS> Resume-Job -Name boottime

When the job has completed, run the following to view the results:

PS> Receive-Job -Name boottime

09 May 2017 09:56:44

09 May 2017 14:19:39

The more complicated case is to create a situation where the workflow is automatically restarted
after the reboot. This involves adding a scheduled task (the documentation says you can use a
scheduled job, but that doesn’t seem to work) to the script.

Listing 13.3. Automatically resuming workflow on reboot

workflow test-restart { 1

 Get-CimInstance -ClassName Win32_OperatingSystem |

 Select-Object -ExpandProperty LastBootupTime

 Restart-Computer

 Suspend-Workflow

 Get-CimInstance -ClassName Win32_OperatingSystem |

 Select-Object -ExpandProperty LastBootupTime

}

$actionscript = '-NonInteractive -WindowStyle Normal –NoLogo

 -NoProfile -NoExit

 -Command "& {Get-Job -Name boottime | Resume-Job}"'

$pstart = "C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe" 2

Get-ScheduledTask -TaskName ResumeWF | 3

Unregister-ScheduledTask -Confirm:$false

$act = New-ScheduledTaskAction -Execute $pstart ` 4

-Argument $actionscript

$trig = New-ScheduledTaskTrigger -AtLogOn 5

Register-ScheduledTask -TaskName ResumeWF -Action $act ` 6

-Trigger $trig -RunLevel Highest

test-restart -AsJob -JobName boottime 7

1 Define workflow
2 Create PowerShell startup commands

(524)

3 Remove scheduled task
4 Create task action
5 Create trigger
6 Create scheduled task
7 Execute workflow

You’ll use the same workflow 1 as when you performed the workflow resumption manually. The
scheduled task will invoke PowerShell 2 and run the command Get-Job -Name boottime | Resume-
Job.

Any scheduled tasks of the same name are removed 3. A task action is created to run the script
you created (running PowerShell) 4, and a job trigger is created 5 to run the scheduled task at
logon.

The scheduled task is registered (created) 6 using the trigger and actions previously defined. You
can then run the workflow 7 as a job.

Your machine will reboot, and when you log on you’ll see a PowerShell console running. After a
few seconds, open another PowerShell console and review the jobs. Retrieve the data from the
completed workflow job:

PS> Receive-Job -Name boottime -Keep

09 May 2017 09:48:42

09 May 2017 14:29:24

If you need your workflow to manage reboots, it’s much easier if the remote machine is
rebooting rather than the local machine. Our recommendation is to ensure you write your
workflows in this manner.

The concludes our examination of using jobs with workflows. Our last topic for this chapter
looks at how you can use the Windows Scheduler and PowerShell jobs utilizing the scheduled
jobs cmdlets.

(525)

13.3. Scheduled jobs

The ability to execute long-running tasks asynchronously is a great benefit—you don’t have to
sit and watch them run, for one thing! The PowerShell jobs we’ve discussed so far have all
involved a manual start. Wouldn’t it be easier and more convenient if you could schedule jobs to
start automatically—in particular, the ones that you run in the middle of the night?

13.3.1. Creating scheduled jobs

PowerShell v3 introduced the capability to do that through the PSScheduledJob module. The
module contains a number of cmdlets:

PS> Get-Command -Module PSScheduledJob | Format-Wide -Column 3

Add-JobTrigger Disable-JobTrigger Disable-ScheduledJob

Enable-JobTrigger Enable-ScheduledJob Get-JobTrigger

Get-ScheduledJob Get-ScheduledJobOption New-JobTrigger

New-ScheduledJobOption Register-ScheduledJob Remove-JobTrigger

Set-JobTrigger Set-ScheduledJob Set-ScheduledJobOption

Unregister-ScheduledJob

The cmdlets show three objects involved in working with scheduled jobs:

Scheduled jobs
Scheduled job triggers
Scheduled job options

We’ll examine each of these areas in this section.

Note

Scheduled jobs are different from scheduled tasks. A scheduled job runs a PowerShell job on a
trigger activated by the Windows Task Scheduler. A scheduled task runs a script, or command,
on activation of a Windows Task Scheduler trigger.

The major difference between scheduled jobs and the jobs discussed in the previous sections is
that a scheduled job survives the closure of the PowerShell console, but a regular job doesn’t. A
scheduled job will continue to exist and run, according to its schedule, until it’s disabled or
deleted. You can manage the job objects produced by a scheduled job with the standard job
cmdlets.

Like with everything in PowerShell, it’s easier to explain scheduled jobs with examples. You’ll
start by creating a simple job that will run a number of times. First, you need a trigger:

PS> $t = New-JobTrigger -Once -At "09/05/2017 15:10" `

-RepetitionInterval (New-TimeSpan -Minutes 1) `

-RepetitionDuration (New-TimeSpan -Minutes 10)

This trigger will execute on 9 May 2017 at 15:10 (3:10 p.m.). It will repeat execution every
minute for 10 minutes. The -At parameter specifies the start time. When using -Once with -At

(526)

ensure that the start time is in the future.

Many other options are available for setting triggers:

-AtLogOn—Starts the scheduled job when a specified user, or users, logs on to the machine.
-AtStartUp—Starts the scheduled job when Windows starts.
-Daily—Specifies a recurring job that runs every day. You set a number of days between
jobs being executed using the -DaysInterval parameter.
-Weekly—Specifies a job that’s run weekly. Use the -DaysOfWeek parameter to control the
days it runs—for instance, you may want the job to run only on Saturdays and Sundays.
You can specify a number of weeks between executions using -WeeksInterval.

Once you have the trigger defined, you can create the scheduled job:

PS> Register-ScheduledJob -Name PiASJ1 -ScriptBlock {Get-Process} `

-Trigger $t -RunNow

Id Name JobTriggers Command Enabled

-- ---- ----------- ------- -------

1 PiASJ1 1 Get-Process True

You specify the job’s name, a scriptblock for the job to execute, and the trigger. You can use the
-RunNow parameter of Register-ScheduledJob to run the job once as you register it. This is a useful
test to ensure that everything works correctly.

Note

Set-SetScheduledJob also has a -RunNow parameter for immediate execution of a scheduled job.

Scheduled jobs can be found in the Task Scheduler at
Library\Microsoft\Windows\PowerShell\ScheduledJobs.

Your scheduled jobs and their results are stored in
$home\AppData\Local\Microsoft\Windows\PowerShell\ScheduledJobs. Look in the
<jobname>\Output folder for the results.

By default, the results of 32 instances of each scheduled job are stored. Older jobs will be
overwritten as necessary. You can modify the number of saved instances using -MaxResultCount.

You can access the results of your scheduled job using Get-Job:

PS> Get-Job -Name PiASJ1 | Format-Table -AutoSize

Id Name PSJobTypeName State HasMoreData Location Command

-- ---- ------------- ----- ----------- -------- -------

3 PiASJ1 PSScheduledJob Completed True localhost Get-Process

4 PiASJ1 PSScheduledJob Completed True localhost Get-Process

5 PiASJ1 PSScheduledJob Completed True localhost Get-Process

6 PiASJ1 PSScheduledJob Completed True localhost Get-Process

7 PiASJ1 PSScheduledJob Completed True localhost Get-Process

8 PiASJ1 PSScheduledJob Completed True localhost Get-Process

9 PiASJ1 PSScheduledJob Completed True localhost Get-Process

10 PiASJ1 PSScheduledJob Completed True localhost Get-Process

11 PiASJ1 PSScheduledJob Completed True localhost Get-Process

12 PiASJ1 PSScheduledJob Completed True localhost Get-Process

(527)

You can access the job’s results using Receive-Job:

PS> Receive-Job -Id 6

The -Keep parameter hasn’t been used, and the results will appear to have been stripped out of the
job object. In reality, this isn’t the case. The data is still available on disk and can be accessed in
another PowerShell console. If you use the -Keep parameter, you’ll be able to repeatedly access
the data in the same console.

A scheduled job can be started outside its schedule using Start-Job:

PS> Start-Job -DefinitionName PiASJ1

Id Name PSJobTypeName State HasMoreData Location Command

-- ---- ------------- ----- ----------- -------- -------

13 PiASJ1 PSScheduledJob Running True localhost Get-Process

The job is given a type of scheduled job, but the output isn’t persisted to disk and will be lost
when the console is closed.

13.3.2. Modifying a scheduled job

Once you’ve created a scheduled job, you can modify a number of features. Let’s start with the
trigger.

Changing a trigger

A scheduled job can have more than one trigger. You might want to run the scheduled job at 10
a.m. on a Monday and 5 p.m. on a Friday, for instance. To add a trigger to an existing scheduled
job, first define the trigger:

PS> $t2 = New-JobTrigger -Once -At "09/05/2016 18:30" `

-RepetitionInterval (New-TimeSpan -Minutes 1) `

-RepetitionDuration (New-TimeSpan -Minutes 10)

then add the trigger:

PS> Add-JobTrigger -Trigger $t2 -Name PiASJ1

A scheduled job’s triggers can be viewed:

PS> Get-JobTrigger -Name PiASJ1

Id Frequency Time DaysOfWeek Enabled

-- --------- ---- ---------- -------

1 Once 09/05/2017 15:10:00 True

2 Once 09/05/2017 18:30:00 True

Old triggers can be removed:

PS> Remove-JobTrigger -Name PiASJ1 -TriggerId 1

Scheduled job options

A number of options are available to you when creating a scheduled job. The default options are
listed here:

(528)

PS> New-ScheduledJobOption

StartIfOnBatteries : False

StopIfGoingOnBatteries : True

WakeToRun : False

StartIfNotIdle : True

StopIfGoingOffIdle : False

RestartOnIdleResume : False

IdleDuration : 00:10:00

IdleTimeout : 01:00:00

ShowInTaskScheduler : True

RunElevated : False

RunWithoutNetwork : True

DoNotAllowDemandStart : False

MultipleInstancePolicy : IgnoreNew

JobDefinition :

You can control how the scheduled job behaves if the machine is on, or goes on, battery power.
There are a number of options detailing the job’s response to the machine being idle or not. You
can configure the job to be run with elevated privileges and even hide the job from the Task
Scheduler GUI.

RunElevated is probably the most important option. If you use this, you need to also specify the -
Credential option in Register-ScheduledJob or Set-ScheduledJob.

13.3.3. Managing scheduled jobs

You can view the instances of a scheduled job:

PS> Get-job -Name PiASJ1

The latest instances can be viewed:

PS> Get-job -Name PiASJ1 -Newest 2

Jobs executed in a particular time interval can be found:

PS> Get-job -Name PiASJ1 -Before "09/05/2017 15:20:00" `

-After "09/05/2017 15:15:00"

Individual instances can be removed:

PS> Remove-Job -Id 12

or you can remove all instances:

PS> Remove-Job -Name PiASJ1

The scheduled job itself can be removed:

PS> Unregister-ScheduledJob -Name PiASJ1

This also removes the data stored on disk.

(529)

13.4. Summary

PowerShell jobs run asynchronously.
A background job runs in a new PowerShell process. Other jobs execute in process but on
separate threads.
Start-Job creates and runs a new background job.
Use -Keep with Receive-Job to ensure the data remains accessible.
Wait-Job blocks further interactive processing until the job, or jobs, completes.
Remove-Job deletes one, many, or all jobs present on the system.
Jobs are deleted when the PowerShell console is closed.
You can run jobs on the local and/or remote machines.
A job consists of a parent job and one or more child jobs. One child job is created per
remote machine specified to Invoke-Command when using the -AsJob parameter.
Multiple job types exist. They are started in different ways but are all managed using the
standard job cmdlets.
Workflow state and data can be explicitly persisted using the Checkpoint-Workflow activity
or automatically after each activity using the -PSPersist parameter. Be aware that
persisting a workflow is expensive, so this feature should be used when needed rather than
enabling it all the time.
Suspend-Workflow will persist a workflow and halt execution. A suspended job is created
that can be resumed at a later time.
The job cmdlets can be used to manage workflow jobs.
Resume-Job will restart a suspended workflow job.
PowerShell workflows can survive a reboot of the remote or local machine.
A reboot of the local machine while a workflow is executing can be managed manually or
automatically using a scheduled task.
Scheduled jobs are run via the Windows Task Scheduler.
The results from a scheduled job are stored on disk and are available between PowerShell
sessions.
Scheduled job triggers can be defined on a time basis, user logon, or machine startup.
The instances of a scheduled job are managed with the standard job cmdlets.
Job triggers can be added and removed.
Scheduled job options include running with elevated privileges and hiding from the Task
Scheduler.
Scheduled job instances can be removed singly or in bulk.

Workflows (chapter 12) and jobs (this chapter) provide a strong foundation for performing tasks
in a production environment. When writing production code, you need to be able to manage
errors that may occur when your code is running—as you’ll see in the next chapter.

(530)

Chapter 14. Errors and exceptions
This chapter covers

Error handling
Dealing with terminating errors
Working with event logs

Progress, far from consisting in change, depends on retentiveness. Those who cannot
remember the past are condemned to repeat it.

George Santayana, The Life of Reason

It’s always useful to keep in mind that PowerShell isn’t merely a shell or scripting language. Its
primary purpose is to be an automation tool and perform critical management tasks on a server,
such as send software updates, inspect log files, or provision user accounts. You need to be sure
that either the task is completed properly or the reason for failure is appropriately recorded.

In this chapter, we’ll focus on how PowerShell reports, records, and manages error conditions.
Handling of error conditions is one of the areas where PowerShell shines compared to other
scripting tools. The support for diagnostic tracing and logging is practically unprecedented in
traditional scripting languages. Unfortunately, these features don’t come entirely free—there are
costs in terms of complexity and execution overhead that aren’t there in other environments. All
these capabilities are a part of PowerShell as a management tool; Microsoft set a higher bar for
PowerShell than has been set for most other language environments.

We’ll begin by looking at the error processing subsystem. Errors in PowerShell aren’t error
codes, strings, or even exceptions as found in languages such as C# and VB.NET. They’re rich
objects that include almost everything you could think of that might be useful in debugging a
problem.

Note

Some people dislike (okay, despise) the use of the word rich in this context. But given the wealth
of information that PowerShell error objects contain, rich is the right word.

We’ll examine these ErrorRecord objects in detail, along with how they’re used by the various
PowerShell mechanisms to manage error conditions.

(531)

14.1. Error handling

Error handling in PowerShell is structured. PowerShell errors aren’t bits of text written to the
screen—they’re rich objects that contain a wealth of information about where the error occurred
and why. There’s one aspect to error handling in PowerShell that’s unique: the notion of
terminating versus nonterminating errors. This aspect aligns with the streaming model that
PowerShell uses to process objects.

Here’s a simple example that will help you understand this concept. Think about how removing a
list of files from your system should work. You stream this list of files to the cmdlet that will
delete the files. But imagine that you can’t delete all the files on the list for various reasons. Do
you want the command to stop processing as soon as it hits the first element in the list? The
answer is probably no. You’d like the cmdlet to do as much work as it can but capture any errors
so that you can look at them later. This is the concept of a nonterminating error—the error is
recorded and the operation continues. There are times when you do want an operation to stop on
the first error. These are called terminating errors. Sometimes you want an error to be
terminating in one situation and nonterminating in another, and PowerShell provides
mechanisms that allow you to do that.

Note

PowerShell is based on .NET, but you need to be aware that in .NET errors are all terminating
unless they’re handled somewhere in the calling code. PowerShell cmdlets, and advanced
functions or scripts, introduce the concept of nonterminating errors, meaning that the error has
been managed internally.

Because the architecture supports multiple nonterminating errors being generated by a pipeline, it
can’t just throw or return an error. Here’s where streaming comes into play: nonterminating
errors are written to the error stream. By default, these errors are displayed, but there are a
number of other ways of working with them. In the next few sections, we’ll look at those
mechanisms. First, we need to look at the error records themselves.

14.1.1. ErrorRecords and the error stream

As we delve into the topic of error handling, we’ll first look at capturing error records in a file
using redirection, and then you’ll learn how to capture error messages in a variable. By capturing
these errors instead of merely displaying them, you can go back to analyze and hopefully fix
what went wrong.

First, let’s review the normal behavior of objects in the pipeline. Output objects flow from
cmdlet to cmdlet, but error records are written directly to the default output processor. By
default, this is the Out-Default cmdlet, and the error records are displayed:

PS> Get-ChildItem -Path nosuchfile

Get-ChildItem : Cannot find path 'C:\test\nosuchfile' because it does not exist.

At line:1 char:1

+ Get-ChildItem -Path nosuchfile

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(532)

 + CategoryInfo : ObjectNotFound: (C:\test\nosuchfile:String) [Get-ChildItem],

ItemNotFoundException

 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.GetChildItemCommand

These flows are shown in figure 14.1.

Figure 14.1. This diagram shows the output object and error record routing; then, the simple pipeline A | B | C
is run from a PowerShell host process like PowerShell.exe or PowerShell_ISE.exe. Output objects go to the next
command in the pipeline, and error objects go directly to Out-Default.

In figure 14.1, you see the output objects go from A to B to C and finally to Out-Default. But the
error record streams are all merged and go directly to Out-Default.

When you use the redirection operators discussed in chapter 4, you can change flow. For
example, you can redirect the error messages to a file:

PS> Get-ChildItem -Path nosuchfile 2> err.txt

This changes the process to look like what’s shown in figure 14.2.

Figure 14.2. Revised pipeline including the use of redirection operators

(533)

This approach has the downside that the error message is rendered to displayable text before
writing it to the file. When that happens, you lose all the extra information in the objects. Look at
what was saved to the file:

PS> Get-Content .\err.txt

Get-ChildItem : Cannot find path 'C:\test\nosuchfile' because it does not exist.

At line:1 char:1

+ Get-ChildItem -Path nosuchfile 2> err.txt

+ ~~~

 + CategoryInfo : ObjectNotFound: (C:\test\nosuchfile:String) [Get-ChildItem],

ItemNotFoundException

 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.GetChildItemCommand

The error text is there as it would’ve been displayed on the console, but you’ve lost all the
elements of the object that haven’t been displayed. This lost information may be critical to
diagnosing the problem. You need a better way to capture this information. The first mechanism
we’ll look at is capturing the error records by using the stream merge operator 2>&1 and then
assigning the result to a variable.

When you add error stream merging to the picture, the flow of objects changes. With stream
merging, instead of having all error records going to the default output stream, they’re routed
into the output stream, and the combined set of objects is passed to the input of the next
command. This flow is shown in figure 14.3.

Figure 14.3. Revised pipeline including the addition of error stream merging

(534)

Let’s see how this works. First, use the stream merge operator to capture the error stream in a
variable by using assignment:

PS> $err = Get-ChildItem -Path nosuchfile 2>&1

You can use Get-Member to display the properties on the object. Use the -Type parameter on Get-
Member to filter the display and only show the properties:

PS> $err | Get-Member -Type property

Some of the property names are a little tricky to figure out, so further explanation is in order.
Table 14.1 lists the important properties, their types, and a description of each.

Table 14.1. ErrorRecord properties and their descriptions

Property name Property type Description

CategoryInfo ErrorCategoryInfo This string breaks errors into a number of broad
categories.

ErrorDetails ErrorDetails

This may be null. If present, ErrorDetails can
specify additional information, most
importantly ErrorDetails.Message, which (if
present) is a more exact description and should
be displayed instead of Exception.Message.

Exception System.Exception This is the underlying .NET exception
corresponding to the error that occurred.

FullyQualifiedErrorId System.String

This identifies the error condition more
specifically than either the ErrorCategory or the
Exception. Use FullyQualifiedErrorId to filter
highly specific error conditions. Note that this is
a nonlocalized field, so performing string

(535)

matches against it will continue to work
regardless of language settings.

InvocationInfo InvocationInfo
This object contains information about where
the error occurred—typically the script name
and line number.

TargetObject System.Object
This is the object that was being operated on
when the error occurred. It may be null, because
not all errors will set this field.

You can look at the values of an error record’s properties by piping the error object into Format-
List. To see all the properties, you must specify –Property * along with –Force. This command
tells the formatting subsystem to skip the default presentation and show all properties. The result
looks like this:

PS> $err | Format-List -Property * -Force

writeErrorStream : True

PSMessageDetails :

Exception : System.Management.Automation.ItemNotFoundException:

 Cannot find path 'C:\test\nosuchfile' because it

 does not exist. at

 System.Management.Automation.SessionStateInternal.

 GetChildItems(String path, Boolean recurse,

 UInt32 depth, CmdletProviderContext context)

 At Microsoft.PowerShell.Commands.

 GetChildItemCommand.ProcessRecord()

TargetObject : C:\test\nosuchfile

CategoryInfo : ObjectNotFound: (C:\test\nosuchfile:String)

 [Get-ChildItem],ItemNotFoundException

 FullyQualifiedErrorId :

 PathNotFound,Microsoft.PowerShell.Commands.

 GetChildItemCommand

ErrorDetails :

InvocationInfo : System.Management.Automation.InvocationInfo

ScriptStackTrace : at <ScriptBlock>, <No file>: line 1

PipelineIterationInfo : {0, 1}

In this output, you can see the exception that caused the error was ItemNotFoundException. The
TargetObject property contains the full path the cmdlet used to locate the item. This overall error
is placed in the broader category of ObjectNotFound. There are no additional error details for this
object.

Let’s look closer at the InvocationInfo property. This member provides information about where
the error occurred. Here’s what it looks like:

PS> $err.InvocationInfo

MyCommand : Get-ChildItem

BoundParameters : {}

UnboundArguments : {}

ScriptLineNumber : 1

OffsetInLine : 8

HistoryId : 8

ScriptName :

Line : $err = Get-ChildItem -Path nosuchfile 2>&1

PositionMessage : At line:1 char:8

 + $err = Get-ChildItem -Path nosuchfile 2>&1

 + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PSScriptRoot :

PSCommandPath :

InvocationName : Get-ChildItem

PipelineLength : 0

PipelinePosition : 0

ExpectingInput : False

(536)

CommandOrigin : Internal

DisplayScriptPosition :

Because you enter this command on the command line, the script name is empty and the script
line number is 1. OffsetInLine is the offset in the script line where the error occurred. Other
information is also available, such as the number of commands in the pipeline that caused an
error, as well as the index of this command in the pipeline. This message also includes the line of
script text where the error occurred. Finally, there’s the PositionMessage property. This property
takes all the other information and formats it into what you see in PowerShell errors.

Extracting all the detailed information from an error record is a fairly common occurrence when
debugging scripts, so it’s worth writing a small helper function to make it easier. The next listing
shows a function that will dump out all the properties of an error object and then iterate through
any InnerException properties on the error record exception to show all the underlying errors that
occurred.

Listing 14.1. The Show-ErrorDetails function

function Show-ErrorDetails

{

 param(

 $ErrorRecord = $Error[0]

)

 $ErrorRecord | Format-List -Property * -Force

 $ErrorRecord.InvocationInfo | Format-List -Property *

 $Exception = $ErrorRecord.Exception

 for ($depth = 0; $Exception -ne $null; $depth++)

 { "$depth" * 80 1

 $Exception | Format-List -Property * -Force 2

 $Exception = $Exception.InnerException 3

 }

}

1 Show depth of nested exception
2 Show exception properties
3 Link to nest exceptions

This function takes a single parameter that holds the error record to display. By default, it shows
the most recent error recorded in $error. It begins by showing all the properties in the record
followed by the invocation information for the faulting command. Then it loops, tracing through
any nested exceptions 3, showing each one 2 proceeded by a separator 1 line showing the nesting
depth of the displayed exception.

There’s a lot of information in these objects that can help you figure out where and why an error
occurred. The trick is to make sure you have the right error objects available at the right time. It
isn’t possible to record every error that occurs—it would take up too much space and be
impossible to manage. If you limit the set of error objects that are preserved, you want to make
sure that you keep those you care about—having the wrong error objects doesn’t help.
Sometimes you’re interested only in certain types of errors or only in errors from specific parts
of a script. To address these requirements, PowerShell provides a rich set of tools for capturing
and managing errors.

14.1.2. The $error variable and –ErrorVariable parameter

The point of rich error objects is that you can examine them after the error has occurred and

(537)

possibly take remedial action. To do that, you have to capture them first. In the previous section,
we showed you how to redirect the error stream, but the problem with this approach is that you
have to think of it beforehand. Because you don’t know when errors occur, in practice you’d
have to do it all the time. Fortunately, PowerShell performs some of this work for you and
automatically “remembers the past,” at least as far as errors go. There’s a special variable $error
that contains a collection of the errors that occurred while the engine was running. This
collection is maintained as a circular bounded buffer. As new errors occur, old ones are
discarded, as shown in figure 14.4.

Figure 14.4. How the $error variable handles new errors when MaximumErrorCount has been reached. The oldest
error is dropped, and the new one is added to the end.

The number of errors that is retained is controlled by the $MaximumErrorCount variable, which can
be set to a number from 256 (the default setting) to 32768. The collection in $error is an array
(technically an instance of System.Collections.ArrayList) that buffers errors as they occur. The
most recent error is always stored in $error[0].

Note

Although it’s tempting to think that you could set $MaximumErrorCount to some large value (32768
is the largest allowed) and never have to worry about capturing errors, in practice this strategy
isn’t a good idea. Rich error objects also imply fairly large error objects. If you set
$MaximumErrorCount to too large a value, you won’t have any memory left. In practice, there’s
usually no reason to set it to anything larger than the default, though you may set it to something
smaller if you want to make more space available for other things. Also, even if you have only a
few objects, these objects may be large. If you find that this is the case for a particular script, you
can change the maximum error count to something small. As an alternative, you could clean out
all the entries in $error by calling $error.Clear().

(538)

Let’s explore using the $error variable. You’ll start with the same error as before:

PS> Get-ChildItem -Path nosuchfile

Get-ChildItem : Cannot find path 'C:\test\nosuchfile' because it does not exist.

At line:1 char:1

+ Get-ChildItem -Path nosuchfile

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : ObjectNotFound: (C:\test\nosuchfile:String) [Get-ChildItem],

ItemNotFoundException

 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.GetChildItemCommand

You didn’t explicitly capture it, but it’s available in $error[0] with all the error properties:

PS> $error[0]

Get-ChildItem : Cannot find path 'C:\test\nosuchfile' because it does not exist.

At line:1 char:1

+ Get-ChildItem -Path nosuchfile

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : ObjectNotFound: (C:\test\nosuchfile:String) [Get-ChildItem],

ItemNotFoundException

 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.GetChildItemCommand

For example, here’s the exception object:

PS> $error[0].Exception

Cannot find path 'C:\test\nosuchfile' because it does not exist.

and here’s the target object that caused the error:

PS> $error[0].TargetObject

C:\test\nosuchfile

Now let’s do something that will cause a second error:

PS> 1/0

Attempted to divide by zero.

At line:1 char:1

+ 1/$null

+ ~~~~~~~

 + CategoryInfo : NotSpecified: (:) [], RuntimeException

 + FullyQualifiedErrorId : RuntimeException

Here you have a division-by-zero error.

Let’s verify that the second error is in $error[0]. Look at the exception member:

PS> $error[0].Exception

Attempted to divide by zero.

Yes, it is. You’ll also verify that the previous error, “file not found,” is now in position 1:

PS> $error[1].Exception

Cannot find path 'C:\test\nosuchfile' because it does not exist.

Again, yes, it is. As you can see, each new error shuffles the previous error down one element in
the array.

Tip

The key lesson to take away from this is that when you’re going to try to diagnose an error, you
should copy it to a “working” variable so it doesn’t get accidently shifted out from under you

(539)

because you made a mistake in one of the commands you’re using to examine the error. In
particular, you should never depend on the value of $error when writing tests because you may
end up looking at the wrong value due to side effects in the test code. In general, you should
consider $error as a trace log of errors that have occurred.

The $error variable is a convenient way to capture errors automatically, but there are two
problems with it:

$error captures only a limited number of errors—the default is 256—so important
information may fall off the end of the buffer.
$error contains all the errors that occur, regardless of where they came from or what
command generated them, mixed together in a single collection. You’ll find it hard to
locate the information you need to diagnose a specific problem.

You can work around the first problem by using redirection to capture all the errors, but that still
doesn’t address mixing all the errors together. To deal with this second issue, when you want to
capture all the errors from a specific command, you use a standard parameter available on all
commands called -ErrorVariable. This parameter names a variable to use for capturing all the
errors that the command generates—the command’s error handler performs the action of writing
the information to the variable. Here’s an example: this command generates three error objects,
because the files nofuss, nomuss, and nobother don’t exist:

PS> Get-ChildItem -Path nofuss, nomuss, nobother -ErrorVariable errs

Get-ChildItem : Cannot find path 'C:\test\nofuss' because it does not exist.

At line:1 char:1

+ Get-ChildItem -Path nofuss, nomuss, nobother -ErrorVariable errs

+ ~~

 + CategoryInfo : ObjectNotFound:

(C:\test\nofuss:String) [Get-ChildItem], ItemNotFoundException

 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.GetChildItemCommand

Get-ChildItem : Cannot find path 'C:\test\nomuss' because it does not exist.

At line:1 char:1

+ Get-ChildItem -Path nofuss, nomuss, nobother -ErrorVariable errs

+ ~~

 + CategoryInfo : ObjectNotFound:

(C:\test\nomuss:String) [Get-ChildItem], ItemNotFoundException

 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.GetChildItemCommand

Get-ChildItem : Cannot find path 'C:\test\nobother' because it does not exist.

At line:1 char:1

+ Get-ChildItem -Path nofuss, nomuss, nobother -ErrorVariable errs

+ ~~

 + CategoryInfo : ObjectNotFound:

(C:\test\nobother:String) [Get-ChildItem], ItemNotFoundException

 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.GetChildItemCommand

In the command, you specified the name of the error variable to place these records into: errs.

Note

The argument to -ErrorVariable is the name of the variable with no leading $. If errs had been
written as $errs, then the errors would’ve been stored in the variable named by the value in $errs,
not $errs itself. Also note that the -ErrorVariable parameter works like a tee—the objects are
captured in the variable, but they’re also streamed to the error output. If -ErrorAction is set to
Ignore, the errors won’t be captured in the variable.

(540)

Let’s verify that the errors were captured. First, the number of elements in $err should be 3:

PS> $errs.Count

3

It is. Now dump the errors themselves:

PS> $errs

Get-ChildItem : Cannot find path 'C:\test\nofuss' because it does not exist.

At line:1 char:1

+ Get-ChildItem -Path nofuss, nomuss, nobother -ErrorVariable errs

+ ~~

 + CategoryInfo : ObjectNotFound:

(C:\test\nofuss:String) [Get-ChildItem], ItemNotFoundException

 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.GetChildItemCommand

Get-ChildItem : Cannot find path 'C:\test\nomuss' because it does not exist.

At line:1 char:1

+ Get-ChildItem -Path nofuss, nomuss, nobother -ErrorVariable errs

+ ~~

 + CategoryInfo : ObjectNotFound:

(C:\test\nomuss:String) [Get-ChildItem], ItemNotFoundException

 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.GetChildItemCommand

Get-ChildItem : Cannot find path 'C:\test\nobother' because it does not exist.

At line:1 char:1

+ Get-ChildItem -Path nofuss, nomuss, nobother -ErrorVariable errs

+ ~~

 + CategoryInfo : ObjectNotFound:

(C:\test\nobother:String) [Get-ChildItem], ItemNotFoundException

 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.GetChildItemCommand

They do, in fact, match the original error output.

Note

The errors should match the original output because they’re the same error objects. The -
ErrorVariable parameter (alias –ev) captures references to each object written to the error stream.
In effect, the same object is in two places at once—well, three if you count the default $error
variable.

Because there’s no need to see the object twice, you can use redirection to discard the written
objects and save only the references stored in the specified variable. Let’s rerun the example this
way:

PS> Get-ChildItem -Path nofuss, nomuss, nobother `

-ErrorVariable errs 2>$null

This time nothing is displayed; verify the error count:

PS> $errs.Count

3

It’s 3 again, as intended. Let’s check the TargetObject member of the last error object to verify
that it’s the filename nobother:

PS> $errs[2].TargetObject

C:\test\nobother

(541)

Yes, it is. This example illustrates a more sophisticated way of capturing error objects than
merely displaying them. In section 14.1.5, you’ll see an even more flexible way to control how
errors are redirected.

All of these mechanisms provide useful tools for handling collections of error objects, but
sometimes all you care about is that an error occurred at all. A couple of additional status
variables, $? and $LASTEXITCODE, enable you to determine whether an error occurred.

14.1.3. Determining whether a command had an error

Displaying errors is useful—it lets the user know what happened. But scripts also need to know
when an error has occurred so they can react properly. For example, a script shouldn’t try to
remove a file if the cd into the directory containing the file failed. PowerShell makes this easy by
providing two error variables ($? and $LASTEXITCODE) that capture the command status. First, to see
if an error occurred when executing a command, a script can check the status of the variable $?, a
simple Boolean variable that holds the execution status of the last command.

Note

The use of the $? variable is borrowed from the UNIX shells.

The $? variable will be true if the entire operation succeeded and false otherwise. If any of the
operations wrote an error object, then $? will be set to false even if the error was discarded using
redirection. This is an important point: it means that a script can determine whether an error
occurred even if the error isn’t displayed. Here are examples showing the use of $?. First, you
call Get-Item, passing in items you know exist and don’t exist:

PS> Get-Item c:, nosuchfile, c:

 Directory: C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 02/05/2016 14:52 test

Get-Item : Cannot find path 'C:\test\nosuchfile' because it does not exist.

At line:1 char:1

+ Get-Item c:, nosuchfile, c:

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : ObjectNotFound:

(C:\test\nosuchfile:String) [Get-Item], ItemNotFoundException

 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.GetItemCommand

d----- 02/05/2016 14:52 test

You get the expected error:

PS> $?

False

and $? is false. Now try the same command, but this time specify only items that exist:

PS> Get-Item c:, c:

 Directory: C:\

Mode LastWriteTime Length Name

(542)

---- ------------- ------ ----

d----- 02/05/2016 14:52 test

d----- 02/05/2016 14:52 test

PS> $?

True

This time there are no errors, and $? is true.

Whereas the $? variable only indicates success or failure, the second error variable $LASTEXITCODE
contains the exit code of the last command run. But this applies to only two types of commands:
native or external commands and PowerShell scripts (but not functions).

Note

On Windows, when a process exits it can return a single integer as its exit code. This integer is
used to encode a variety of conditions, but the only one we’re interested in is whether it’s zero or
non-zero. This convention is used by almost all programs. If they were successful, then their exit
code is zero. If they encountered an error, then the exit code is non-zero.

PowerShell captures the exit code from a script or executable in $LASTEXITCODE, and if that value
is non-zero, it sets $? to false. Let’s use cmd.exe to demonstrate this. You can tell cmd.exe to
execute a single command by passing it the /c option along with the text of the command. In this
example, the command you want to run is exit, which takes a value to use as the exit code for the
command:

PS> cmd /c exit 0

You told cmd to exit with code 0. Verify this by checking the values of $? and $LASTEXITCODE,
respectively:

PS> $?

True

PS> $LASTEXITCODE

0

As expected, the exit code was zero, and consequently $? is true.

Note

Ensure you access the value of $? first because accessing $LASTEXITCODE will reset $?.

Next, try it with a non-zero value:

PS> cmd /c exit 1

PS> $?

False

PS> $LASTEXITCODE

1

(543)

This time the exit code is 1, so $? is set to false. You can do the same exercises with scripts. First,
create a script that exits with a zero exit code:

PS> 'exit 0' > invoke-exit.ps1

PS> .\invoke-exit.ps1

PS> $?

True

PS> $LASTEXITCODE

0

$LASTEXITCODE is 0, and $? is true. Now try it with a non-zero value:

PS> 'exit 25' > invoke-exit.ps1

PS> .\invoke-exit.ps1

PS> $?

False

PS> $LASTEXITCODE

25

Now $LASTEXITCODE contains the value the script exited with, which is 25, and $? is set to false.

So far, we’ve looked at how to capture errors and how to detect when they occur. Next, we’ll
explore some of the methods PowerShell provides to control what happens when an error is
generated.

14.1.4. Controlling the actions taken on an error

Earlier, we talked about the differences between terminating and nonterminating errors.
Sometimes you want to be able to turn nonterminating errors into terminating ones because the
operation you’re performing is too critical to tolerate nonterminating errors. Imagine you’re
setting up a website for a user. You want to reuse a directory that had been previously used for
someone else. First, you want to remove all the old files and then install the new user’s files.
Obviously, you can’t start installing the new files until all the old ones are deleted. In this
situation, the failure to delete a file, which is normally a nonterminating error, must now be
treated as a terminating error. The next step in the process can’t begin until the current step is
100% complete.

The way to control whether errors are treated as terminating or nonterminating is by setting the
error action policy, which you do by setting the error action preference. This is a mechanism that
allows you to control the behavior of the system when an error occurs. There are a number
possible settings for this preference as described in table 14.2.

Table 14.2. The supported identifiers and numeric equivalents for ErrorActionPreference and the -ErrorAction
common parameter

Identifier Numeric value Descriptions

Continue 2

This is the default preference setting. The error
object is written to the output pipe and added to
$error, and $? is set to false. Execution then
continues at the next script line.

When this action preference is set, the error

(544)

SilentlyContinue 0 message isn’t written to the output pipe before
continuing execution. Note that it’s still added
to $error, and $? is still set to false. Again,
execution continues at the next line.

Stop 1

This error action preference wraps a
nonterminating error as a terminating error. The
error object is then thrown as an exception
instead of being written to the output pipe.
$error and $? are still updated. Execution does
not continue.

Inquire 3

Prompts the user requesting confirmation before
continuing with the operation. At the prompt,
the user can choose to continue, stop, or
suspend the operation.

Ignore 4

Ignores the error and continues processing.
Works with the -ErrorAction common
parameter but isn’t allowed as an option for
$ErrorActionPreference.

Suspend 5
Suspends the command for further
investigation. Works only with PowerShell
workflows.

There are two ways to set the error action preference: by setting the $ErrorActionPreference
variable as in

PS> $ErrorActionPreference = 'SilentlyContinue'

or by using the -ErrorAction (or -ea) parameter that’s available on all cmdlets, advanced
functions, and advanced scripts.

Let’s see examples of these preferences in action. Here’s a simple one. First, run a command that
has some nonterminating errors. You’ll use the Get-Item cmdlet to get two items that exist and
two items that don’t exist:

PS> Get-Item -Path c:\, nosuchfile, c:\test, c:\nosuchfolder

 Directory:

Mode LastWriteTime Length Name

---- ------------- ------ ----

d--hs- 02/05/2016 09:51 C:\

Get-Item : Cannot find path 'C:\test\nosuchfile' because it does not exist.

At line:1 char:1

+ Get-Item -Path c:\, nosuchfile, c:\test, c:\nosuchfolder

+ ~~

 + CategoryInfo : ObjectNotFound:

(C:\test\nosuchfile:String) [Get-Item], ItemNotFoundException

 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.GetItemCommand

 Directory: C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 02/05/2016 15:48 test

Get-Item : Cannot find path 'C:\nosuchfolder' because it does not exist.

At line:1 char:1

+ Get-Item -Path c:\, nosuchfile, c:\test, c:\nosuchfolder

+ ~~

 + CategoryInfo : ObjectNotFound:

(545)

(C:\nosuchfolder:String) [Get-Item], ItemNotFoundException

 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.GetItemCommand

When you look at the output, you can see that there are two output objects and two error
messages. You can use redirection to discard the error messages, making the code easier to read:

PS> Get-Item -Path c:\, nosuchfile, c:\test, c:\nosuchfolder 2> $null

 Directory:

Mode LastWriteTime Length Name

---- ------------- ------ ----

d--hs- 02/05/2016 09:51 C:\

 Directory: C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 02/05/2016 15:48 test

Now you only see the output objects because you’ve sent the error objects to $null. You can use
the -ErrorAction parameter to do the same:

PS> Get-Item -Path c:\, nosuchfile, c:\test, c:\nosuchfolder `

-ErrorAction SilentlyContinue

 Directory:

Mode LastWriteTime Length Name

---- ------------- ------ ----

d--hs- 02/05/2016 09:51 C:\

 Directory: C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 02/05/2016 15:48 test

Again, the error messages aren’t displayed, but this time it’s because they aren’t being written to
the console. Instead of being written and discarded the errors will be written to $error. If you use
-ErrorAction Ignore, the errors are ignored and discarded with no entry written to $error.

Finally, let’s try the Stop preference:

PS> Get-Item -Path c:\, nosuchfile, c:\test, c:\nosuchfolder `

-ErrorAction Stop

 Directory:

Mode LastWriteTime Length Name

---- ------------- ------ ----

d--hs- 02/05/2016 09:51 C:\

Get-Item : Cannot find path 'C:\test\nosuchfile' because it does not exist.

At line:1 char:1

+ Get-Item -Path c:\, nosuchfile, c:\test, c:\nosuchfolder -ErrorAction ...

+ ~~~

 + CategoryInfo : ObjectNotFound:

(C:\test\nosuchfile:String) [Get-Item], ItemNotFoundException

 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.GetItemCommand

This time, you see only one output message and one error message—the first one. This is
because the error is treated as a terminating error and execution stops.

Note

(546)

In earlier versions of PowerShell, the error message contained additional text explaining that
execution stopped because of the error action preference setting. This is no longer the case in
PowerShell v5.

The -ErrorAction parameter controls the error behavior for exactly one cmdlet. If you want to
change the behavior for an entire script or even a whole session, you can do so by setting the
$ErrorActionPreference variable. Let’s redo the last example but use the variable instead of the
parameter:

PS> & {

 $ErrorActionPreference = 'Stop'

 Get-Item -Path c:\, nosuchfile, c:\test, c:\nosuchfolder

 }

 Directory:

Mode LastWriteTime Length Name

---- ------------- ------ ----

d--hs- 02/05/2016 09:51 C:\

Get-Item : Cannot find path 'C:\test\nosuchfile' because it does not exist.

At line:3 char:1

+ Get-Item -Path c:\, nosuchfile, c:\test, c:\nosuchfolder

+ ~~

 + CategoryInfo : ObjectNotFound:

(C:\test\nosuchfile:String) [Get-Item], ItemNotFoundException

 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.GetItemCommand

Again, the cmdlet stops at the first error instead of continuing.

Note

In this example, note the use of the call operator & with a scriptblock containing the scope for the
preference setting. Using the pattern & { ...script text... }, you can execute fragments of script
code so that any variables set in the enclosed script text are discarded at the end of the
scriptblock. Because setting $ErrorActionPreference has such a profound effect on the execution
of the script, we’re using this technique to isolate the preference setting.

Through the -ErrorActionPreference parameter and the $ErrorActionPreference variable, the script
author has good control over when errors are written and when they’re terminating.
Nonterminating errors can be displayed or discarded at will. But what about terminating errors?
How does the script author deal with them? Sometimes you want an error to terminate only part
of an operation. For example, you might have a script move a set of files using a series of steps
for each move. If one of the steps fails, you want the overall move operation to terminate for that
file, but you want to continue processing the rest of the files. To do this, you need a way to
manage these terminating errors or exceptions, and that’s what we’ll discuss next.

(547)

14.2. Dealing with errors that terminate execution

This section will deal with the ways that PowerShell processes errors that terminate the current
flow of execution, also called terminating errors. If you have a programming background, you’re
probably more familiar with terminating errors when they’re called by their more conventional
name—exceptions. Call them what you will; we’re going to delve into catching these terminating
errors. We’ll look at ways to trap or catch these errors and take action as a consequence. In some
cases, these may be remedial actions (such as trying to fix the problem) or recording that the
errors occurred.

The only way for exceptions to be caught in PowerShell v1 was by using the trap statement,
which is somewhat similar to the on error statement in Visual Basic or VBScript. A better
approach is the try/catch statement, modeled after the try/catch statement in C#, which was
introduced in PowerShell v2.

The trap statement

Accepted best practice within the PowerShell community is to use try/catch rather than trap.
We’ll cover the trap statement for completeness.

The trap statement can appear anywhere in a block of code. This means that it may be specified
after a statement that generates an error and still handle that error. When an exception
(terminating error) occurs that isn’t otherwise handled, control will be transferred to the body of
the trap statement, and the statements in the body are then executed.

You can optionally specify the type of exception to catch, such as division by zero. But this can
cause issues because traps don’t unwrap the underlying error, so they always see an
ActionPreferenceStopException with originally nonterminating errors emitted from cmdlets. If no
exception is specified, then it will trap all exceptions.

PS>trap { "Got it!" } 1/$null

Got it!

Attempted to divide by zero.

At line:1 char:21

+ trap { "Got it!" } 1/$null

+ ~~~~~~~

 + CategoryInfo : NotSpecified:(:) [], RuntimeException

 + FullyQualifiedErrorId : RuntimeException

What happens after a trap handler execution has completed depends on how the block finishes. If
the body of the trap handler block finishes normally, an error object will be written to the error
stream, and, depending on the setting of $ErrorActionPreference, either the exception will be
rethrown or execution will continue at the statement after the statement that caused the
exception.

You can control the interpreter’s behavior after you leave the trap handler by the break and
continue keywords. Exiting a trap block using break is somewhat equivalent to the error action
preference SilentlyContinue. Using continue ensures that the exception is handled and the error
doesn’t bubble on.

The exception that was trapped is available in the trap block in the $_ variable.

(548)

PS>$zero = 0

PS>trap { "Got it:$_";continue } 1/$zero;

Got it:Attempted to divide by zero.

After the trap statement has completed, control transfers to the next statement in the same scope
as the trap statement.

14.2.1. The try/catch/finally statement

The trap statement, although powerful and flexible, ended up being hard to use for many of the
traditional script/programming error-handling patterns. To address this, PowerShell v2
introduced the more familiar try/catch/finally statement found in other languages. As is the case
with all of the other PowerShell flow-control statements, this statement adopts the syntax from
C#.

There are three parts to this statement: the try block, the catch block, and the finally block. The
try block is always required along with at least one of the catch or finally clauses. If an error
occurs in the code in the try block resulting in an exception, PowerShell checks to see if there is
a catch block specified. If there is a catch block, then it checks to see if specific exception types
are to be caught. If at least one of the specified types matches, then the catch block is executed. If
not, then the search continues looking for another catch block that might match.

Note

This is one place where the PowerShell try/catch statement has some advantages over its C#
cousin. In C#, only one exception can be specified per catch clause, so it’s more complicated to
take the same action for multiple exceptions that don’t have a common base class.

If there’s a catch block with no exception types specified, this clause will be executed (which
tends to be the most common case). And if there’s a finally block, the code in the finally block
runs. (The finally block always runs whether or not there was an exception.) Here’s an example
using a catch statement with no exception type specified:

PS> try {

 1

 2

 3/$null

 4

 5

}

catch {

 "ERROR: $_"

}

finally {

 'ALL DONE'

}

1

2

ERROR: Attempted to divide by zero.

ALL DONE

In this example, the third statement in the try block causes a terminating error. This error is

(549)

caught and control transfers to the catch block. Then, when the catch block is complete, the
finally block is executed. This flow of control is shown in figure 14.5.

Figure 14.5. The flow of control in a try/catch/finally statement. When an exception occurs, control transfers to
the catch block and then the finally block.

The complete processing logic for the try/catch/finally statement is shown in the flowchart in
figure 14.6.

Figure 14.6. The complete logical flow in the try/catch/finally statement

(550)

Using try/catch in expressions

An interesting application of the try/catch statement when used in combination with
PowerShell’s expression-oriented syntax is that it makes it fairly easy to write functions that
provide default values if an expression throws an exception. Let’s look at using try/catch in a
custom div function. We want a function that never throws an exception even when dividing by
zero. The function might look like this:

function div {

 param

 (

 [int]$x,

 [int]$y

)

 try {

 $x/$y

 }

 catch {

(551)

 [int]::MaxValue

 }

}

Give it a try

PS> div 1 0

2147483647

and you get the maximum integer value instead of the error you normally get when you divide by
zero.

Clearly, exceptions are a powerful error-handling mechanism. With this mechanism, errors are
never missed because you forgot to check for a return code. In fact, you have to do the opposite
and take action to suppress them instead. Having mastered catching other people’s exceptions,
let’s look at how you can leverage this feature in your own scripts with the throw statement.

14.2.2. The throw statement

To complete the exception-handling topic, you need a way to generate terminating errors or
exceptions. You can accomplish this by using the throw statement.

Note

In the original design, throw was supposed to be a cmdlet rather than a keyword in the language.
But having a cmdlet throw the exception meant that the thrown exception was subject to the
cmdlet’s error action policy, and the whole point of throw was to bypass this policy and always
generate an exception. It wasn’t so much a case of the tail wagging the dog as it was staple-
gunning the poor beast to the floor. And so, learning from past mistakes, Microsoft made it into a
keyword.

The simplest example is to throw nothing:

PS> throw

ScriptHalted

At line:1 char:1

+ throw

+ ~~~~~

 + CategoryInfo :

 OperationStopped: (:) [], RuntimeException

 + FullyQualifiedErrorId : ScriptHalted

This approach is convenient for casual scripting. You don’t need to create an error object or
exception object—the throw statement takes care of all of that. Unfortunately, the message you
get isn’t too informative. If you want to include a meaningful message, you can easily provide
your own:

PS> throw 'My Message!'

My Message!

At line:1 char:1

+ throw 'My Message!'

+ ~~~~~~~~~~~~~~~~~~~

 + CategoryInfo :

 OperationStopped: (My Message!:String) [], RuntimeException

(552)

 + FullyQualifiedErrorId : My Message!

You see the message in the output. It’s also possible to use throw to throw Error-Record objects or
.NET exceptions if you want to use more detailed error handling. Instead of passing a string, you
pass these objects.

To complete this chapter, we’ll look at the data available in the event log. The event log is the
central store for log messages from the system as well as from all the applications, services, and
drivers running on that machine. It’s a one-stop shop for diagnostic information. You’ll see how
to access this diagnostic treasure trove using PowerShell.

(553)

14.3. PowerShell and the event log

The Windows event log provides a central place where applications and operating system
components can record events like the starting and stopping of an operation, progress, and
system and application errors. For system administration, having access to the event log is
critical. As an admin tool, PowerShell support for the event log is quite important, so that’s what
we’re going to look at in this section.

14.3.1. The EventLog cmdlets

PowerShell v1 had only a single, fairly limited command (Get-EventLog) for working with the
event log. More sophisticated operations required using the underlying .NET classes. PowerShell
v2 filled this gap and now there’s a comprehensive set of cmdlets for working with the event log,
as shown in table 14.3.

Table 14.3. The PowerShell EventLog cmdlets

Cmdlet name PowerShell version Description

Get-EventLog v1, enhanced in v2 Gets the events in an event log, or a list of the
event logs, on the local or remote computers

Clear-EventLog v2 Deletes all entries from specified event logs on
the local or remote computers

Write-EventLog v2 Writes a new event log entry to the specified
event log on the local or remote computer

Limit-EventLog v2 Sets the event log properties that limit the size
of the event log and the age of its entries

Show-EventLog v2 Displays the event logs of the local or a remote
computer using the event viewer MMC console

New-EventLog v2 Creates a new event log and a new event source
on a local or remote computer

Remove-EventLog v2 Deletes an event log or unregisters an event
source

Show-EventLog

You may be wondering why PowerShell includes this cmdlet—all it does is launch the event log
viewer. The answer is simple: usability. PowerShell is a command-line shell, so you should be
able to launch GUI applications from the command line. You can, but there’s a small
problem:most of the commands you want to run, including GUI commands, have names that
aren’t obvious. For example, to launch the control panel applet for adding and removing
software, you run appwiz.cpl. To change the display settings, run desk.cpl. These command
names, though related to their function, are certainly not obvious to a user. Similarly, the
command to start the event viewer is eventvwr.msc. In contrast, the Show-EventLog cmdlet, which
follows the PowerShell naming guidelines, can easily be intuited once you know the rules. The
next question is why provide a cmdlet instead of an alias? Because, as well as command naming,

(554)

a cmdlet provides standard parameter handling, which allows for things like tab completion. By
providing a “shim” cmdlet for the existing application, one more small bump is removed from
the command-line user’s experience.

The Get-EventLog cmdlet is what we’ll focus our attention on here. This cmdlet allows you to
retrieve a list of the available application and system event logs and then look at the content of
each of the logs. To get a list of the available logs, run Get-EventLog -List. The output will look
something like this:

PS> Get-EventLog -List

 Max(K) Retain OverflowAction Entries Log

 ------ ------ -------------- ------- ---

 20,480 0 OverwriteAsNeeded 1,607 Application

 20,480 0 OverwriteAsNeeded 0 HardwareEvents

 512 7 OverwriteOlder 0 Internet Explorer

 20,480 0 OverwriteAsNeeded 0 Key Management Service

 128 0 OverwriteAsNeeded 9 OAlerts

 20,480 0 OverwriteAsNeeded 3,171 Security

 20,480 0 OverwriteAsNeeded 1,927 System

 15,360 0 OverwriteAsNeeded 1,569 Windows PowerShell

In addition to the names of the logs, you can see the configuration settings for each log, such as
the amount of space the log might take and what happens when the log fills up. You can use the
Limit-EventLog cmdlet to change these limits for a log:

PS> Limit-EventLog -LogName Application -MaximumSize 25mb

then verify that the limit has been changed:

PS> Get-EventLog -List | where Log -match 'Application'

 Max(K) Retain OverflowAction Entries Log

 ------ ------ -------------- ------- ---

 25,600 0 OverwriteAsNeeded 1,607 Application

As well as listing the available logs, Get-EventLog lets you see the events in any log. Because the
event logs can be quite large, the cmdlet supports a variety of options to control the amount of
data returned. Table 14.4 describes the various Get-EventLog filter parameters.

Table 14.4. The types of filters provided by the Get-EventLog cmdlet

Filter Description

Source

The -Source parameter allows you to filter log entries based on
the name used to register the event source. This name is usually
the name of the application logging the events, but for larger
applications, it may be the name of a subcomponent within that
application.

Message

The -Message parameter allows the retrieved entries to be
filtered based on the event’s message text. The specified filter
strings may contain wildcard patterns. (Note that because the
text of a message is usually translated, the use of the -Message
filter may not be portable to different locations.)
The InstanceId for an entry is the message resource identifier for

(555)

InstanceID

the event. This identifier is used to retrieve the localized text for
a message from the resource file for the registered event source.
Because this identifier isn’t localized, the -InstanceID parameter
provides a way to filter events by message that’s portable across
locales because the message text is localized but the resource ID
is always the same value.

EntryType

The entry type (or severity level) is a way of classifying events
based on the potential impact of the corresponding event on the
system’s behavior. The entry types are Information, Warning,
Error, and Critical. Two additional event types can occur in the
security log: Success Audit and Failure Audit.

UserName
The -UserName parameter filters based on the name of the user
on whose behalf the event occurred. Wildcards patterns can be
used in arguments to this parameter.

Before Gets only the events that occur before the specified date and
time.

After Gets only the events that occur after the specified date and time.

Let’s see how these parameters are used by working through a few examples. We’ll look at the
Application log.

Start by listing the newest 10 events in this log:

PS> Get-EventLog -LogName Application -Newest 10

Index Time EntryType Source InstanceID Message

----- ---- --------- ------ ---------- -------

34931 May 09 20:39 Warning Outlook 1073741851 OAB Downlo...

34930 May 09 20:36 Information Outlook 1073741851 Starting O...

34929 May 09 20:32 Information NVWMI 1090519043 runPipeSer...

34928 May 09 20:32 Information NVWMI 1090519043 runPipeSer...

34927 May 09 20:32 Information NVWMI 1090519043 runPipeSer...

34926 May 09 20:32 Information NVWMI 1090519043 NVWMI - Ba...

34925 May 09 20:32 Information NVWMI 1090519043 runPipeSer...

34924 May 09 20:32 Information NVWMI 1090519043 runPipeSer...

34923 May 09 20:32 Information NVWMI 1090519043 NVWMI - Ba...

34922 May 09 20:32 Information NVWMI 1090519043 runPipeSer...

The -Index parameter lets you retrieve a specific entry from the log. Use Format-List to display
additional properties of the entry:

PS> Get-EventLog -LogName Application -Index 34931 | Format-List

Index : 34931

EntryType : Warning

InstanceId : 1073741851

Message : OAB Download Failed. (Result code in event data).

Category : (0)

CategoryNumber : 0

ReplacementStrings : {OAB Download Failed. (Result code in event data).}

Source : Outlook

TimeGenerated : 09/05/2017 20:39:01

TimeWritten : 09/05/2017 20:39:01

UserName :

Now retrieve events using this message’s InstanceID:

PS> Get-EventLog -LogName Application -InstanceId 1073741851 -Newest 5

Index Time EntryType Source InstanceID Message

----- ---- --------- ------ ---------- -------

34932 May 09 20:41 Information Outlook 1073741851 Starting O...

(556)

34931 May 09 20:39 Warning Outlook 1073741851 OAB Downlo...

34930 May 09 20:36 Information Outlook 1073741851 Starting O...

34906 May 09 20:32 Warning Outlook 1073741851 OAB Downlo...

34904 May 09 20:31 Information Outlook 1073741851 Starting O...

You can use -Before and -After to retrieve messages around a specific date (and time if desired):

PS> Get-EventLog -LogName Application -After 'April 30/2017' `

-Before 'May 3/2017'

Here you retrieve all the messages between May 1 and May 2 in 2017. You can combine -
Before, -Newest, -Message, and -After to perform further filtering. For example, to retrieve the
last 10 messages on May 2, use this:

PS> Get-EventLog -LogName Application -Before 'May 3/2017' -Newest 10

or, you can use -Message and -After to find all messages matching a specific pattern that occurred
after a specific date. For this example, use the month and day numbers and let the year default to
the current year:

PS> Get-EventLog -LogName Application -Message '*Defender*' `

-After 'April 30/2017' |

Format-List UserName, TimeGenerated, EntryType, Message

You’ll see a number of records of this form:

UserName :

TimeGenerated : 09/05/2017 13:00:07

EntryType : Information

Message : Updated Windows Defender status successfully to

 SECURITY_PRODUCT_STATE_ON.

Why is all this useful? Imagine you see a critical error in an application. This error shows up in
the Application log. You suspect that it might be related to either a hardware issue or a bad
device driver. Rather than manually poring over hundreds of log entries, you can use the date
from the Application log entry to retrieve the events in the System log that occurred shortly
before the application.

Digging through the entries, you identify the problem that led to the failure. From this, you get
the Source and InstanceID identifying the problematic entry. You quickly write a script to
remediate the problem on this machine but realize that there may be other machines in the
organization with similar issues. You put together a list of potentially at-risk machines and pass
this list to Get-EventLog using the -ComputerName parameter. You also specify the -Source and -
InstanceID parameters of the problematic message. This command will search the event logs of
all the at-risk machines, returning a list of event log entries matching the criteria. From this set of
events, you can get the names of all the computers that need to be fixed. Finally, you can use
PowerShell remoting to run the remediation script on all the machines with the problem.

Note

Although you need PowerShell remoting to run the remediation script on the target machines,
PowerShell remoting isn’t used when you use Get-EventLog to access a remote computer. Get-
EventLog uses its own remoting protocol. This means you can use Get-EventLog to examine the
logs of the target computer to help diagnose what went wrong using its own built-in remoting to
connect to that computer. It’s not dependent on PowerShell remoting.

(557)

The Get-EventLog filtering capabilities make this kind of forensic analysis easy. One of the things
you might want to analyze is PowerShell itself.

14.3.2. Examining the PowerShell event log

When PowerShell is installed, the installation process creates a new event log called Windows
PowerShell. As PowerShell executes, it writes a variety of information to this log, which you can
see using the Get-EventLog cmdlet. Let’s use the cmdlet to get the last few records from the
PowerShell event log. As always, you can use the tools PowerShell provides to filter and scope
the data you want to look at. You’ll use an array slice to get the last five records from the log:

PS> Get-EventLog -LogName 'Windows PowerShell' | select -Last 5

Index Time EntryType Source InstanceID Message

----- ---- --------- ------ ---------- -------

 5 Nov 03 11:15 Information PowerShell 600 Provider "Fi...

 4 Nov 03 11:15 Information PowerShell 600 Provider "Fu...

 3 Nov 03 11:15 Information PowerShell 600 Provider "En...

 2 Nov 03 11:15 Information PowerShell 600 Provider "Al...

 1 Nov 03 11:15 Information PowerShell 600 Provider "Re...

The default presentation of the event records doesn’t show much information. Let’s look at one
event in detail and see what it contains:

PS> Get-EventLog -LogName 'Windows PowerShell' |

select -Last 1 | Format-List *

First, you get some basic event log elements common to all event log entries:

EventID : 600

MachineName : brucepayquad

Data : {}

Index : 1

Next, you see the event category. This isn’t the same as the error category discussed earlier.
PowerShell event log entries are grouped into several large categories:

Category : Provider Lifecycle

CategoryNumber : 6

Next is the entry type and a message describing the entry. This is followed by a collection of
detail elements, which includes things such as the state transition for the engine as well as some
of the versioning information you saw on the $host object earlier. This is included in case you
have multiple hosts for a particular engine:

EntryType : Information

Message : Provider "Registry" is Started.

 Details:

 ProviderName=Registry

 NewProviderState=Started

 SequenceNumber=1

 HostName=ConsoleHost

 HostVersion=5.1.14393.0

 HostId=ee0ff0ec-0be8-49ab-8c47-beed57a906e7

 HostApplication=C:\Windows\System32\

 WindowsPowerShell\v1.0\powershell.exe

 EngineVersion=

 RunspaceId=

(558)

 PipelineId=

 CommandName=

 CommandType=

 ScriptName=

 CommandPath=

 CommandLine=

Source : PowerShell

The following fields specify the replacement strings that are available. These strings are
substituted into the log message text:

ReplacementStrings : {Registry, Started, ProviderName=Registry

 NewProviderState=Started

 SequenceNumber=1

 HostName=ConsoleHost

 HostVersion=5.1.14393.0

 HostId=ee0ff0ec-0be8-49ab-8c47-beed57a906e7

 HostApplication=C:\Windows\System32\

 WindowsPowerShell\v1.0\powershell.exe

 EngineVersion=

 RunspaceId=

 PipelineId=

 CommandName=

 CommandType=

 ScriptName=

 CommandPath=

 CommandLine=}

Finally, you get additional information for identifying the event log entry and when it occurred:

InstanceId : 600

TimeGenerated : 03/11/2016 11:15:13

TimeWritten : 03/11/2016 11:15:13

UserName :

Site :

Container :

Granted, the output isn’t all that interesting, but when you’re trying to figure out what went
wrong on your systems, being able to see when the PowerShell interpreter was started or stopped
could be useful. There are also certain types of internal errors (also known as bugs) that may
cause a PowerShell session to terminate. These errors also will be logged in the PowerShell
event log.

So far, we’ve looked at the classic event logs that have always been available in Windows. A
new type of event log was introduced with Windows Vista; unfortunately, Get-EventLog and the
other cmdlets listed in table 14.3 don’t work with these logs. You have to use Get-WinEvent.

14.3.3. Get-WinEvent

When working with the new Windows Event Log technology in Windows Vista and later, you
have only Get-WinEvent. There are no cmdlets that can perform the other tasks listed in table 14.3.

Note

Get-WinEvent can also read classic event log backup files (.evt files), so it can be used to analyze
any files of that type you may need to access.

(559)

In this section, we’ll show the differences in the way Get-EventLog and Get-WinEvent filter data
from the event logs. We’ll start by examining the full list of available event logs:

PS> Get-WinEvent -ListLog *

You’ll see the classic event logs Get-EventLog displays and then a large number of logs, most of
them named Microsoft-Windows-<something>. A standard Windows 10 machine has
approximately 400 of these logs. You can view a subset of the available logs:

PS> Get-WinEvent -ListLog Microsoft-Windows-PowerShell* |

select Logmode, RecordCount, LogName

 LogMode RecordCount LogName

 ------- ----------- -------

Circular 0 Microsoft-Windows-PowerShell-Des...

 Retain 0 Microsoft-Windows-PowerShell/Admin

Circular 358 Microsoft-Windows-PowerShell/Operational

Get-WinEvent can filter event log data using a hashtable or an XPath query. We’ll use the
hashtable syntax to re-create the filtering examples we used in section 14.3.1. The first task is to
select the newest five entries in the log:

PS> Get-WinEvent -LogName Application | select -First 5

 ProviderName: Outlook

TimeCreated Id LevelDisplayName Message

----------- -- ---------------- -------

09/05/2017 20:58:00 27 Information Starting OAB dow...

09/05/2017 20:52:51 27 Warning OAB Download Fai...

09/05/2017 20:41:43 27 Information Starting OAB dow...

09/05/2017 20:39:01 27 Warning OAB Download Fai...

09/05/2017 20:36:47 27 Information Starting OAB dow...

You can select single records by the RecordId property:

PS> Get-WinEvent -LogName Application | where RecordId -eq 34935

ProviderName: Outlook

TimeCreated Id LevelDisplayName Message

----------- -- ---------------- -------

09/05/2017 20:52:51 27 Warning OAB Download Fai...

Unfortunately, RecordId isn’t part of the default output, so you’ll have to format your display to
include that data if you require access to it.

You can search the event log for events that occur in a specific time period:

PS> $start = (Get-Date).AddDays(-2)

PS> $end = (Get-Date).AddDays(-1)

PS> Get-WinEvent -FilterHashtable @{LogName='Application';

 StartTime=$start; EndTime=$end}

You’ll notice that the ProviderName is supplied as part of the output. The records are displayed in
chronological order—youngest first unless the -Oldest parameter is used to reverse the order. It
may be advantageous to view the records with all the records from a single provider grouped
together, with the individual records in descending time order:

PS> Get-WinEvent -FilterHashtable @{LogName='Application';

StartTime=$start; EndTime=$end} |

Sort-Object -Property @{Expression='ProviderName';

Descending=$false},

@{Expression='TimeCreated';Descending=$true}

(560)

Sort-Object will sort the records obtained by Get-WinEvent so that the provider names are in
alphabetical order and the records for each provider are displayed from youngest to oldest. You
can view the records from a single provider:

PS> Get-WinEvent -FilterHashtable @{Logname='Application'; ProviderName='SecurityCenter';

StartTime=$start; EndTime=$end}

That’s all we’re going to cover on event logs in this chapter. From these examples, you can see
that the event logs provide a lot of information, much of which can help you manage and
maintain your systems. The trick is being able to extract and correlate the information across the
various logs, and this is where PowerShell can be very useful.

(561)

14.4. Summary

There are two types of errors in PowerShell: terminating and nonterminating.
Error records are written directly to default output.
Error records are rich objects.
The $error variable stores the last 256 errors (by default).
You can specify a specific variable for errors by using the -ErrorVariable parameter.
$? stores a Boolean value indicating execution status of the last command.
$LASTEXITCODE stores the exit code of the last console command or exit statement but isn’t
affected by cmdlets or .NET code.
$ErrorActionPreference and the -ErrorAction parameter can be used to control the action
taken if an error occurs.
Terminating errors and exceptions can be managed by the trap statement or the
try/catch/finally statements (preferred).
Use the throw statement to generate your own terminating exceptions.
The Get-EventLog cmdlet reads classic event logs.
Get-WinEvent must be used for the new style event logs.

All these error features are great for letting you know something is wrong, but how do you go
about fixing the problem? That’s the topic of the next chapter.

(562)

Chapter 15. Debugging
This chapter covers

Creating script instrumentation
Capturing session output
The PowerShell debugger
Command-line debugging
Debugging PowerShell jobs, runspaces, and remote scripts

Big Julie: “I had the numbers taken off for luck, but I remember where the spots formerly
were.”

Guys and Dolls, words and music by Frank Loesser

No one writes code that always works correctly the first time it’s run. When the worst happens
and your code won’t run, or deliver the correct results, you need to debug it to find the problem
or problems. Start by adding statements that track your code’s execution and capture session
output and then move on to more advanced techniques using the PowerShell debugger on
running code. The techniques we’ll show you in this chapter will enable you to find and fix code
problems much faster.

Let’s start by looking at how you can provide instrumentation for your scripts so they provide
you with diagnostic information.

(563)

15.1. Script instrumentation

The most basic form of debugging a script is to put statements in it, using the Write* cmdlets, that
display information about the script’s execution. The Write* cmdlets separate your debugging
output from the rest of the output by displaying the debugging output directly on the console.

Note

These statements will slow down your code execution because they’ll still be parsed even if they
aren’t run. You may need to remove them in production code if execution speed is of paramount
importance.

Checking the code before it runs can catch a number of potential errors as well as help you
implement best practices in your coding.

15.1.1. The Write* cmdlets

A number of cmdlets enable you to write out information during the execution of your scripts:

PS> Get-Command write* -Module Microsoft.PowerShell.Utility |

Format-Wide -Column 3

Write-Debug Write-Error Write-Host

Write-Information Write-Output Write-Progress

Write-Verbose Write-Warning

Output streams

The Write* cmdlets are closely tied to the output streams of the same name. The Error, Warning,
Verbose, and Progress streams are targeted at the end user of the script. Information targets the
operator; Debug targets the developer.

Error is self-explanatory with the complication of terminating and nonterminating errors. It tracks
what went wrong.

Warning is for things that might be wrong; for example, not including an Import-DSCResource
statement for the default resources is a warning. It’s used infrequently because most conditions
should be treated as errors. The PSDesiredStateConfiguration.psm1 module has a number of
Write-Warning statements.

Verbose is for giving the user more detailed information about the behavior of the operation they
requested (example: Copy-Item -Verbose). It tracks what’s happening in detail.

Debug is used by developers to instrument code to make it easier to discover and analyze bugs in
their scripts. Unlike Write-Host, Debug statements can be added to a script and left in place to
assist in the debugging process later on or in the field (with, as mentioned, the caveat that they
add execution overhead). As an example, the PSDesiredStateConfiguration.psm1 module has lots
of Debug statements. Debug tracks information that’s useful for figuring out why the script

(564)

misbehaved and for locating bugs.

Information is a new stream in PowerShell v5 and is targeted at the operations team rather than
the immediate user. It should be used to track operational behavior. For example, in DSC, it
would be used to track what state checks are being done and consequently why an operation is
being performed. For instance, in DSC, a file was missing so a new file will be created. It’s the
equivalent of writing to the analytic log.

Progress tracks simple progress as a percentage. In many cases, using Verbose is more useful than
Progress, but people like progress bars. A progress bar will slow down execution of your code by
a significant amount.

Knowing what’s tracked in each stream enables you to target your debugging efforts correctly.

You’ve seen Write-Output in action throughout the book. It does what it says and outputs
whatever it’s passed to the next step in the pipeline—or if it’s at the end of pipeline, to the
default output mechanism, usually the screen:

PS> 1..3 | foreach {$psitem | Write-Output}

1

2

3

You don’t need to use this cmdlet because the default action at the end of a pipeline is to display
objects on the pipeline. It’s useful when you want to force output.

Write-Progress isn’t considered debugging as such, but it will display a progress bar during
execution of one or more commands. Tracking the progress of your code’s execution may supply
clues if something goes wrong. Run the following in the console and the ISE and observe the
results:

$max = 10000

1..$max |foreach {

 Write-Progress -Activity Test -PercentComplete (($psitem/$max)*100)

}

Interestingly the code runs much quicker in the ISE.

Note

Outputting progress activity will slow down execution of your code.

The Write-Host cmdlet is the way that most people start creating script instrumentation:

PS> 1..3 | foreach {

 $x = $psitem * 2

 Write-Host -Object "$psitem doubled is: $x"

}

1 doubled is: 2

2 doubled is: 4

3 doubled is: 6

(565)

The drawback is that your output from Write-Host is mixed in with your code output:

PS> 1..3 | foreach {

 $x = $psitem * 2

 Write-Host -Object "$psitem doubled is: $x"

 $y += $x

 $y

}

1 doubled is: 2

2

2 doubled is: 4

6

3 doubled is: 6

12

Also, using Write-Host is an all-or-nothing proposition—you can’t turn it on and off to suit your
needs. Ideally, you want to separate the output of your instrumentation, at least visually, and
control whether the instrumentation is active. You can use the -ForegroundColor and -
BackgroundColor parameters to control the text colors for Write-Host, but there are better
approaches.

Verbose and Debug

Write-Verbose and Write-Debug enable you to output information from your script, or function,
when you need it. You can turn off the information during normal usage and turn it on when you
have a problem. Debug is for outputting developer debug information when your code runs,
similar to the debug log in the event log. The Verbose stream is for giving the end user more
information about the operation they requested.

Note

The Information stream is for information about how the operation is proceeding, equivalent to
the analytic log in the event log.

Today in DSC, verbose messages are recorded in the analytic log. If the Information stream had
been around when DSC was started, it would have been using Information and not Verbose.

You use these two cmdlets together with the [CmdletBinding()] attribute that we discussed in
chapter 7. Consider this simple function:

function fdvtest {

 [CmdletBinding()]

 param(

 [Parameter(ValueFromPipeline=$true)]

 [int]$i,

 [int]$mult=2

)

 PROCESS {

 $i * $mult

 }

}

The output is

(566)

PS> 1..3 | fdvtest

2

4

6

Look at the function’s syntax:

PS> Get-Command fdvtest -Syntax

fdvtest [[-i] <int>] [[-mult] <int>] [<CommonParameters>]

The CommonParameters include -Verbose and -Debug. Before you can use those parameters and get
any sensible output, you need to add the appropriate statements. Let’s say you want to see a
message before the calculation. You can use Write-Verbose:

function fdvtest {

 [CmdletBinding()]

 param(

 [Parameter(ValueFromPipeline=$true)]

 [int]$i,

 [int]$mult=2

)

 PROCESS {

 Write-Verbose -Message 'Performing multiplication'

 $i * $mult

 }

}

Running the function without the -Verbose switch gives you the same output as previously. When
you run the function with the -Verbose switch

PS> 1..3 | fdvtest -Verbose

VERBOSE: Performing multiplication

2

VERBOSE: Performing multiplication

4

VERBOSE: Performing multiplication

6

you get a clearly labeled message that serves to separate your debugging messages from the
normal output. The verbose messages are in a different color (defaults are yellow in the console
and cyan in the ISE) than the normal output to give further emphasis. Write-Verbose can output
messages that enable you to track the progress of your code.

You can control the color for verbose, debug, warning, error, and information messages using
Tools > Options in the ISE and then selecting Output Streams on the Colors and Fonts tab. In the
console, you can view the colors for the streams using the following:

PS> $host.PrivateData

ErrorForegroundColor : Red

ErrorBackgroundColor : Black

WarningForegroundColor : Yellow

WarningBackgroundColor : Black

DebugForegroundColor : Yellow

DebugBackgroundColor : Black

VerboseForegroundColor : Yellow

VerboseBackgroundColor : Black

ProgressForegroundColor : Yellow

ProgressBackgroundColor : DarkCyan

The colors can be modified. If you don’t like red for the error color:

PS> $host.PrivateData.ErrorForegroundColor = 'Green'

(567)

Your errors are now shown in green! The console settings are on a session basis, so you need to
put the changes into your profile if you want them to be applied to all your console sessions.

Debug messages can also be added to your code:

function fdvtest {

 [CmdletBinding()]

 param(

 [Parameter(ValueFromPipeline=$true)]

 [int]$i,

 [int]$mult=2

)

 BEGIN {

 Write-Debug "`$mult = $mult"

 }

 PROCESS {

 Write-Verbose -Message 'Performing multiplication'

 Write-Debug -Message "`$i = $i"

 $i * $mult

 }

}

In this case, a debug message has been added to give the value of the multiplier and the value of
$i. When you run the function with the -Debug parameter, you’ll see a dialog each time the code
reaches a Write-Debug statement, as shown in figure 15.1.

Figure 15.1. Output when using the -Debug functionality

If you halt or suspend the command, you can step into it and use the standard PowerShell
debugging functionality, which we’ll get to soon.

(568)

Note

When you use the -Verbose or -Debug switch, it will turn on the appropriate output for all cmdlets
in your script or function as well as enabling the appropriate Write cmdlet.

Error, Warning, and Information

In chapter 4 you saw how to redirect output to the Error, Warning, and Information streams. You
can achieve the same thing by using the appropriate Write cmdlet. Unlike the Write-Verbose and
Write-Debug cmdlets from the previous section, you don’t get a switch to enable the functionality
at the script or function level.

When you use Write-Information or Write-Warning, further processing depends on the value of the
appropriate preference variable (or parameter), as shown in table 15.1.

Table 15.1. Cmdlet and preference variable relationships

Category Cmdlet Preference variable Parameter

Information Write-Information $InformationPreference InformationAction
Warning Write-Warning $WarningPreference WarningAction
Error Write-Error $ErrorActionPreference ErrorAction

You can view the current values of the preference variables like this:

PS> Get-Item variable:*preference

Name Value

---- -----

ConfirmPreference High

DebugPreference SilentlyContinue

ErrorActionPreference Continue

ProgressPreference Continue

VerbosePreference SilentlyContinue

WarningPreference Continue

InformationPreference SilentlyContinue

WhatIfPreference False

Write-Error declares a nonterminating error, which won’t stop further processing. As you saw in
chapter 14, you can use Throw to declare a terminating error.

Note

Starting in Windows PowerShell v5, Write-Host is a wrapper for Write-Information. It uses the
Information stream instead of writing directly to the host. You can now use Write-Host to emit
output to the Information stream, but the $InformationPreference preference variable and
InformationAction common parameters don’t affect Write-Host messages.

As usual, the easiest way to explain the use of these cmdlets is with an example:

(569)

1..7 |

foreach {

 switch ($psitem) {

 1 {

 Write-Information -MessageData "Starting. Value is $_" `

 -InformationAction Continue

 Break

 }

 5 {

 Write-Warning -Message "Nearly Finished. Value is $_"

 Break

 }

 7 {

 Write-Error -Message "Value of $_ is too high" `

 -ErrorAction Continue

 }

 default {

 Write-Information -MessageData "Value is $_" `

 -InformationAction Continue

 }

 }

}

When you run this code, you’ll see this output:

Starting. Value is 1

Value is 2

Value is 3

Value is 4

WARNING: Nearly Finished. Value is 5

Value is 6

: <truncated for brevity as repeat of code>

Value of 7 is too high

 + CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException

 + FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErrorException

Notice that the output from Write-Warning has a WARNING: prefix to draw your attention, but that
from Write-Information does not. It is in the standard text color.

When you looked at the event logs in chapter 14, you saw that events were logged under the
categories of Information, Warning, and Error. If you prefer to have the messages from your code
instrumentation written to the event log, you’ll use Write-EventLog. You can even create your own
specific event log, as you’ll see next.

15.1.2. Writing events to the event Log

You can write your Information, Warning, and Error messages to the console, but that assumes that
you’ll be watching execution of the script. If you’re running the code in the middle of the night,
this isn’t an optimum solution. Using the event logs enables you to capture the messages for
future analysis. It’s possible to use one of the existing event logs, but you can create your own:

PS> New-EventLog -LogName PiALog -Source Scripts

You need to provide a name for the log and an event source. Administrative privileges are
required to create event logs. You can have multiple sources per log file, but source names must
be unique on the machine—you can’t use the same source name for sources writing to two
different logs. You can create additional sources:

PS> New-EventLog -LogName PiALog -Source Functions

You can view the sources associated with an individual log file like this:

(570)

PS> Get-CimInstance -ClassName Win32_NTEventLogFile `

-Filter "LogFileName='PiALog'" |

select -ExpandProperty Sources

PiALog

Functions

Scripts

Now that you have your log file, let’s modify the code from the example in the previous section
to use your new log:

1..7 |

foreach {

 switch ($psitem) {

 1 {

 Write-EventLog -Message "Starting. Value is $_" `

 -LogName PiALog -Source Scripts -EntryType Information `

 -EventId 1001

 Break

 }

 5 {

 Write-EventLog -Message "Nearly Finished. Value is $_" `

 -LogName PiALog -Source Scripts -EntryType Warning `

 -EventId 1010

 Break

 }

 7 {

 Write-EventLog -Message "Value of $_ is too high" `

 -LogName PiALog -Source Scripts -EntryType Error `

 -EventId 1020

 }

 default {

 Write-EventLog -Message "Value is $_" `

 -LogName PiALog -Source Scripts -EntryType Information `

 -EventId 1002

 }

 }

}

When you run this code, you won’t see any output. You can view the records written into the
event log like so:

PS> Get-EventLog -LogName PiALog

Index Time EntryType Source InstanceID Message

----- ---- --------- ------ ---------- -------

 7 May 10 11:47 Error Scripts 1020 Value of 7 is too high

 6 May 10 11:47 Information Scripts 1002 Value is 6

 5 May 10 11:47 Warning Scripts 1010 Nearly Finished. Va...

 4 May 10 11:47 Information Scripts 1002 Value is 4

 3 May 10 11:47 Information Scripts 1002 Value is 3

 2 May 10 11:47 Information Scripts 1002 Value is 2

 1 May 10 11:47 Information Scripts 1001 Starting. Value is 1

Using the features described in this section and the previous section, you can instrument your
scripts in order to debug their behavior. Although this is a tried-and-true way of debugging, it’s
reactive, and you can’t work with the script while it’s running. PowerShell provides other
mechanisms to find problems in your scripts. One of these features is strict mode, our next topic.

15.1.3. Catching errors with strict mode

PowerShell provides built-in static and runtime checks to help you catch errors in your scripts.
Static checks are performed at script load/compile time, and runtime checks are dynamic checks
done at runtime.

(571)

Note

These features are similar to Option Explicit in Visual Basic or strict mode in PERL and are
named after the PERL feature.

PowerShell v1 could check for undefined variables through the Set-PSDebug cmdlet. PowerShell
v2 introduced Set-StrictMode, which enables a much more comprehensive set of checks. Set-
StrictMode affects only the current scope and any child scopes, so you can use it in scripts
without affecting the global scope and therefore other scripts.

Note

Strict mode turns on certain checks in regular scripts and functions. PowerShell classes (see
chapter 19) have their own built-in set of strict checks that are always enabled. The checks in
classes are intended to support more robust programming, as opposed to scripting, in
PowerShell. If you’re writing large applications in PowerShell, using classes can result in more
robust code because of these additional checks.

You can control the checks that are performed by using the -Version parameter, which takes 1, 2,
or Latest as an argument controlling whether v1 or v2 checks are enabled, as shown in table 15.2.

Table 15.2. Strict mode versions

Version Action

1 Prohibits references to uninitialized variables, except for
uninitialized variables in strings

2

As 1, plus:

Prohibits references to uninitialized variables (including
uninitialized variables in strings)
Prohibits references to nonexistent properties of an object
Prohibits function calls that use the syntax for calling
methods
Prohibits a variable without a name (${}) (PowerShell v5
checks for this with strict mode turned off)

Latest Selects the latest (strictest) version available

Unless you have a specific need to do otherwise, it’s usually recommended to use Latest as your
version.

Catching uninitialized variable use in string expansions

Strict mode in v1 caught only references to uninitialized variables in script text. It didn’t catch

(572)

the use of uninitialized variables in string expansions. Strict mode v2 fixes this, and the use of
uninitialized variables is caught everywhere. In non-strict mode, for example, when you
reference a nonexistent variable, it’s treated as being equivalent to $null.

Now turn on strict mode v1 and reference a nonexistent variable:

PS> Set-StrictMode -Version 1

PS> $nosuchvariable

The variable '$nosuchvariable' cannot be retrieved because it

has not been set.

At line:1 char:1

+ $nosuchvariable

+ ~~~~~~~~~~~~~~~

 + CategoryInfo :

 InvalidOperation: (nosuchvariable:String) [], RuntimeException

 + FullyQualifiedErrorId : VariableIsUndefined

You get the uninitialized variable message as expected. Now put the string in quotes

PS> "$nosuchvariable"

and it expands the string with no errors. Turn on strict mode v2 and try the string expansion:

PS> Set-StrictMode -Version 2

PS> "$nosuchvariable"

The variable '$nosuchvariable' cannot be retrieved because it

has not been set.

At line:1 char:2

+ "$nosuchvariable"

+ ~~~~~~~~~~~~~~~

 + CategoryInfo :

 InvalidOperation: (nosuchvariable:String) [], RuntimeException

 + FullyQualifiedErrorId : VariableIsUndefined

You also get the uninitialized variable error in the string expansion case.

Catching attempts to read nonexistent properties

To have appropriately shell-like behavior, by default PowerShell allows you to try dereferencing
nonexistent properties. That means you can do things like display a mixed collection of
[System.IO.FileInfo] and [System.IO.DirectoryInfo] objects, including a reference to the Length
property that doesn’t exist for [System.IO.DirectoryInfo] objects. Imagine how annoying it would
be to type dir and get a lot of “property not found” errors. Try running

PS> dir | foreach { $_.name + " " + $_.length }

in your home directory with strict mode v2 turned on, and you’ll see what we mean.

Note

This applies only to explicit property references in script text. Cmdlets still ignore missing
properties even when strict mode v2 is turned on. The interactive environment is pretty much
unusable otherwise.

Try a simple example. First, turn off strict mode and then get a [DateTime] object into the variable

(573)

$date:

PS> Set-StrictMode -Off

PS> $date = Get-Date

Now reference a nonexistent property

PS> $date.nosuchproperty

and no error is raised. Now turn on strict mode and try accessing the property:

PS> Set-StrictMode -Version Latest

PS> $date.nosuchproperty

The property 'nosuchproperty' cannot be found on this object.

Verify that the property exists.

At line:1 char:1

+ $date.nosuchproperty

+ ~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : NotSpecified: (:) [], PropertyNotFoundException

 + FullyQualifiedErrorId : PropertyNotFoundStrict

This time you get an error. As with the variable check, property checks will help catch typos in
your script. It would be better if you could catch them at compile time, but then you’d need to
know the types of all the expressions. Because PowerShell is dynamically typed, that isn’t
possible.

Note

But what about checking against the type constraints on variables, you might ask? Strict mode
could include this kind of check, but it can’t do a complete check because PowerShell allows
extensions on instances as well as types. For example, when you look at a file entry in
PowerShell, you see a Mode property. The underlying .NET type [System.IO.FileInfo] doesn’t
have a property with this name. The Mode property is one of the properties added by the
PowerShell runtime. Because these properties can be added at runtime, even for a type-
constrained variable, the most you could say is that the member probably won’t exist by the time
the statement is executed. Only the runtime check is guaranteed to be correct.

Checking for functions called like methods

An extremely common source of errors for experienced programmers is to call functions in the
same way you would in other languages or in the same way methods are called in PowerShell.
Let’s see this in action. Turn off strict mode:

PS> Set-StrictMode -Off

then define a function that looks like this:

PS> function divide ($x,$y) { $x / $y }

This function takes two arguments, divides the first by the second, and returns the result. Now
let’s call it like a method, with parentheses around a function. This is how you’d call a function
in a language like C#:

PS> divide(9, 3)

(574)

Method invocation failed because [System.Object[]]

does not contain a method named 'op_Division'.

At line:1 char:27

+ function divide ($x,$y) { $x / $y }

+ ~~~~~~~

 + CategoryInfo : InvalidOperation:

(op_Division:String) [], RuntimeException

 + FullyQualifiedErrorId : MethodNotFound

What happens is that you get a surprising error. You know that numbers can be divided, so why
does this fail? By putting the two arguments in parentheses, you’re telling the system to pass a
single argument, which is an array of two numbers. We talked about this problem in section
6.2.1. Now turn on strict mode and try it again:

PS> Set-StrictMode -Version Latest

PS> divide(9, 3)

The function or command was called as if it were a method. Parameters should

 be separated by spaces. For information about parameters, see the about_

 Parameters Help topic.

At line:1 char:1

+ divide(9, 3)

+ ~~~~~~~~~~~~

 + CategoryInfo : InvalidOperation: (:) [], RuntimeException

 + FullyQualifiedErrorId : StrictModeFunctionCallWithParens

This time you get a prescriptive error message explaining exactly what’s gone wrong. Follow the
instructions, rewriting the function call, removing the parameters, and separating it with spaces
instead of a comma, and then try running it again:

PS> divide 9 3

3

This time it works.

This technique may seem like a trivial, almost silly check, but this issue has caused many
problems for many people, including members of the PowerShell team.

Applying strict mode to scripts

You now know what the checks are—let’s talk about when to apply them. In general, it’s
recommended that new code be written to be strict mode Latest “clean.” The code should
produce no errors when strict mode Latest is turned on. The temptation is to leave it on all the
time.

Unfortunately, this approach can break a lot of script code. Many scripts are written to take
advantage of the default property dereference behavior. That means a lot of fixing may be
necessary. There are also cases where rewriting the code to not depend on this behavior can be
messy—the code would have to either explicitly check for the existence of a property before
trying to access it or explicitly trap the exception and ignore it.

Note

Our recommendation is to use strict mode when developing but ensure it’s turned off in
production.

(575)

Consider the example at the beginning of the section that addressed catching references to
nonexistent properties:

PS> dir | foreach { $_.name + " " + $_.length }

This code results in an error every time dir returns a directory object. To make this work in strict
mode Latest, you’d have to do something like

PS> dir | foreach { $_.name + " " + $(try { $_.length } catch { $null })}

where the try/catch statement is used to process the error. In this code, if there’s no exception,
then the value of the property is returned. If there is an exception, the catch block returns $null.
(At least the expression-oriented nature of the PowerShell language simplifies this example
instead of requiring intermediate variables and an if statement.)

15.1.4. Static analysis of scripts

Most of the checks performed in strict mode are applied only at runtime, but there are some other
checks you can do statically before you ever run the script. This was made possible in
PowerShell v2 by the introduction of the PowerShell tokenizer API, a .NET class that takes the
text of a PowerShell script and breaks it down into pieces called tokens.

Tokens correspond to the types of elements found in the PowerShell language, which include
things like keywords and operators—all the things we talked about in chapters 2 through 8.
Unfortunately, this mechanism isn’t packaged in a convenient way for scripting. It was designed
for the PowerShell ISE, but with a little work it’s still usable from a script. First, we’ll discuss
how to use the API. We’ll start by tokenizing a small piece of script text. If you have strict mode
turned on, you’ll have to turn it off for these examples:

PS> Set-StrictMode -Off

Put the text you want to tokenize into a variable:

PS> $script = "function abc ($x) {dir; $x + 1}"

The tokenizer returns two things: the tokens that make up the script and a collection of any errors
encountered while parsing the script. Because the API is designed for use from languages that
can’t return multiple values, you also need to create a variable to hold these errors:

PS> $parse_errs = $null

Now you’re ready to tokenize the script. Do so by calling the static method Tokenize() on the
PSParser class as follows:

PS> $tokens = [System.Management.Automation.PSParser]::

Tokenize($script,[ref] $parse_errs)

This code will put the list of tokens in the $tokens variable, and any parse errors will be placed
into a collection in $parse_errs. Now dump these two variables—$parse_errs to the error stream
and $tokens to the output stream:

PS> $parse_errs | Write-Error

PS> $tokens | Format-Table -AutoSize Type,Content,StartLine,StartColumn

 Type Content StartLine StartColumn

 ---- ------- --------- -----------

(576)

 Keyword function 1 1

 CommandArgument abc 1 10

 GroupStart (1 14

 GroupEnd) 1 15

 GroupStart { 1 17

 Command dir 1 18

StatementSeparator ; 1 21

 Operator + 1 24

 Number 1 1 26

 GroupEnd } 1 27

Because the text being tokenized is a valid PowerShell script, no errors are generated. You do get
a list of all the tokens in the text displayed on the screen. You can see that each token includes
the type of the token, the content or text that makes up the token, as well as the start line and
column number of the token. You’ll now wrap this code into a function to make it easier to call.
Name the function Test-Script:

function Test-Script {

 param (

 [Object]$script

)

 $parse_errs = $null

 $tokens = [system.management.automation.psparser]::

 Tokenize($script,[ref] $parse_errs)

 $parse_errs | Write-Error

 $tokens

}

Try it on a chunk of invalid script text:

PS> Test-Script "function ($x) {$x + }" |

Format-Table -AutoSize Type,Content,StartLine, StartColumn

Test-Script : System.Management.Automation.PSParseError

At line:1 char:1

+ Test-Script "function ($x) {$x + }" |

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException

 + FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErrorException,Test-Script

Test-Script : System.Management.Automation.PSParseError

At line:1 char:1

+ Test-Script "function ($x) {$x + }" |

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException

 + FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErrorException,Test-Script

Test-Script : System.Management.Automation.PSParseError

At line:1 char:1

+ Test-Script "function ($x) {$x + }" |

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException

 + FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErrorException,Test-Script

Test-Script : System.Management.Automation.PSParseError

At line:1 char:1

+ Test-Script "function ($x) {$x + }" |

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException

 + FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErrorException,Test-Script

 Type Content StartLine StartColumn

 ---- ------- --------- -----------

 Keyword function 1 1

GroupStart (1 10

 GroupEnd) 1 11

GroupStart { 1 13

 Operator + 1 15

 GroupEnd } 1 17

(577)

Now you see a number of errors. When you run a script that has syntax errors, you get one error
before the parsing continues. With the tokenizer API, the parser tries to reset itself and continue.
This means that you may be able to deal with more errors at one time, but the reset process
doesn’t always work and sometimes you get incorrect errors.

Note

In many cases the first error is the culprit, and correcting that also removes subsequent errors in
the report. But it’s not always the case, so be prepared for several passes through the process.

The other thing to notice is that in the list of tokens being displayed, some of the tokens in the
script, such as the variables, aren’t output. Again, this is because when the parser attempts to
recover, it can get confused and miss some tokens. That’s why when you run a script you get
only one error displayed. You know the first error displayed by the tokenizer is correct but aren’t
sure about the rest. It’s simpler, if not more efficient, to deal with one correct error at a time
rather than a collection of possible incorrect errors.

Let’s rewrite the test function. You’re going to do a little work to clean up the errors, but you’ll
also add a new static check. Because the tokenizer output tells you what tokens are commands,
you can use Get-Command to see if there are any references to commands that don’t exist. This
won’t always be an error—a script may load a module defining the missing command at runtime
—so you need to consider it a warning to investigate instead of an error. Here’s what the new
script looks like:

function Test-Script {

 param (

 [Object]$script

)

 $parse_errs = $null

 $tokens = [system.management.automation.psparser]::

 Tokenize($script, [ref] $parse_errs)

 foreach ($err in $parse_errs)

 {

 'ERROR on line ' +

 $err.Token.StartLine +

 ': ' + $err.Message +

 "`n"

 }

 foreach ($token in $tokens)

 {

 if ($token.Type -eq 'CommandArgument')

 {

 $gcmerr = Get-Command $token.Content 2>&1

 if (! $?)

 {

 'WARNING on line ' +

 $gcmerr.InvocationInfo.ScriptLineNumber +

 ': ' + $gcmerr.Exception.Message +

 "`n"

 }

 }

 }

}

The first part of the script hasn’t changed much—you tokenize the string and then display any
errors, though in a more compact form. Then you loop through all of the tokens looking for code
commands. If you find a command, you check to see if it exists. If not, you display a warning.

(578)

Let’s try it out. First, define the test script with expected errors and an undefined command:

$badScript = @'

for ($a1 in nosuchcommand)

{

 while ()

 $a2*3

}

'@

Now run the test and see what you get:

PS> Test-Script $badScript

ERROR on line 1: Unexpected token 'in' in expression or statement.

ERROR on line 3: Missing expression after 'while' in loop.

ERROR on line 3: Missing statement body in while loop.

WARNING on line 17: The term 'nosuchcommand' is not recognized as the name of

a cmdlet, function, script file, or operable program. Check the spelling of

the name, or if a path was included, verify that the path is correct and try

again.

In the output you see the expected syntax errors, but you also get a warning for the undefined
command. You could do many things to improve this checker, such as looking for variables that
are used only once. By using these analysis techniques on the script text, you can find potential
problems much sooner than you would if you waited to hit them at runtime.

Note

We include this section to introduce the basic concept of tokens and the tokenizer. In practice,
there are powerful static analysis tools that do far more than what we’ve looked at in these
simple examples. The PSScriptAnalyzer, created by the PowerShell team, provides an extensive
set of rules for analyzing your code. There’s also a third-party commercial offering tool called
ISESteroids, which provides an excellent interactive code analysis experience inside the
PowerShell ISE. Both of these tools are available from the PowerShell Gallery. Using these tools
is highly recommended.

So far, we’ve looked at a number of tools and approaches that you can use to learn what’s wrong
with your scripts. But how do you figure out what’s going on when other people are running
your (or other people’s) scripts in a different environment, possibly at a remote location? To help
with this, PowerShell includes a session transcript mechanism. You’ll learn how this works in
the next section.

(579)

15.2. Capturing session output

When trying to debug what’s wrong with someone’s script at a remote location, you’ll find it
extremely helpful to see the output and execution traces from a script run. PowerShell allows you
to do this via a mechanism that captures console output in transcript files. This transcript
capability is exposed through the Start-Transcript and Stop-Transcript cmdlets.

Note

Up until PowerShell v5, the implementation of these cmdlets is a feature of the console host
(PowerShell.exe) and so is not available in other hosts, including the PowerShell ISE. This
changed in PowerShell v5 when the transcript functionality was added to the PowerShell ISE.
Other host applications may have similar mechanisms.

15.2.1. Starting the transcript

To start a transcript, run Start-Transcript, as shown in the next example. Let’s begin by running
a command before starting the transcript so you can see what is and is not recorded, as shown in
figure 15.2.

Figure 15.2. Using the transcript cmdlets

(580)

Run Get-Date to get the current date and then start the transcript. If you didn’t specify a filename
for the transcript file, one will be automatically generated for you in your Documents directory.
Now run a couple of additional commands and stop the transcript. Again, it conveniently tells
you the name of the file containing the transcript:

Now let’s see what was captured:

PS> Get-Content -Path C:\test\T20170510.txt

Windows PowerShell transcript start

Start time: 20170510105524

Username: W510W16\Richard

RunAs User: W510W16\Richard

Machine: W510W16 (Microsoft Windows NT 10.0.14393.0)

Host Application: powershell

Process ID: 8732

PSVersion: 5.1.14393.1066

PSEdition: Desktop

PSCompatibleVersions: 1.0, 2.0, 3.0, 4.0, 5.0, 5.1.14393.1066

BuildVersion: 10.0.14393.1066

CLRVersion: 4.0.30319.42000

WSManStackVersion: 3.0

PSRemotingProtocolVersion: 2.3

SerializationVersion: 1.1.0.1

Transcript started, output file is T20170510.txt

PS>

PS>2 + 2

4

(581)

PS>

PS>$PSVersionTable

Name Value

---- -----

PSVersion 5.1.14393.1066

PSEdition Desktop

PSCompatibleVersions {1.0, 2.0, 3.0, 4.0...}

BuildVersion 10.0.14393.1066

CLRVersion 4.0.30319.42000

WSManStackVersion 3.0

PSRemotingProtocolVersion 2.3

SerializationVersion 1.1.0.1

PS>

PS>Stop-Transcript

Windows PowerShell transcript end

End time: 20170510105547

The transcript file includes a header showing you the start time, the name of the user running the
script, and the name and OS information about the computer on which the command is run.

You see the filename yet again because it was written out after transcription was turned on and
so is captured in the transcript.

After that, you see the output of the commands you ran (including Stop-Transcript) and finally a
trailer showing the time the transcript stopped.

15.2.2. What gets captured in the transcript

It seems obvious that everything should get captured in the transcript file, but that isn’t the case
in the early versions of PowerShell. The transcript captured everything written through the host
APIs. What didn’t get captured was anything that bypasses these APIs and writes directly to the
console. This missing information is most significant when you’re running applications like
ipconfig.exe. If these commands weren’t redirected within PowerShell, then their output went
directly to the console and bypassed the host APIs. Instead of running

PS> cmd /c echo THIS WONT BE CAPTURED

you had to use

PS> cmd /c echo THIS WILL BE CAPTURED 2>&1 | Write-Host

New in Powershell v5 is the -IncludeInvocationHeader parameter, which adds a time stamp when
commands are run. An example is shown in figure 15.3.

Figure 15.3. Using the -IncludeInvocationHeader parameter in a transcript

(582)

The transcript file looks like this:

Windows PowerShell transcript start

Start time: 20170510110151

Username: W510W16\Richard

RunAs User: W510W16\Richard

Machine: W510W16 (Microsoft Windows NT 10.0.14393.0)

Host Application: powershell

Process ID: 8732

PSVersion: 5.1.14393.1066

PSEdition: Desktop

PSCompatibleVersions: 1.0, 2.0, 3.0, 4.0, 5.0, 5.1.14393.1066

BuildVersion: 10.0.14393.1066

CLRVersion: 4.0.30319.42000

WSManStackVersion: 3.0

PSRemotingProtocolVersion: 2.3

SerializationVersion: 1.1.0.1

Transcript started, output file is c:\test\T20170510_2.txt

PS>

Command start time: 20170510110156

PS>Get-Date

10 May 2017 11:01:56

PS>

Command start time: 20170510110204

PS>ping 127.0.0.1

Pinging 127.0.0.1 with 32 bytes of data:

Reply from 127.0.0.1: bytes=32 time<1ms TTL=128

Reply from 127.0.0.1: bytes=32 time<1ms TTL=128

Reply from 127.0.0.1: bytes=32 time<1ms TTL=128

Reply from 127.0.0.1: bytes=32 time<1ms TTL=128

(583)

Ping statistics for 127.0.0.1:

 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

 Minimum = 0ms, Maximum = 0ms, Average = 0ms

PS>

Command start time: 20170510110218

PS>Stop-Transcript

Windows PowerShell transcript end

End time: 20170510110218

Using the transcript cmdlets, it’s easy to have the remote user capture the output of their session.
Have the remote user call Start-Transcript, run their script, and then call Stop-Transcript. This
process will produce a transcript file that the user can send to you for examination.

So far, we’ve looked at ways of capturing information about code that’s executing. It’s time to
go deeper and learn how to interactively debug your code to discover why things aren’t working
as they should.

(584)

15.3. PowerShell script debugging features

The PowerShell debugging tools have grown over the versions of PowerShell. PowerShell v1
didn’t include a debugger but did have some limited tracing capabilities. Version 2 introduced a
much more comprehensive debugger along with graphical debugging support in the ISE. With
PowerShell, you can now debug jobs, workflows, and PowerShell runspaces as well as
processes.

The debugging tools available are outlined in table 15.3.

Table 15.3. Debugging tools

PowerShell debugger Debugger connectivity Tracing

Get-PSCallStack
Disable-PSBreakpoint
Enable-PSBreakpoint
Get-PSBreakpoint
Remove-PSBreakpoint
Set-PSBreakpoint

Debug-Job
Debug-Process
Debug-Runspace
Disable-RunspaceDebug
Enable-RunspaceDebug
Get-RunspaceDebug
Set-PSDebug
Wait-Debugger

Get-TraceSource
Set-TraceSource
Trace-Command

We’ll start by looking at the limited (but still useful) tracing features carried over from v1. Then
you’ll learn how to debug from the ISE. You’ll see the command-line debugger and the
additional capabilities it has to offer, including debugging jobs, workflows, and remote scripts.
Finally, we’ll look at the command-tracing capabilities.

15.3.1. The Set-PSDebug cmdlet

The Set-PSDebug cmdlet can be used to set the PowerShell v1 strict mode, although as shown in
section 15.1.3 Set-StrictMode gives more options. The debugger has subsumed what Set-PSDebug
does, making the cmdlet effectively redundant. We’ll mention the remaining features for
completeness but strongly advise you to use the debugger for these actions.

Tracing statement execution

You turn on basic script tracing as follows:

PS> Set-PSDebug -Trace 1

In this trace mode, each statement executed by the interpreter will be displayed on the console.
The debugging output is prefixed with the DEBUG: tag and is typically shown in a different color
than normal text. Note that the entire script line is displayed. This means that if you have a loop
all on one line, you’ll see the line repeated.

(585)

Note

This is a good reason, even though PowerShell doesn’t require it, to write scripts with one
statement per line: it can help with debugging, both when tracing and when using the debugger to
set breakpoints.

Basic tracing doesn’t show you any function calls or scripts you’re executing. You don’t see
when you enter the function. To get this extra information, you need to turn on full tracing:

PS> Set-PSDebug -Trace 2

DEBUG: 1+ >>>> Set-PSDebug -Trace 2

Note

You only see the DEBUG:.. output if you already have tracing enabled. Use Set-PSDebug -Trace 0 to
turn tracing off.

Now define a function:

PS> function foo {"`$args is " + $args}

When you execute the function in this mode, you also see the function calls, as shown in figure
15.4.

Figure 15.4. Tracing function calls

(586)

In addition to function calls, full tracing adds to the display by showing variable assignments.

For each iteration in the loop, tracing shows the following:

Loop iteration
Function call
Statement doing the assignment
Assignment to $x, including the value assigned
Statement that emits the value

The value displayed is the string representation of the object being assigned, truncated to fit in
the display. It depends on the ToString() method defined for that object to decide what to display.

(587)

For arrays and other collections, it shows you a truncated representation of the elements of the
list. Overall, script tracing is pretty effective, but sometimes you still need to add calls to the
Write cmdlets, as discussed in section 15.1.1.

Debugging scripts run by other people

The other thing to remember is PowerShell’s transcript capability. Transcripts combined with
tracing provide a valuable tool to help with debugging scripts that are being run by other people
in your organization. By capturing the trace output in a transcript file, you can get a much better
idea of what a script is doing in the other user’s environment.

Tracing is also valuable in debugging remote scripts where you can’t use the ISE debugger, as
you’ll see later in this chapter.

Stepping through statement execution

The next debugging feature we’ll look at is the mechanism that PowerShell provides for stepping
through a script.

Note

Like the tracing mechanism, this stepping feature is also a carryover from PowerShell v1. It’s
largely subsumed by the PowerShell debugger, but there are some advanced scenarios, such as
debugging dynamically generated code, where it’s still quite useful. If you use
[ScriptBlock]::Create() to dynamically generate a scriptblock, you can’t set a breakpoint because
you don’t have a line number in a file to use to set the breakpoint. More on this later.

You turn stepping on by calling the Set-PSDebug cmdlet with the -Step parameter:

PS> Set-PSDebug -Step

Note

Using -Step automatically sets a Trace level of 1.

Rerun the foreach loop and take a look at the prompt that’s displayed:

PS> foreach ($i in 1..3) {foo $i}

Continue with this operation?

 1+ foreach ($i in >>>> 1..3) {foo $i}

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help

(default is "Y"):

The interpreter displays the line to be executed and then asks the user to select Yes, Yes to All,
No, or No to All. The default is Yes.

(588)

If you answer Yes, that line will be executed and you’ll be prompted as to whether you want to
execute the next line. If you answer Yes to All, then step mode will be turned off and execution
will continue normally. If you answer either No or No to All, the current execution will be
stopped and you’ll be returned to the command prompt. There’s no difference in the behavior
between No and No to All.

There’s one more option in the stepping list that we haven’t talked about: Suspend. This option is
interesting enough to cover in its own section.

15.3.2. Nested prompts and the Suspend operation

One of the most interesting aspects of dynamic language environments is that a script can
recursively call the interpreter. You saw this with the Invoke-Expression cmdlet in chapter 10. A
variation is to recursively call the interpreter interactively. This means you are, in effect,
suspending the currently running command and starting a new nested session. This sequence of
events is illustrated in figure 15.5.

Figure 15.5. Suspending execution and entering a nested prompt requires operations on both the host and engine
sides of the session.

In figure 15.5, you see that the user makes a call to the engine using the interfaces provided by
the host application. In this case, instead of returning to the caller, the engine calls back to the
host indicating that it should enter a nested-prompt mode. While in nested-prompt mode, because
the original command pipeline is still active (the engine never returned to the host), the host must
now use nested pipelines to execute commands. This continues until the engine calls the Exit()
API, usually in response to a request from the user, and the host can resume the original pipeline.

The net effect of all this is that you can suspend the currently executing PowerShell pipeline and
interact with PowerShell at the nested prompt. Why is this interesting? Because it allows you to
examine and modify the state of the suspended session by using the regular PowerShell
commands you’re used to. Instead of creating a whole new language for debugger operations,

(589)

you use the same language you’re debugging. This feature is the core of all of the debugging
capabilities in PowerShell.

There are a couple of ways to enter a nested-prompt session, as you’ll see in the next two
sections.

Suspending a script while in step mode

The Suspend operation prompt shown during stepping creates a nested interactive session. Let’s
try it. First, turn on stepping:

PS> Set-PSDebug -Step

Then run a statement that should loop 10 times, printing out the numbers 1–10:

PS> $i=0; while ($i++ -lt 10) { $i }

You’ll see all the intermediate blather. Keep stepping until the first number is displayed.

At this point, use the Suspend operation to suspend stepping. When prompted, respond by typing
s followed by pressing Enter instead of only pressing Enter. This leaves you at the position
shown in figure 15.6.

Figure 15.6. Suspending execution of a script

You immediately receive a new prompt. In figure 15.6 the prompt changes from PS> to PS>>.

Note

The way to tell when you’re in nested-prompt mode is to check the $NestedPromptLevel variable.

(590)

If you’re in a nested prompt, this variable will be greater than 0.

In this nested prompt, you can do anything you’d normally do in PowerShell. In this case, you
want to inspect the state of the system. For example, let’s check to see what the variable $i is set
to:

PS> $i

1

But you’re not limited to inspecting the state of the system: you can change it. Let’s make the
loop end early by setting the value to something larger than the terminating condition. Set it to
100.

Now exit the nested-prompt session with the normal exit statement. This returns you to the
previous level in the interpreter where, because you’re stepping, you’re prompted to continue.
Respond by typing a followed by pressing Enter for [A] Yes to All to get out of step mode. You
can turn off debugging and view the value of $i, as shown in figure 15.7.

Figure 15.7. Modify the value of a variable while the script is suspended.

There are two things to notice here: the loop terminates, and the value of $i is 101 (the loop
incremented before it terminated).

Prompt

If you don’t see the change in prompt shown in figures 15.6 and 15.7, check the prompt function
in your profile. It should contain something like this:

$(if (Test-Path -Path variable:/PSDebugContext) {'[DBG]:'}

else {''}) + "PS$('>' * ($nestedPromptLevel + 1)) "

This sets the prompt to PS> for normal use and adds a further > for each level of nesting that you
enter. If you switch to the debugging prompt (section 15.4.1), the prompt changes to [DBG]: PS>>.

(591)

Another > character will be added if you enter a nested prompt while in debug mode.

You can see other options for including in your prompt in the about_prompts help file.

Using the Suspend feature, you can stop a script at any point and examine or modify the state of
the interpreter. You can even redefine functions in the middle of execution (although you can’t
change the function that’s currently executing). This makes for a powerful debugging technique,
but it can be annoying to use stepping all the time. Also, many users forget to end Suspend
mode. This is where having a real debugger makes all the difference.

PowerShell debugger

With PowerShell v2, a powerful new debugger was added to the product. It can be used in
graphical mode (in the ISE) or can be accessed through the debugging cmdlets. The operations of
the graphical debugger are performed through the debugging cmdlets, so our discussion will
center on them.

(592)

15.4. Command-line debugging

Given the nature of the PowerShell environment, you need to support debugging in a variety of
environments. The most effective way to do that is to enable debugging scripts from the
command line.

Note

The graphical debugger is built on top of the commands we’re going to cover in this section.
Anything that can be done in the graphical debugger can be done from the command line, but the
commands provide a great deal of power that isn’t exposed in the graphical debugger.

This makes it possible to use the debugger from the console host as well. As always, these
debugging features are surfaced through a set of cmdlets. The cmdlets are listed in table 15.4.

Table 15.4. The PowerShell debugger cmdlets

Cmdlet Description

Get-PSCallStack Gets the current call stack
Enable-PSBreakPoint Enables an existing breakpoint
Disable-PSBreakPoint Disables a breakpoint without removing it
Set-PSBreakPoint Sets a breakpoint
Get-PSBreakPoint Gets the list of breakpoints
Remove-PSBreakPoint Removes an existing breakpoint

Command-line debugging is also important for another reason: There are many more things you
can do using these cmdlets, including writing scripts to debug scripts. All the features you’ve
seen in the GUI debugger are available from the command line, but not all the command-line
features are available from the GUI. In fact, the GUI debugger surfaces only a portion of the
functionality of what can be done with the PowerShell debugger. In the next few sections, we’ll
dig into these capabilities.

15.4.1. Working with breakpoint objects

Let’s begin our discussion by looking at how breakpoints are implemented. So far, you’ve seen a
fairly conventional debugger experience, but the introspective nature of PowerShell allows you
to do much more when working with breakpoints. As with most everything else, breakpoints in
PowerShell are objects (as you’ll see in a moment) that you can script against.

Breakpoints have an interesting property, -Action, which holds instances of our old friend, the
scriptblock. By specifying actions in scriptblocks, breakpoints can do much more than interrupt
execution when the breakpoint is hit. Using scriptblocks allows you to perform arbitrary actions
controlling when or even whether the breakpoint fires. Let’s see how this works with a simple

(593)

test script (save as testscript2.ps1):

PS> @'

"Starting"

$sum = 0

foreach ($i in 1..10)

{

 $sum += $i

}

"The sum is $sum"

'@ > testscript2.ps1

This script loops over the numbers from 1–10, summing them and then printing the result. Now
define a breakpoint for this script using the Set-PSBreakPoint command:

PS> $firstBP = Set-PSBreakpoint -Script testscript2.ps1 -Line 4 `

 -Action {

 if ($i -gt 3 -and $i -lt 7)

 {

 Write-Host "> DEBUG ACTION: i = $i, sum = $sum"

 }

}

This command specifies that a scriptblock will be executed every time you hit line 4 in the test
script. In the body of the scriptblock, you’re checking to see if the value of $i is greater than 3
and less than 7. If so, you’ll display a message. You have to use Write-Host to display this
message because the results of the scriptblock aren’t displayed. The Set-PSBreakpoint command
returns an instance of a breakpoint object. Let’s display it as a list so you can see its members:

PS> $firstBP | Format-List

Id : 1

Script : C:\test\testscript2.ps1

Line : 4

Column : 0

Enabled : True

HitCount : 0

Action :

 if ($i -gt 3 -and $i -lt 7)

 {

 Write-Host "> DEBUG ACTION: i = $i, sum = $sum"

 }

This code shows the full path to the script and the line in the script that will trigger the action as
well as the action itself.

Note

The Id number may be different in your case depending on other actions you’ve taken in the
console. Id numbers start at zero.

You can use Get-Member to examine the breakpoint object:

PS> Get-PSBreakpoint | Get-Member

 TypeName: System.Management.Automation.LineBreakpoint

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

(594)

GetType Method type GetType()

ToString Method string ToString()

Action Property scriptblock Action {get;}

Column Property int Column {get;}

Enabled Property bool Enabled {get;}

HitCount Property int HitCount {get;}

Id Property int Id {get;}

Line Property int Line {get;}

Script Property string Script {get;}

In this output, you see some familiar bits of information: the breakpoint ID and the line and
script where it applies. The HitCount property records the number of times a breakpoint has been
hit. The Action property you’ve already met.

Run the test script to see how it works:

PS> .\testscript2.ps1

Starting

> DEBUG ACTION: i = 4, sum = 6

> DEBUG ACTION: i = 5, sum = 10

> DEBUG ACTION: i = 6, sum = 15

The sum is 55

The output shows the value of $i and $sum as long as $i is between 3 and 7 as intended.

Before we move on to the next example, remove all the breakpoints so they don’t confuse the
results in the example:

PS> Get-PSBreakpoint | Remove-PSBreakpoint

Using the HitCount property

The HitCount property is interesting because the scriptblock can control whether or not a script
breaks. You may want the script to break only after a certain number of iterations or if a variable
has a specific value. Here’s an example:

Get-PSBreakpoint | Remove-PSBreakpoint

Write the value each time

$null = Set-PSBreakpoint -line 19 -script example.ps1 -Action {

 Write-Verbose -verbose "The value of num is $num"

}

Break the fifth time the breakpoint has been encountered

$null = Set-PSBreakpoint -line 19 -script example.ps1 -Action {

 if ($_.HitCount -eq 5)

 {

 break

 }

}

foreach ($num in 1 .. 10)

{

 "Num is $num"

}

"I'm done"

The use of break and continue in breakpoint actions makes it possible to create arbitrary
conditional breakpoints. This is powerful. Also, if you don’t break, then you can do things like
trace execution in a fine-grained way. This is much more effective than Set-PSDebug -trace, for
example.

(595)

This time, instead of only displaying a message, you’re going to use the break keyword to break
the script under specific conditions. Here’s the command to define the new breakpoint:

PS> $firstBP = Set-PSBreakpoint -Script testscript2.ps1 -Line 4 `

-Action {

 if ($i -eq 4)

 {

 Write-Host "> DEBUG ACTION: i = $i, sum = $sum"

 break

 }

}

For this breakpoint, you’ll fire only the action on line 4 of the test script. In the scriptblock body,
you’ll display the message as before and then call break, which will break the execution of the
script, as shown in figure 15.8.

Figure 15.8. Entering the command-line debugger

You have a number of options available at the break prompt. Type ? at the break prompt to view
them. Use the c command to continue execution and complete the script. The completed script
displays the sum. Don’t forget to clean up the breakpoint.

Now let’s move on to the next example.

15.4.2. Setting breakpoints on commands

The most common scenario using the debugger involves setting breakpoints on lines in a file, but
it’s also possible to break on a specific command. Define a simple function

PS> function hello { 'Hello world!' }

(596)

and set a breakpoint on that function:

PS> Set-PSBreakpoint -Command hello

This time you won’t associate an action and you’ll allow the default behavior—causing a break
in execution—to occur. Execute the function:

PS> hello

Hit Command breakpoint on 'hello'

At line:1 char:16

+ function hello { 'Hello world!' }

+ ~

[DBG]: PS>>

When the command is run, you immediately hit the breakpoint. Enter c and allow the function to
complete. Among other things, the ability to set breakpoints on commands as opposed to specific
lines in a script allows you to debug interactively entered functions.

Now let’s move on to the final example in this section: setting breakpoints on variables.

15.4.3. Setting breakpoints on variable assignment

In the previous examples, the breakpoints were triggered when execution reached a certain line
in the script or you entered a command. You can also cause a break when variables are read or
written.

Note

You should always specify the script you’re debugging; otherwise, the breakpoint triggers
whenever the variable changes with unpredictable and potentially undesired results.

In the following command, you’ll specify an action to take when the $sum variable is written:

PS> $thirdBP = Set-PSBreakpoint -Script testscript2.ps1 `

-Variable sum -Mode Write -Action {

 if ($sum -gt 10)

 {

 Write-Host "> VARIABLE sum was set to $sum"

 }

 }

For this breakpoint, you’re using -Mode Write to specify that the breakpoint should trigger only
when the variable is written. In practice, you could have omitted this because Write is the default
mode (the other modes are Read and ReadWrite). Then in the action scriptblock, you’ll use Write-
Host as before to display the value of $sum, but only when it’s greater than 10. Let’s see what this
breakpoint looks like:

PS> $thirdBP | Format-List

Id : 2

Variable : sum

AccessMode : Write

Enabled : True

HitCount : 0

(597)

Action :

 if ($sum -gt 10)

 {

 Write-Host "> VARIABLE sum was set to $sum"

 }

You see the line, variable, and access mode that will trigger the action and the scriptblock to
execute when triggered. Run the test script:

PS> .\testscript2.ps1

Starting

> VARIABLE sum was set to 15

> VARIABLE sum was set to 21

> VARIABLE sum was set to 28

> VARIABLE sum was set to 36

> VARIABLE sum was set to 45

> VARIABLE sum was set to 55

The sum is 55

You see the output messages from the action scriptblock. One of the nice things is that a
variable-based breakpoint isn’t tied to a specific line number in the script, so it will continue to
work even when you edit the script.

Although these examples are by no means exhaustive, they give you a sense of the capabilities of
the PowerShell command-line debugger. You’re able to do much more sophisticated debugging
from the command line. But even for the command line, there are a number of limitations to the
debugging capabilities. We’ll look at these limitations in the final part of this section.

15.4.4. Debugger limitations and issues

The PowerShell debugger, though powerful, does suffer from a couple of limitations. The
dynamic nature of the PowerShell language means that code can be created at any time and you
aren’t always able to set breakpoints on this code. This is where the techniques you saw earlier in
the chapter can help. You can insert the example breakpoint function into dynamic or anonymous
code, allowing you to effectively set a breakpoint in that code.

Also, because variables are never declared, it’s not possible to specify an instance of a variable
via its declaration; you can only select the target variable by name. Scoping a breakpoint to a
particular file or command helps with correctly targeting the desired variable.

So far, we’ve looked at debugging PowerShell scripts on the local machine. Power-Shell v4 and
v5 introduced the capability to debug other types of PowerShell commands and scripts running
on remote machines.

(598)

15.5. Beyond scripts

A number of cmdlets enable you to connect to PowerShell commands. They were listed in table
15.3 under the “Debugger connectivity” header. For convenience, they’re listed again here:

Debug-Job

Debug-Process

Debug-Runspace

Disable-RunspaceDebug

Enable-RunspaceDebug

Get-RunspaceDebug

This list shows that you now have the capability to debug jobs, processes, and PowerShell
runspaces. In addition, you can debug workflows and scripts running on remote computers. Let’s
see how these features work.

15.5.1. Debugging PowerShell jobs

PowerShell jobs were introduced in chapter 13. A job runs in a separate PowerShell session
that’s automatically created, used, and removed. Once the job starts, you don’t have any
visibility inside the job. Now you can use the standard PowerShell debugging techniques to
investigate your jobs.

Let’s run a simple (never–ending) job:

PS> $sb = {

 $i = 0

 while ($true) {

 "My value is $i"

 $i++

 Start-Sleep -Seconds 5

 }

}

PS> Start-Job -Name MyLongJob -ScriptBlock $sb

This sets a variable, $i, to 0. The code then loops through, listing and incrementing the variable
with a five-second pause before running the next iteration of the loop. Figure 15.12 shows this
job running in the ISE.

The job starts and displays the standard job information as expected. You can use Debug-Job to
open the job for debugging. A job can be accessed by Id, Name, InstanceId, or a job object. When
you start debugging the job, you receive a message showing the line of code at which the job has
stopped:

PS> Debug-Job -id 3

Stopped at: while ($true) {

[DBG]: [Job4]: PS C:\Users\Richard\Documents>> $i

9

The Debug-Job cmdlet attaches the ISE (or console) debugger to the job. You can then debug the
script running in the job as if it were running interactively in the ISE (or the console). Once
you’ve finished debugging, you can quit the debugger, by using the quit command, which will
end debugging and stop the job or detach the debugger and allow the job to continue running, as

(599)

shown in figure 15.9.

Figure 15.9. Debugging a PowerShell job

Your prompt changes to the debug prompt, and you can apply standard debugging techniques
such as investigating the value of variables. You can use the detach command to stop debugging
and allow the job to continue.

Note

Don’t forget to stop the job and remove it!

This is a big step forward, but you don’t know where you’re going to enter the script that the job
is running. In a similar manner to other PowerShell scripts, setting a breakpoint in the script the
job is running gives you control of where debugging starts.

(600)

If you modify the previous example to be a script:

PS> @'

$i = 0

while ($true) {

 "My value is $i"

 $i++

 Start-Sleep -Seconds 5

}

'@ > dbjob.ps1

you can set a breakpoint when you create the job:

PS> $job = Start-Job -ScriptBlock {

 Set-PSBreakpoint -Script C:\test\dbjob.ps1 -Line 3

 C:\test\dbjob.ps1

}

The job will run until it hits the breakpoint. It will then pause with a state of AtBreakpoint, as
shown in figure 15.10.

Figure 15.10. Using Set-PSBreakpoint in a PowerShell job

You’ll be presented with a debug prompt and can perform your debugging tasks. Use detach to
leave debugging and return to normal job activity. PowerShell workflows that are running as jobs
also can be debugged using the techniques in this section.

You may often find yourself running scripts on a remote machine. Debugging in this scenario
has been problematic in the past but is now fully supported.

15.5.2. Debugging remote scripts

Debugging of remote scripts through the console was introduced in PowerShell v4. In
PowerShell v5 this was extended to include debugging remote scripts through the ISE.

(601)

Note

The ISE (but not the console) can be used to open, edit, and save remote script files.

Put the dbjob.ps1 script from the previous section onto a remote machine. Remember that you
can copy files to and from remote machines over PowerShell remoting sessions in PowerShell
v5.

Create a remoting session to the machine on which you want to debug the script and enter the
session:

PS> $s = New-PSSession -ComputerName server01

PS> Enter-PSSession -Session $s

You can then open the file for editing:

psedit -FileName C:\scripts\dbjob.ps1

Figure 15.11 shows this in action.

Figure 15.11. Editing and debugging a file on a remote server

Notice the [Remote File] decorator as part of the tab header for the file that’s being edited. When
you edit a file in this manner, you’re accessing it across the remoting session; the file is copied
across the session and stored locally in temporary storage. When changes to the file are saved,
the file is copied back across the remoting session to the machine it came from.

You can set breakpoints in the file and the debugger will be opened when you run the file from
the ISE, as shown in figure 15.12.

Figure 15.12. Debugging a remote script

(602)

The debugger behaves in exactly the same way as when debugging a local script. When you’ve
completed your debugging, type q to exit the debugger and stop script execution. The last
debugging technique we want to show you is debugging PowerShell runspaces.

15.5.3. Debugging PowerShell runspaces

You saw runspaces in chapter 12 when we discussed PowerShell workflows. We’ll cover
runspaces from an API viewpoint in chapter 20, but for now think of a runspace as an instance of
PowerShell running inside an application. The PowerShell console and the ISE are runspaces
you’re already familiar with.

Runspaces are useful in cases where you need high-performance parallel processing, so being
able to debug the scripts inside a runspace will be useful. This is available only in PowerShell v5.

In a newly opened PowerShell console, try the following:

PS> Get-Runspace

Id Name ComputerName Type State Availability

-- ---- ------------ ---- ----- ------------

 1 Runspace1 localhost Local Opened Busy

You’ll see the identical result in a newly opened instance of the ISE.

Create and open a new runspace:

PS> $rsp = [RunspaceFactory]::CreateRunspace()

PS> $rsp.Open()

Note

RunspaceFactory is a shortcut to System.Management.Automation.Runspaces.RunspaceFactory.

(603)

Try Get-RunSpace again:

PS> Get-Runspace

Id Name ComputerName Type State Availability

-- ---- ------------ ---- ----- ------------

 1 Runspace1 localhost Local Opened Busy

 2 Runspace2 localhost Local Opened Available

Now you have two runspaces. The original runspace shows as busy—it’s the console (or the ISE)
that you’re using. The new runspace shows as available, so let’s get it working:

PS> $ps = [powershell]::Create()

PS> $ps.Runspace = $rsp

PS> [void]$ps.AddScript('C:\test\dbjob.ps1')

PS> $as = $ps.BeginInvoke()

Create an instance of PowerShell and set its runspace to the new runspace. Add a script to the
runspace (it’s the same one as in previous examples in this section) and use the BeginInvoke()
method to run the script asynchronously.

Note

PowerShell is a shortcut for System.Management.Automation.PowerShell.

Now that the script is running, you can see that both runspaces are busy:

PS> Get-Runspace

Id Name ComputerName Type State Availability

-- ---- ------------ ---- ----- ------------

 1 Runspace1 localhost Local Opened Busy

 2 Runspace2 localhost Local Opened Busy

You can now attach the debugger to the runspace:

PS> Debug-Runspace -Id 2

Debugging Runspace: Runspace2

To end the debugging session type the 'Detach' command at

the debugger prompt, or type 'Ctrl+C' otherwise.

Entering debug mode. Use h or ? for help.

At C:\test\dbjob.ps1:2 char:8

+ while ($true) {

+ ~~~~~

[DBG]: [Process:4244]: [Runspace2]: PS C:\WINDOWS\system32>>

You can now perform debugging tasks such as viewing variable contents:

[DBG]: [Process:4244]: [Runspace2]: PS C:\WINDOWS\system32>> $i

69

[DBG]: [Process:4244]: [Runspace2]: PS C:\WINDOWS\system32>>

Notice that the debug prompt shows you the process and the runspace you’re debugging. Use
detach to exit the debugger and allow the script to continue. In this case your script is an infinite
loop, so it needs to be stopped:

(604)

PS> $ps.Stop()

PS> Get-Runspace

Id Name ComputerName Type State Availability

-- ---- ------------ ---- ----- ------------

 1 Runspace1 localhost Local Opened Busy

 2 Runspace2 localhost Local Opened Available

Close and remove the runspace:

PS> $rsp.Close()

PS> $rsp.Dispose()

If your runspace is hosted in a different process (application), you can use Enter -PSHostProcess
to start debugging. On remote systems, enable Enter-PSHostProcess on the remote machine and
connect to the process from within a remote PowerShell session. First, identify the PowerShell
host to which you want to connect:

PS> Get-PSHostProcessInfo

ProcessName ProcessId AppDomainName MainWindowTitle

----------- --------- ------------- ---------------

powershell 4244 DefaultAppDomain C:\test

powershell_ise 4624 DefaultAppDomain C:\test

You can then connect to the relevant host. In this case we’re connecting to the ISE from the
PowerShell console:

PS> Enter-PSHostProcess -Id 4624

[Process:4624]: PS C:\Users\Richard\Documents>

The prompt changes to show you’ve connected to a particular process. If the PowerShell host to
which you need to connect is on a remote system, enter a PowerShell remoting session to that
system and then use Enter-PSHostProcess. In either case, use Debug-Runspace, as shown earlier, to
perform your debugging. Exit-PSHostProcess is used to leave the PowerShell runspace.

(605)

15.6. Summary

The Write-* cmdlets can provide diagnostic information during script execution.
The preference variables control the output of the Write-* cmdlets.
Scripts can write diagnostic information to the event logs.
You can create your own event log to store information from PowerShell scripts.
Strict mode captures some errors before the script runs.
Use the latest version of strict mode for maximum effect.
Scripts can be statically analyzed for errors.
PSScriptAnalyzer contains many rules that may identify problems in your code.
Transcripts of the output of a PowerShell session are now available from the ISE and other
hosts as well as the console.
The PowerShell debugger is available in the console and the ISE.
The PowerShell debugger uses the same keyboard shortcuts as Visual Studio.
You can execute non-debugger commands in the debugger because the debugger is a full
reentrant PowerShell session.
You can set a breakpoint in a script to force entry to the debugger when it’s reached based
on arbitrary conditional logic.
You can set breakpoints on lines, variables, or commands.
PowerShell v5 introduces the capability of debugging workflows, PowerShell jobs, scripts
on remote machines, and scripts in other runspaces.

You’ve seen how to manage errors and debug your code in the last two chapters. In the next
chapter, you’ll start to put PowerShell to use when we investigate how to work with PowerShell
data providers, files, and CIM classes.

(606)

Chapter 16. Working with providers, files, and CIM
This chapter covers

PowerShell providers
Files, text, and XML
Accessing COM objects
Using CIM

Outside of a dog, a book is man’s best friend. Inside of a dog, it’s too dark to read.

Groucho Marx

No matter how hard you try to avoid it, you’ll have to work with data at some time while using
PowerShell. The great news is that PowerShell can work with data in about any format you care
to name. The not-so-good news is that you’ll have to learn a bunch of new techniques to work
with that data.

In this chapter, we’re going to concentrate on using PowerShell to

Work with flat files, including XML
Access COM objects
Use the Common Information Model (CIM) classes to perform administration tasks

In addition, PowerShell can expose data stores, such as the registry, SQL Server, or Active
Directory, in the same way as it exposes the file system through PowerShell providers. This
means that once you’ve learned how to work with one provider you have a minimal learning
curve to work with the others. This is huge boost to your productivity and makes you
immediately effective with new technologies.

We’ll start by looking at the providers built in to PowerShell before moving on to the other types
of data.

(607)

16.1. PowerShell providers

PowerShell does a lot of work to promote a consistent user experience when navigating through
hierarchical namespaces. This consistency allows you to use the same commands to work with
the file system, the registry, and other stores. The core mechanism that PowerShell uses to
accomplish this is the PowerShell provider model. A PowerShell provider is a software
component, loaded through modules or snap-ins, that’s used to produce a file system–like
experience for other data stores, such as the registry.

Note

Providers can’t be written in PowerShell; you have to use C# or another compiled language.

PowerShell installs a number of providers by default. You can view the installed providers by
using Get-PSProvider, as shown in figure 16.1.

Figure 16.1. The default PowerShell providers and PSDrives

A provider will expose a data store as one or more named drives. These are referred to as
PSDrives to avoid confusion with the system drives. You can use Get-PSDrive to view the
available drives, also shown in figure 16.1.

We’ll look at PSDrives in more detail later in this section, but first we need to deal with the

(608)

cmdlets that you use to work the data exposed through PSDrives.

16.1.1. PowerShell core cmdlets

A PowerShell provider is an installable component usually packaged as part of a PowerShell
module or snap-in. The basic architecture of the provider module aligns with what are called the
core cmdlets. These cmdlets provide the common (or core) activities and are grouped by noun:
Item, ChildItem, ItemProperty, Content, Location, Path, PSDrive, and PSProvider, as shown in table
16.1.

Table 16.1. PowerShell core cmdlets

Noun Cmdlets Purpose

Item
Clear-Item; Copy-Item; Get-Item; Invoke-Item;
Move-Item; New-Item; Remove-Item; Rename-
Item; Set-Item

Work directly with an
item in a data store

ChildItem Get-ChildItem
Access and manipulate
items that are children
of a particular item

ItemProperty

Clear-ItemProperty; Copy-ItemProperty; Get-
ItemProperty; Move-ItemProperty; New-
ItemProperty; Remove-ItemProperty; Rename-
ItemProperty; Set-ItemProperty

Access and manipulate
the properties of an
item

Content Add-Content; Clear-Content; Get-Content; Set-
Content

Access and manipulate
content of text files

Location Get-Location; Pop-Location; Push-Location;
Set-Location

Access and manipulate
location within a
PSDrive

Path Convert-Path; Join-Path; Resolve-Path; Split-
Path; Test-Path

Access and manipulate,
paths within a PSDrive

PSDrive Get-PSDrive; New-PSDrive; Remove-PSDrive Access and manage
PSDrives

PSProvider Get-PSProvider Access PowerShell
providers

Note

The help files about_Core_Commands and about_providers supply further information.

Many of the core cmdlets have dynamic parameters, that is, parameters that are only available in
one or more PSDrives. A help file is available for each of the built-in providers that details the
dynamic parameters on each core cmdlet. These can be accessed using the Provider name. For
example:

PS> Get-Help Registry

(609)

Providers are the heart of the namespace mechanism, but you don’t usually work directly with
them. Instead, you work through named drives that allow you access to the provider’s
capabilities.

16.1.2. Working with PSDrives

PowerShell providers are typically accessed through named drives. This means that each
provider will have at least one drive associated with it. The drives that a provider exports needn’t
correspond to things like system disk drives (though the file system provider usually has one
drive name exported for each physical drive on the computer). Their names can also be longer
than the single character permitted in drive letters.

The provider-exported named drives are called PSDrives. Similarly, a path that contains a
PSDrive is called a PSPath, and a path that contains a physical drive is called a provider-specific
path. A PSPath must be translated into the provider-specific path form before it can be processed
by the system.

Another useful feature supported by many providers is the ability to create your own drive
names. That means you can, for example, create a PSDrive as a shortcut to a common resource
such as a test folder on your machine:

PS> New-PSDrive -Name Test -PSProvider FileSystem `

-Description 'Test area' -Root C:\test\

Name Used (GB) Free (GB) Provider Root CurrentLocation

---- --------- --------- -------- ---- ---------------

Test 0.00 89.62 FileSystem C:\test\

You’re able to access this drive only from the PowerShell session in which you created it. If you
need this drive in all sessions, add the creation command to your profile. You can create
persistent mapped network drives using the -Persist parameter.

Accessing the documents folder

If you want to work with folders in your user area, use the ~ as a shortcut. For instance:

Get-ChildItem -Path (Resolve-Path -Path ~)

Get-ChildItem -Path (Resolve-Path -Path ~\documents)

That will access your user area and your documents folder, respectively. The call to Resolve-Path
converts the PSPath to an absolute provider path. Note that ~ refers to the home directory of the
current provider, so if you’ve performed a change directory action into the Registry, ~ won’t
refer to your user area any longer.

You can move into the new drive or access it using the core cmdlets from table 16.1. PowerShell
enables you to create appropriate items in the new drive (you couldn’t create a file if you’d used
the registry provider for the new drive) and access the content of those items:

PS> Add-Content -Value 'Hello There' -Path test:\junk.txt

PS> Get-Content -Path Test:\junk.txt

Hello There

Using non-PowerShell applications with a PSDrive

(610)

Non-PowerShell applications don’t understand PSDrives and therefore can’t use paths containing
PSDrives directly. If you’re in the PSDrive, the system auto-matically sets the current directory
properly on the child process object to the provider-specific path before starting the process. You
need to use the provider-specific path as supplied by Resolve-Path:

cmd /c type (Resolve-Path test:/junk.txt).ProviderPath

rather than

cmd /c type test:/junk.txt

PowerShell has another couple of tricks for working with paths.

16.1.3. Working with paths

Most of the time paths work, but there are special cases to consider.

Hidden files aren’t normally displayed by the file system provider; force is required to see
hidden files.
The PowerShell provider infrastructure has universal support for wildcards, though [and]
need special care.
The -LiteralPath parameter suppresses pattern-matching, which makes dealing with paths
containing wildcard characters much easier.

Hidden files

By default, Get-ChildItem doesn’t show hidden files, and the item files won’t access them either.
You need to use the -Force parameter. Try this:

PS> Get-ChildItem -Path C:\ -Filter *.sys

You’ll see nothing returned. Use the –Force parameter

PS> Get-ChildItem -Path C:\ -Filter *.sys -Force

 Directory: C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a-hs- 15/05/2017 09:37 6843224064 hiberfil.sys

-a-hs- 12/05/2017 14:10 2550136832 pagefile.sys

-a-hs- 12/05/2017 14:10 16777216 swapfile.sys

and everything is visible.

The Get-ChildItem cmdlet also has the -Attributes, -Hidden, -ReadOnly, and -System dynamic
parameters on the file system provider for dealing with particular file attributes. The file system
provider also supports the -Directory and -File dynamic parameters for restricting output to
directories and files, respectively.

Paths and wildcards

You can use wildcards any place you can navigate to, even in places such as the PSDrive you

(611)

created earlier:

PS> Get-ChildItem -Path test:*.txt | Format-Table -AutoSize

 Directory: C:\test

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 31/01/2017 20:09 57 ac.txt

-a---- 16/05/2016 10:46 52 data.txt

-a---- 09/05/2017 19:54 804 err.txt

-a---- 08/02/2016 18:52 34 My New File [1].txt

-a---- 08/02/2016 18:52 34 My New File [2].txt

-a---- 08/02/2016 18:52 34 My New File [3].txt

-a---- 15/05/2017 11:11 13 junk.txt

We might all agree that this is a great feature, but there’s a down side. Suppose you want to
access a path that contains one of the wildcard metacharacters: ?, *, [, and]. In the Windows file
system, * and ? aren’t a problem because you can’t use these characters in a filename or
directory name. But you can use [and]. Working with files whose names contain [or] can be
quite a challenge because of the way wildcards and quoting work. Square brackets are used a lot
in filenames that applications create where they avoid collisions by numbering the files. Some
examples are shown in the output immediately preceding this.

If you want only the files that contain [or], you need some special processing because the [is
being treated as part of a wildcard pattern. Clearly you need to suppress treating [as a wildcard
by quoting it. The backtick is the obvious candidate, but a single backtick is insufficient. If you
keep adding backticks, you’ll eventually get a result:

PS> Get-ChildItem -Path test:*````[*.txt

 Directory: C:\test

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 08/02/2016 18:52 34 My New File [1].txt

-a---- 08/02/2016 18:52 34 My New File [2].txt

-a---- 08/02/2016 18:52 34 My New File [3].txt

But if you want all the numbered versions of a particular file, you’ll end up with something like
this:

PS> Get-ChildItem -Path "test:\My New File ````[*````].txt"

You have to use double quotes and four backticks each for the [and]. Much of the complication
arises because you want some of the metacharacters to be treated as literal characters, whereas
the rest still do pattern-matching. Trial and error is usually the only way to get this right.

Note

As we’ve said before, this stuff is hard. It’s hard to understand and it’s hard to get right.
Unfortunately, no one has yet to come up with a better mechanism. This problem occurs in any
language that supports pattern-matching. Patience, practice, and experimentation are the only
ways to figure it out.

You can avoid a lot of the trial and error by using the -LiteralPath parameter.

(612)

The -LiteralPath parameter

The -LiteralPath parameter is available on most core cmdlets. Say you want to copy a file from
the previous example. If you use the regular path mechanism in Copy-Item

PS> Set-Location -Path C:\test\

PS> Copy-Item 'My New File [1].txt' C:\test1\junk.txt

PS> Get-ChildItem -Path C:\test1\junk.txt

Get-ChildItem : Cannot find path 'C:\test1\junk.txt' because it does not exist.

At line:1 char:1

+ Get-ChildItem -Path C:\test1\junk.txt

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : ObjectNotFound: (C:\test1\junk.txt:String) [Get-ChildItem],

ItemNotFoundException

 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.GetChildItemCommand

the copy fails because the square brackets were treated as pattern-matching metacharacters. Now
try it using -LiteralPath:

PS> Copy-Item -LiteralPath 'My New File [1].txt' C:\test1\junk.txt

PS> Get-ChildItem -Path C:\test1\junk.txt

 Directory: C:\test1

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 08/02/2016 18:52 34 junk.txt

This time it works properly.

PowerShell 5.0 enhancement

In PowerShell v5 on Windows 10, the PSReadline module is automatically loaded and brings a
number of enhancements to the PowerShell console. One enhancement deals with escaping
metacharacters in filenames. If you type

PS>Remove-Item -Path C:\test1\junk.txt

PS>Copy-Item my

and then press the Tab key, you’ll find that the filename is expanded with the required escape
characters:

PS>Copy-Item '.\My New File `[1`].txt'

You can then perform the copy:

PS> Copy-Item '.\My New File `[1`].txt' C:\test1\junk.txt

PS> Get-ChildItem -Path C:\test1\junk.txt

 Directory: C:\test1

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 08/02/2016 18:52 34 junk.txt

The -LiteralPath parameter is still necessary for PowerShell versions 4.0 and earlier.

When you pipe the output of a cmdlet such as Get-ChildItem into another cmdlet like Remove-Item,
the -LiteralPath parameter is used to couple the cmdlets so that metacharacters in the paths
returned by Get-ChildItem (including aliases dir or ls) don’t cause problems for Remove-Item. If

(613)

you want to delete the files we were looking at earlier, you can use Get-ChildItem to see them:

PS> Get-ChildItem 'My New File ``[*'

 Directory: C:\test

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 23/01/2016 17:37 12 My New File [1].txt

-a---- 23/01/2016 17:37 12 My New File [2].txt

-a---- 23/01/2016 17:37 12 My New File [3].txt

Now pipe the output of Get-ChildItem into Remove-Item

PS> Get-ChildItem 'My New File ``[*' | Remove-Item

and verify that they’ve been deleted.

This covers the issues around working with file paths. From here we can move on to working
with the file contents after a quick look at the Registry provider.

16.1.4. The Registry provider

PowerShell uses paths to access many types of hierarchical information on a Windows computer.
Probably the most important type of hierarchical information is the Registry, a store of
hierarchical configuration information, much like the file system. But there’s one significant
difference—in the Registry, a container has two axes: children and properties or, as you’re more
used to calling them from hashtables, keys and values. This is one of the more complex scenarios
that the provider model addresses.

In the Registry provider, it’s no longer sufficient to have only the path; you also need to know
whether you’re accessing a name or a property. Let’s take a look. Start by cd’ing to the
PowerShell hive in the Registry:

PS> cd hklm:\software\microsoft\powershell

Let’s see what’s there:

PS> Get-ChildItem

 Hive: HKEY_LOCAL_MACHINE\software\microsoft\powershell

Name Property

---- --------

1 Install : 1...

3 ConsoleHostShortcutTarget : C:\..

Unfortunately, the default display for a Registry entry is a bit cryptic, and for once using Format-
List doesn’t make it any more comprehensible. But you found an item named 1, which we can
dig into:

PS> Get-ChildItem ./1

 Hive: HKEY_LOCAL_MACHINE\software\microsoft\PowerShell\1

Name Property

---- --------

0409 Install : 1

PowerShellEngine ApplicationBase : C:\Win...

PSConfigurationProviders

ShellIds

(614)

You see information about the subkeys, but what about accessing the properties? First, you need
to determine if there are any subkeys:

PS> Get-Item ./1 | select Property

Property

{Install, PID}

You then use the Get-ItemProperty cmdlet to access the property:

PS> Get-ItemProperty -Path ./1 -Name PID

PID : 89383-100-0001260-04309

PSPath : Microsoft.PowerShell.Core\Registry::

 HKEY_LOCAL_MACHINE\software\microsoft\

 PowerShell\1

PSParentPath : Microsoft.PowerShell.Core\Registry::

 HKEY_LOCAL_MACHINE\software\microsoft\

 PowerShell

PSChildName : 1

PSDrive : HKLM

PSProvider : Microsoft.PowerShell.Core\Registry

Notice that you need to specify both the path and the name of the property to retrieve. Properties
are always relative to a path. There’s another somewhat annoying thing about how Get-
ItemProperty works: It doesn’t return the value of the property—it returns a new object that has
the property value as a member. Before you can do anything with this value, you need to extract
it from the containing object:

PS> (Get-ItemProperty -Path ./1 -Name PID).PID

89383-100-0001260-04309

By using the . operator to extract the member’s value, you can get the value. You could also use
this:

PS> Get-ItemProperty -Path ./1 -Name PID | select -ExpandProperty PID

89383-100-0001260-04309

Note

This is another one of those design trade-offs the PowerShell team encountered as they
developed this environment. If only the value was returned, you’d lose the context for the value
(where it came from and so on). In order to preserve this information, the team ended up forcing
people to write what appears to be redundant code. A better way to handle this might’ve been to
return the value with the context attached as synthetic properties.

So far, we’ve looked at accessing the HKEY_CURRENT_USER and
HKEY_LOCAL_MACHINE Registry hives. These are the only two hives for which PowerShell
drives are created by default. How do you access the other hives? The answer is to fall back on
the provider:

PS> Get-ChildItem -Path Registry::

 Hive:

Name Property

---- --------

(615)

HKEY_LOCAL_MACHINE

HKEY_CURRENT_USER

HKEY_CLASSES_ROOT EditFlags : {0, 0, 0, 0}

HKEY_CURRENT_CONFIG

HKEY_USERS

HKEY_PERFORMANCE_DATA Global : {80, 0, 69, 0...}

 Costly : {80, 0, 69, 0...}

You can follow the paths through the Registry starting with the provider rather than a drive:

PS> Get-ChildItem -Path registry::HKEY_CURRENT_CONFIG\System\CurrentControlSet\SERVICES\TSDDD\

 Hive: HKEY_CURRENT_CONFIG\System\CurrentControlSet\SERVICES\TSDDD

Name Property

---- --------

DEVICE0 Attach.ToDesktop : 1

Note

Other PowerShell drives are also accessible via their providers using similar syntax.

Now that you’re more familiar with PowerShell providers, let’s look at how you can work with
files and their content.

(616)

16.2. Files, text, and XML

You saw earlier in the chapter how to work with the file system provider. In this section, we’ll
show you how to read and write file content. We’ll then cover how to work with unstructured
text as well as XML structured text. Let’s start by discovering how to read file content and how
to write to files.

16.2.1. File processing

In PowerShell, files are read using the Get-Content cmdlet. This cmdlet allows you to work with
text files using a variety of character encodings and lets you work efficiently with binary files.
Writing files is a bit more complex, because you have to choose between Set-Content (or Add-
Content) and Out-File. The difference here is whether the output goes through the formatting
subsystem.

It’s important to point out that there are no separate open/read/close or open/write/close steps to
working with files. The pipeline model allows you to process data and never have to worry about
closing file handles—the system takes care of this for you.

Reading text files

The Get-Content cmdlet is the primary way to read files in PowerShell. In fact, it’s the primary
way to read any content available through PowerShell drives. Figure 16.2 shows this cmdlet’s
syntax.

Figure 16.2. Get-Content syntax

Reading text files is simple. The command

PS> Get-Content -Path myfile.txt

will send the contents of myfile.txt to the output stream. Notice that the command signature for -
Path allows for an array of path names. This is how you concatenate a collection of files. Let’s
try this. First, create a collection of files:

PS> Set-Location -Path C:\test\

PS> 1..3 | foreach { "This is file $_" > "file$_.txt"}

And now display their contents:

(617)

PS> Get-Content -Path file1.txt,file2.txt,file3.txt

This is file 1

This is file 2

This is file 3

Note

PowerShell uses Unicode encoding by default. If you want to read PowerShell-created files using
cmd.exe utilities, you have to use ASCII encoding.

Heads or tails?

You’ve seen that the -TotalCount parameter can be used to control how many lines are read from
a file. This parameter has an alias of -Head to fit with other file-reading utilities (Get-Content has
aliases of type and cat). Create a file with a number of lines:

PS> 1..10 | foreach { "This is line $_" |

Add-Content -Path multifile.txt}

You can read the beginning of the file:

PS> Get-Content -Path .\multifile.txt -Head 3

or you can read the end of the file:

PS> Get-Content -Path .\multifile.txt -Tail 3

This won’t work though:

PS> Get-Content -Path .\multifile.txt -Head 3 -Tail 3

-Head and -Tail are mutually exclusive.

Get-Content, by default, reads a line at a time, so you get an array of lines if you do this:

PS> $v1 = Get-Content .\multifile.txt

PS> $v1.Count

10

If you want the text in the file to be a single string, you use the -Raw parameter:

PS> $v2 = Get-Content .\multifile.txt -Raw

PS> $v2.count

1

That’s about it for text files. Reading binary files takes a little more work than simple text files.

Reading binary files

The function in the next listing can be used to display the contents of a binary file. It takes the
name of the file to display, the number of bytes to display per line, and the total number of bytes
as parameters.

(618)

Listing 16.1. Get-HexDump

function Get-HexDump {

 param (

 [Parameter(Mandatory)]

 [string]$path,

 [int]$width=10,

 [int]$total=-1

)

 $OFS='' 1

 Get-Content -Encoding byte -Path $path -ReadCount $width `

 -TotalCount $total |

 foreach {

 $record = $_

 if (($record -eq 0).count -ne $width) 2

 {

 $hex = $record | foreach { 3

 ' ' + ('{0:x}' -f $_).PadLeft(2,'0')} 3

 $char = $record | foreach{ 3

 if ([char]::IsLetterOrDigit($_)) 3

 { [char] $_ } else { '.' }} 3

 "$hex $char"

 }

 }

}

1 Set $OFS to empty string
2 Skip record if length is zero
3 Format data

The function takes a mandatory path parameter and optional parameters for the number of bytes
per line and the total number of bytes to display. You’re going to be converting arrays to strings
and you don’t want any spaces added, so you’ll set the output field separator character 1 to be
empty.

The Get-Content cmdlet does all the hard work. It reads the file in binary mode (indicated by
setting -Encoding to byte), reads up to a maximum of -TotalCount bytes, and writes them into the
pipeline in records of length specified by -ReadCount. The first thing you do in the foreach
scriptblock is save the record that was passed in, because you’ll be using nested scriptblocks that
will cause $_ to be overwritten.

If the record is all zeros 2, you won’t bother displaying it. It might be a better design to make this
optional, but we’ll leave it as is for this example. For display purposes, you’re converting the
record of bytes 3 into two-digit hexadecimal numbers. You use the format operator to format the
string in hexadecimal and then the PadLeft() method on strings to pad it out to two characters.
Finally, you prefix the whole thing with a space. The variable $hex ends up with a collection of
these formatted strings.

Now you need to build the character equivalent of the record. You’ll use the methods on the
[char] class to decide whether you should display the character or a dot (.). Notice that even
when you’re displaying the character, you’re still casting it into a [char]. This is necessary
because the record contains a byte value, which, if directly converted into a string, will be
formatted as a number instead of as a character. Finally, you’ll output the completed record,
taking advantage of string expansion to build the output string (which is why you set $OFS to '').
Example output is shown in figure 16.3.

Figure 16.3. Example Get-HexDump output

(619)

In this example, you’re using Get-HexDump to dump out the contents of one of the Windows
bitmap files, specifying that it display 12 bytes per line and stop after the first 84 bytes. The first
part of the display is the value of the byte in hexadecimal, and the portion on the right side is the
character equivalent. Only values that correspond to letters or numbers are displayed.
Nonprintable characters are shown as dots.

Note

You may find that PowerShell performs slowly when reading large files. One option in that case
is to use the .NET I/O classes.

That covers reading files, but what about writing to a file?

Writing files

You have two major ways to write files in PowerShell—by setting file content with the Set-
Content cmdlet and by writing files using the Out-File cmdlet. The big difference is that Out-File,
like all the output cmdlets, tries to format the output. Set-Content writes the output as is. If its
input objects aren’t already strings, it will convert them to strings by calling the ToString()
method. This isn’t usually what you want for objects, but it’s exactly what you want if your data
is already formatted or if you’re working with binary data.

The other thing you need to be concerned with is how the files are encoded when they’re written.
In an earlier example, you saw that by default text files are written in Unicode. Let’s rerun this
example, changing the encoding to ASCII instead:

PS> 1..3 | foreach{ "This is file $_" |

Set-Content -Encoding ascii file$_.txt }

The -Encoding parameter is used to set how the files will be written

Note

You use Set-Content rather than Out-File because Out-File adds extra processing overhead that
you don’t need when writing primitive data such as text. And be aware that Out-File and Set-
Content use different default encodings. A standard default encoding may be used in PowerShell
v6.

(620)

16.2.2. Unstructured text

Although PowerShell is an object-based shell, it still has to deal with text. In chapter 3, we
covered the operators that PowerShell provides for working with text. In this section, we’ll cover
some of the more advanced string-processing operations. We’ll discuss techniques for splitting
and joining strings using the [string] and [regex] members and using filters to extract statistical
information from a body of text.

Using System.String to work with text

PowerShell has the -split operator to separate elements of a string. The Split() method on the
[string] class provides a few more options. The Split() method with no arguments splits on
spaces. In this example, it produces an array of three elements:

PS> 'Hello there world'.Split().length

3

In fact, it splits on any of the characters that fall into the WhiteSpace character class. This includes
tabs, so it works properly on a string containing both tabs and spaces:

PS> "Hello`there world".Split()

Hello

here

world

Notice the second element! The characters `t are interpreted as a tab character.

Although the default is to split on a whitespace character, you can specify a string of characters
to use to split fields:

PS> 'First,Second;Third'.Split(',;')

First

Second

Third

Here you specify the comma and the semicolon as valid characters to split the field.

There is, however, an issue; the default behavior for “split this” isn’t necessarily what you want.
The reason is that it splits on each separator character. This means that if you have multiple
spaces between words in a string, you’ll get multiple empty elements in the result array, for
example:

PS> 'Hello there world'.Split().length

6

In this example, you end up with six elements in the array because there are three spaces between
there and world. Looking at the MSDN documentation for the Split() method, you’ll see that
there are options to use StringSplitOptions. You can test what the options do by casting a string
into the options:

PS> [StringSplitOptions]'abc'

Cannot convert value "abc" to type "System.StringSplitOptions".

Error: "Unable to match the identifier name abc to a valid

enumerator name. Specify one of the following enumerator names

and try again:

None, RemoveEmptyEntries"

(621)

At line:1 char:1

+ [StringSplitOptions]'abc'

+ ~~~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : InvalidArgument: (:) [], RuntimeException

 + FullyQualifiedErrorId : SubstringDisambiguationEnumParseThrewAnException

RemoveEmptyEntries looks like it might solve your problem:

PS> 'Hello there world'.split(' ',[StringSplitOptions]::RemoveEmptyEntries)

Hello

there

world

It works as desired. Next, you can apply this technique to a larger problem.

Analyzing word use in a document

Given a body of text, say you want to find the number of words in the text as well as the number
of unique words and then display the 10 most common words in the text. For our purposes, we’ll
use one of the PowerShell help text files: about_Assignment_operators.help.txt. Remember that
Get-Content creates an array where each element is a line from the file. You want a single string
so you have to use the -Raw parameter:

PS> $s = Get-Content `

-Path $PSHOME\en-US\about_Assignment_Operators.help.txt `

-Raw

PS> $s.length

22780

$s contains a single string containing the whole text of the file. Next, split it into an array of
words:

PS> $words = $s.Split(" `t", [stringsplitoptions]::RemoveEmptyEntries)

PS> $words.Length

3453

The text of the file has 3453 words in it. You need to find out how many unique words there are.
The easiest approach is to use the Sort-Object cmdlet with the -Unique parameter. This code will
sort the list of words and then remove all the duplicates:

PS> $uniq = $words | sort -Unique

PS> $uniq.count

719

The help topic contains 719 unique words. Using the Sort-Object cmdlet is fast and simple, but it
doesn’t give the frequency of use. Luckily, PowerShell includes a cmdlet that’s useful for this
kind of task: Group-Object. This cmdlet groups its input objects into collections sorted by the
specified property. This means you can achieve the same type of ordering with the following:

PS> $grouped = $words | group | sort count

The most frequently used word is, unsurprisingly, “the”:

PS> $grouped[-1]

Count Name Group

----- ---- -----

 335 the {the, the, the, the...}

You can display the 10 most frequent words with this:

(622)

PS> $grouped[-1..-10]

Count Name Group

----- ---- -----

 335 the {the, the, the, the...}

 134 to {to, to, to, to...}

 121 a {a, a, a, a...}

 110 ... {...

 97 value {value, value, value, value...}

 94 $a {$a, $a, $a, $a...}

 85 C:\PS> {C:\PS>, C:\PS>, C:\PS>, C:\PS>...}

 80 of {of, of, of, of...}

 74 = {=, =, =, =...}

 55 variable {variable, variable, variable...}

The code creates a nicely formatted display courtesy of the formatting and output subsystem
built into PowerShell. In the world of unstructured text, you’ll quickly run into examples where
simple splits aren’t enough. As is so often the case, regular expressions come to the rescue.

Regular expressions are a domain-specific language (DSL) for matching and manipulating text.
We covered a number of examples using regular expressions with the -match and -replace
operators in chapter 3. This time, you’re going to work with the regular expression class itself.

Splitting strings with regular expressions

There’s a type accelerator, [regex], for the regular expression type. The [regex] type also has a
Split() method, but it’s much more powerful because it uses a regular expression to decide
where to split strings instead of a single character:

PS> $s = "Hello-1-there-22-World!"

PS> [regex]::split($s,'-[0-9]+-')

Hello

there

World!

In this example, the fields are separated by a sequence of digits bound on either side by a dash.
This pattern couldn’t be specified with simple character-based split operations.

When working with the .NET regular expression library, the [regex] class isn’t the only class that
you’ll run into. You’ll see this in the next example, when we look at using regular expressions to
tokenize a string.

Tokenizing text with regular expressions

Tokenization, or the process of breaking a body of text into a stream of individual symbols, is a
common activity in text processing; for instance, the PowerShell interpreter has to tokenize a
script before it can be executed. In the next example, we’re going to look at how you can write a
simple tokenizer for basic arithmetic expressions you might find in a programming language.
First, you need to define the valid tokens in these expressions. You want to allow numbers made
up of one or more digits; allow expressions made up of any of the operators +, -, *, or /; and also
allow sequences of spaces. Here’s what the regular expression to match these elements looks
like:

PS> $pat = [regex] "[0-9]+|\+|\-|*|/| +"

This is a pretty simple pattern using only the alternation operator | and the quantifier +, which
matches one or more instances. Because you used the [regex] cast in the assignment, $pat
contains a regular expression object. You can use this object directly against an input string by

(623)

calling its Match() method:

PS> $m = $pat.match("11+2 * 35 -4")

The Match() method returns a Match object (the full type name is
System.Text.RegularExpressions.Match). You can use the Get-Member cmdlet to explore the full set
of members on this object at your leisure, but for now you’re interested in only three members.
The first member is the Success property. This will be true if the pattern matched. The second
interesting member is the Value property, which will contain the matched value. The final
member you’re interested in is the NextMatch() method. Calling this method will step the regular
expression engine to the next match in the string and is the key to tokenizing an entire
expression. You can use this method in a while loop to extract the tokens from the source string
one at a time. In the example, you keep looping as long as the Match object’s Success property is
true. Then you display the Value property and call NextMatch()to step to the next token:

PS> while ($m.Success)

{

 $m.value

 $m = $m.NextMatch()

}

11

+

2

*

35

-

4

In the output, you see each token, one per line, in the order in which they appeared in the original
string.

Searching files with the Select-String cmdlet

The Select-String cmdlet allows you to search through collections of strings or collections of
files. It’s similar to the grep command on UNIX-derived systems and the findstr command on
Windows. Figure 16.4 shows the parameters on this cmdlet. Select-String is optimized for
searching through files.

Figure 16.4. Syntax of Select-String

Let’s search through all of the “about_*” topics in the PowerShell installation directory to see if
the phrase “wildcard description” is there:

(624)

PS> Select-String -Path $pshome/en-US/about*.txt `

-Pattern 'wildcard description'

C:\Windows\System32\WindowsPowerShell\v1.0\en-US\about_Wildcards.help.txt:21:

 Wildcard Description Example

Match No match

You see that there’s exactly one match, but notice the uppercase letters in the matching string. If
you rerun the search using the -CaseSensitive parameter

PS> Select-String -Path $pshome/en-US/about*.txt `

-Pattern 'wildcard description' -CaseSensitive

nothing is found. Searching through files this way can sometimes produce more results than you
need.

Normally Select-String will find all matches in a file. The -List switch limits the search to the
first match in a file. The -Quiet switch returns $true if any of the files contain a match and $false
if none do. You can also combine the two switches so that the cmdlet returns the first match in
the set of files.

If you want to search a more complex set of files, you can pipe the output of Get-ChildItem into
the cmdlet and it will search all of these files. Let’s search all the log files in the system32
subdirectory:

PS> Get-ChildItem -Recurse -Filter *.log -Path $env:windir\system32 |

Select-String -List -Pattern 'fail' | Format-Table path

Only the path to a log file containing a record with “fail” in it will be displayed.

The MatchInfo object produced by Select-Object has a context property. This property allows you
to have Select-String include the lines before and after the matching line. You can specify two
numbers to the -Context parameter. The first number is the length of the prefix context and the
second is the suffix context; for instance, to get only the matching line and the four following
lines, you have to specify a prefix context of 0 and a suffix of 4:

PS> Get-Help Select-String |

Out-String -Stream |

Select-String -Pattern 'syntax' -Context 0,4

> SYNTAX

 Select-String [-Pattern] <String[]> [-Path] <String[]> [-AllMatches]

 [-CaseSensitive] [-Context <Int32[]>] [-Encoding

 {unicode | utf7 | utf8 | utf32 | ascii |

 bigendianunicode |default | oem}]

 [-Exclude <String[]>] [-Include <String[]>]

 [-InformationAction {SilentlyContinue | Stop | Continue |

 Inquire | Ignore | Suspend}] [-InformationVariable <System.String>]

 [-List] [-NotMatch] [-Quiet] [-SimpleMatch] [<CommonParameters>]

Getting all matches in the line

Another property on the MatchInfo object is the Matches property. This property is used when the -
AllMatches switch is specified to the cmdlet. It causes all matches in the line to be returned
instead of only the first match. You’ll use this switch to perform the same type of tokenization
that you did with regular expressions in section 16.2.2. You’ll pipe the expression string into
Select-String with the -AllMatches switch and the same regular expression you used earlier:

PS> '1 + 2 *3' |

Select-String -AllMatches -Pattern '[0-9]+|\+|\-|*|/| +' |

(625)

foreach { $_.Matches } | Format-Table -AutoSize

Groups Success Captures Index Length Value

------ ------- -------- ----- ------ -----

{1} True {1} 0 1 1

{ } True { } 1 1

{+} True {+} 2 1 +

{ } True { } 3 1

{2} True {2} 4 1 2

{ } True { } 5 1

{*} True {*} 6 1 *

{3} True {3} 7 1 3

You use the Foreach-Object cmdlet to isolate the Matches property and then format the output as a
table. You can see each of the extracted tokens in the Value field in the Matches object. Using this
mechanism, you can effectively and efficiently process things like large log files where the
output is formatted as a table.

Note

If you’re using PowerShell v5.1 on Windows 10 with the Creators update (build version
10.0.15063.413 or later) you’ll see {0} for all entries in the Groups and Captures columns.

All the text so far in this chapter has been unstructured text where there’s no rigorously defined
layout for that text. As a consequence, you’ve had to work fairly hard to extract the information
you want out of this text. There are, however, large bodies of structured text, where the format is
well defined in the form of XML documents.

16.2.3. XML structured text processing

XML (Extensible Markup Language) is used for everything from configuration files to log files
to databases. PowerShell uses XML for its type and configuration files as well as for the help
files. For PowerShell to be effective, it has to be able to process XML documents effectively.
Let’s look at how XML is used and supported in PowerShell.

Note

This section assumes you possess some basic knowledge of XML markup.

We’ll look at the XML object type, as well as the mechanism that .NET provides for searching
XML documents.

Using XML as objects

PowerShell supports XML documents as a core data type. This means that you can access the
elements of an XML document as though they were properties on an object. For example, let’s
create a simple XML object. Start with a string that defines a top-level node called top. This node
contains three descendants: a, b, and c, each of which has a value. Let’s turn this string into an

(626)

object:

PS> $d = [xml] '<top><a>onetwo<c>3</c></top>'

The [xml] cast takes the string and converts it into an XML object of type System.XML.XmlDocument.
This object is then adapted by PowerShell so you can treat it as a regular object. Let’s try this
out. First, display the object:

PS> $d

top

top

As you expect, the object displays one top-level property corresponding to the top-level node in
the document. Now let’s see what properties this node contains:

PS> $d.top

a b c

- - -

one two 3

Three properties correspond to the descendants of top. You can use conventional property
notation to look at the value of an individual member:

PS> $d.top.a

One

Modifying this node is as simple as assigning a new value to the node. Let’s assign the string
“Four” to node a:

PS> $d.top.a = 'Four'

PS> $d.top.a

Four

You can see that it’s been changed. But there’s a limitation: you can only use a string as the node
value. The XML object adapter won’t automatically convert non-string objects to strings in an
assignment, so you get an error when you try it. All the normal type conversions apply, so you
can use a node value in arithmetic actions if it can be converted to a suitable type.

Adding elements to an XML document isn’t a simple assignment operation.

Adding elements to an XML object

Let’s add an element d to this document. To do so, you need to use the methods on the XML
document object. First, you have to create the new element. Then you set the element text, the
“inner text,” to a value and finally append the new element to the document:

PS> $el= $d.CreateElement('d')

PS> $el.Set_InnerText('Hello')

PS> $d.top.AppendChild($el)

Notice that you’re using the property setter method here. This is because the XML adapter hides
the basic properties on the XmlNode object. The other way to set this would be to use the PSBase
member:

PS> $ne = $d.CreateElement('e')

(627)

PS> $ne.InnerText = 'World'

PS> $d.top.AppendChild($ne)

Now that you know how to add children to a node, how can you add attributes? The pattern is the
same as with elements. First, create an attribute object. Next, set the value of the text for that
object. Finally, add it to the top-level document:

PS> $attr = $d.CreateAttribute('BuiltBy')

PS> $attr.Value = 'Windows PowerShell'

PS> $d.DocumentElement.SetAttributeNode($attr)

You can’t cast the document back to a string and see what it looks like instead; you have to save
the document as a file and display it:

PS> $d.Save('C:\test\new.xml')

PS> Get-Content -Path C:\test\new.xml

<top BuiltBy="Windows PowerShell">

 <a>one

 two

 <c>3</c>

 <d>Hello</d>

 <e>World</e>

</top>

You’ve constructed, edited, and saved XML documents, but you haven’t loaded an existing
document yet, so that’s the next step.

Loading and saving XML files

In the previous section, you saved an XML document to a file and read it, as text, using Get-
Content. If you want to work with an XML document, you need to cast the output of Get-Content
into an XML document:

PS> $nd = [xml] (Get-Content -Path C:\test\new.xml)

Speedier XML reading

By default, Get-Content reads one record at a time. This process can be quite slow. When
processing large files, you should use the -ReadCount parameter to specify a block size of –1.
Doing so will cause the entire file to be loaded and processed at once, which is much faster.
Alternatively, here’s another way to load an XML document using the .NET methods:

PS> ($nd = [xml]'<root></root>').Load('C:\test\new.xml')

Note that this does require that the full path to the file be specified.

Let’s verify that the document was read properly:

PS> $nd.top

BuiltBy : Windows PowerShell

a : one

b : two

c : 3

d : Hello

e : World

Everything is as it should be. Even the attribute is there.

(628)

Although this is a simple approach and the one you’ll probably use most often, it’s not
necessarily the most efficient approach because it requires loading the entire document into
memory. For large documents or collections of documents, loading all the text into memory may
become a problem. In the next section, we’ll look at alternative approaches that, though more
complex, are more memory efficient.

Using the XmlReader class

Our previously discussed method for loading an XML file is simple but not too efficient. It
requires that you load the file into memory, make a copy of the file while turning it into a single
string, and create an XML document representing the entire file using the XML Document
Object Model (DOM) representation. The DOM allows you to treat an XML document as a
hierarchy of objects, but to do so it consumes a lot of memory.

A much more memory-efficient way to process XML documents is to use the
System.Xml.XmlReader class. This class streams through the document one element at a time
instead of loading the whole thing into memory. You need a function that will use the XML
reader to stream through a document and output it properly indented—an XML pretty-printer, if
you will.

First, you need a more complex document where there are more attributes and more nesting on
which you can test your document.

Listing 16.2. Creating the text XML document

@'

<top BuiltBy = "Windows PowerShell">

 one

 <b pronounced="bee">

 two

 <c one="1" two="2" three="3">

 <one>

 1

 </one>

 <two>

 2

 </two>

 <three>

 3

 </three>

 </c>

 <d>

 Hello there world

 </d>

</top>

'@ > c:\test\fancy.xml

The function to read XML documents will be called Format-XmlDocument to keep within the
PowerShell naming conventions.

Listing 16.3. The Format-XmlDocument function

function global:Format-XmlDocument {

 param

 (

 [string]$Path = "$PWD\fancy.xml"

)

(629)

 $settings = New-Object System.Xml.XmlReaderSettings 1

 $doc = (Resolve-Path -Path $Path).ProviderPath

 $reader = [System.Xml.XmlReader]::Create($doc, $settings)

 $indent=0

 function indent {

 param

 (

 [Object]$s

)

 ' '*$indent+$s

 } 2

 while ($reader.Read())

 {

 if ($reader.NodeType -eq [Xml.XmlNodeType]::Element) 3

 {

 $close = $(if ($reader.IsEmptyElement) { '/>' } else { '>' })

 if ($reader.HasAttributes)

 {

 $s = indent "<$($reader.Name) "

 [void] $reader.MoveToFirstAttribute()

 do

 {

 $s += "$($reader.Name) = `"$($reader.Value)`" "

 }

 while ($reader.MoveToNextAttribute())

 "sclose"

 }

 else

 {

 indent "<$($reader.Name)$close"

 }

 if ($close -ne '/>') {$indent++} 4

 }

 elseif ($reader.NodeType -eq [Xml.XmlNodeType]::EndElement)

 {

 $indent--

 indent "</$($reader.Name)>"

 }

 elseif ($reader.NodeType -eq [Xml.XmlNodeType]::Text)

 {

 indent $reader.Value 5

 }

 }

 $reader.close()

}

1 Create settings object
2 Define formatting function
3 Process element nodes
4 Increase indent level
5 Format text element

Format-XmlDocument is a complex function, so it’s worthwhile to take it one piece at a time. Let’s
start with the basic function declaration, where it takes an optional argument that names a file.
Next, you create the settings object 1 you need to pass in when you create the XML reader
object. You also need to resolve the path to the document, because the XML reader object
requires an absolute path. Now you can create the XmlReader object itself. The XML reader will
stream through the document, reading only as much as it needs, as opposed to reading the entire
document into memory.

You want to display the levels of the document indented, so you initialize an indent-level counter
and a local function 2 to display the indented string. Now you read through all of the nodes in the
document. You choose different behavior based on the type of the node. An element node 3 is
the beginning of an XML element. If the element has attributes, then you add them to the string
to display. You use the MoveToFirstAttribute() and MoveToNextAttribute() methods to move

(630)

through the attributes. If there are no attributes, display the element name.

At each new element, increase 4 the indent level if it’s not an empty element tag. If it’s the end
of an element, decrease the indent level and display the closing tag. If it’s a text element, display
the value of the element 5. Finally, close the reader. You always want to close a handle received
from a .NET method. It’ll eventually be discarded during garbage collection, but it’s possible to
run out of handles before you run out of memory.

The function and its output are illustrated in figure 16.5.

Figure 16.5. Format-XmlDocument displaying the test document in the ISE. Note that the ISE looks slightly different
because ISEsteroids (www.powertheshell.com/isesteroids/) is in use.

The obvious next question is: How do you process XML documents on the pipeline?

Processing XML documents in a pipeline

Pipelining is one of the signature characteristics of shell environments in general and PowerShell
in particular. Because the previous examples didn’t take advantage of this feature, we’ll look at
how it can be applied. You’re going to write a function that scans all the PowerShell help files,

(631)

http://www.powertheshell.com/isesteroids/

both the text about topics and the XML files, for a specified pattern. The code for the function is
shown in the following listing.

Listing 16.4. Search-Help function scans help files for a pattern

function Search-Help

{

 param (

 [Parameter(Mandatory)]

 $pattern

)

 Select-String -List $pattern -Path $PSHome\en-us\about*.txt |

 foreach {$_.filename -replace '\..*$'}

 Get-ChildItem $PSHOME\en-us*dll-help.*xml |

 foreach { [xml] (Get-Content -ReadCount -1 -Path $_) } |

 foreach{$_.helpitems.command} |

 Where-Object {$_.get_Innertext() -match $pattern} |

 foreach {$_.details.name.trim()}

}

The Search-Help function takes one parameter to use as the pattern for which you’re searching.
The $pattern parameter is set as mandatory so the user will be prompted if the parameter isn’t
provided.

First, you search all the text files in the PowerShell installation directory and return one line for
each matching file. Then you pipe this line into the ForEach-Object (or, more commonly, its alias
foreach) to extract the base name of the file using the -replace operator and a regular expression.
This operation will list the filenames in a form that you can type back into Get-Help.

Next, you get a list of the XML help files and turn each file into an XML object. You specify a
read count of -1 so the whole file is read at once. You extract the command elements from the
XML document and then see whether the text of the command contains the pattern you’re
looking for. If it does, then you emit the name of the command, trimming off unnecessary
spaces.

As an example of using the function, try this:

PS> Search-Help scriptblock

As well as being a handy way to search help, this function is a nice illustration of using the
divide-and-conquer strategy when writing scripts in PowerShell. Each step in the pipeline brings
you incrementally closer to the solution.

Another way to extract information from an XML document involves using XPath queries with
Select-Xml.

XPath and Select-Xml

XML Path Language, also known as XPath, is a path-based pattern language, which means it’s
like the collision of paths, wildcards, and regular expressions. It’s useful because it gives you a
fast, concise way to select pieces of information from an XML document. An XPath expression
can be used to extract nodes, content, or attributes from a document. It also allows calculations to
be used in the expressions to get even greater flexibility. Things get a bit more complex because
XML allows for multiple nodes with the same name and allows attributes on nodes.

(632)

Next, you’ll set up a test document and explore these more complex patterns. The following
script fragment creates a string you’ll use for the examples. It’s a fragment of a bookstore
inventory database. Each record in the database has the name of the author, the book title, and
the number of books in stock. Save this string in a variable called $inventory, as shown here.

Listing 16.5. Creating the bookstore inventory

$inventory = @"

 <bookstore>

 <book genre="Autobiography">

 <title>The Autobiography of Benjamin Franklin</title>

 <author>

 <first-name>Benjamin</first-name>

 <last-name>Franklin</last-name>

 </author>

 <price>8.99</price>

 <stock>3</stock>

 </book>

 <book genre="Novel">

 <title>Moby Dick</title>

 <author>

 <first-name>Herman</first-name>

 <last-name>Melville</last-name>

 </author>

 <price>11.99</price>

 <stock>10</stock>

 </book>

 <book genre="Philosophy">

 <title>Discourse on Method</title>

 <author>

 <first-name>Rene</first-name>

 <last-name>Descartes</last-name>

 </author>

 <price>9.99</price>

 <stock>1</stock>

 </book>

 <book genre="Computers">

 <title>Windows PowerShell in Action</title>

 <author>

 <first-name>Bruce</first-name>

 <last-name>Payette</last-name>

 </author>

 <price>39.99</price>

 <stock>5</stock>

 </book>

 </bookstore>

"@

We’ll work through examples of using XPath with Select-Xml on the $inventory string from
listing 16.5. Let’s start with something simple—getting the bookstore node at the root of the
document:

PS> Select-Xml -Content $inventory -XPath /bookstore

Node Path Pattern

---- ---- -------

bookstore InputStream /bookstore

Unfortunately, the output doesn’t look promising. The node object you’re after is mixed in with
the context of the query: where the processed text came from and what the query was. To extract
the node object, you have to reference it as a property:

PS> (Select-Xml -Content $inventory -XPath /bookstore).Node

book

{book, book, book, book}

(633)

This output shows that there are four child nodes under bookstore. Extend your query to get
these child items in a similar manner to how you could get the contents of a directory in the file
system:

PS> Select-Xml -Content $inventory -XPath /bookstore/book

Node Path Pattern

---- ---- -------

book InputStream /bookstore/book

book InputStream /bookstore/book

book InputStream /bookstore/book

book InputStream /bookstore/book

Here’s the nested-node issue again. Again you have to use the . operator to retrieve the content.
For each of the nodes, you need to extract the Node property, so you apply the foreach cmdlet:

PS> Select-Xml -Content $inventory -XPath /bookstore/book |

foreach { $_.node }

genre : Autobiography

title : The Autobiography of Benjamin Franklin

author : author

price : 8.99

stock : 3

<output truncated for brevity>

This time you see the properties of all four nodes. If you want to extract only the title nodes, add
title to the end of the path:

PS> Select-Xml -Content $inventory -XPath /bookstore/book |

foreach { $_.node.title }

The Autobiography of Benjamin Franklin

Moby Dick

Discourse on Method

Windows PowerShell in Action

At this point, using foreach all the time is getting tedious, so let’s define a filter to simplify this:

PS> filter node { $_.node }

Now let’s look at more advanced examples. So far, you’ve returned the entire set of nodes, but
when querying for information, you usually want to get part of that information. You can do this
quite easily with the Where-Object cmdlet:

PS> Select-Xml -Content $inventory -XPath /bookstore/book |

node | where { [double] ($_.price) -lt 10}

genre : Autobiography

title : The Autobiography of Benjamin Franklin

author : author

price : 8.99

stock : 3

genre : Philosophy

title : Discourse on Method

author : author

price : 9.99

stock : 1

This example retrieves all the books priced less than $10. XPath has built-in functionality that’s
similar to the Where-Object cmdlet: predicate expressions. These expressions appear in the path
surrounded by square brackets and can contain a simple logical expression. Nodes where the
expression evaluates to true are returned. Here’s the previous example using a predicate
expression instead of the Where-Object cmdlet:

(634)

PS> Select-Xml -Content $inventory -XPath '/bookstore/book[price < 10]' |

node

You get the same result in both cases. Notice that in the predicate expression you were able to
reference price directly as opposed to [double] ($_.price) the way you did in the Where-Object
case. Because the expression is being executed by the XPath engine, it can make these
optimizations, simplifying the reference to the price item and treating it as a number
automatically.

In the previous example, the price item was a path relative to the current node. You can use .. to
reference the parent node. Now write your expression so that it returns only the titles of the
books whose price is less than $10:

PS> Select-Xml -Content $inventory `

-XPath '/bookstore/book/title[../price < 10]' |

node

#text

The Autobiography of Benjamin Franklin

Discourse on Method

The path selects the title node but filters on the path ../price, which is a sibling to the title
node.

As we discussed earlier, elements aren’t all that an XML document can contain. Another major
item is the attribute. XPath allows an attribute to be referenced instead of an element by prefixing
the name with @, as you see here:

PS> Select-Xml -Content $inventory -XPath '//@genre' | node

#text

Autobiography

Novel

Philosophy

Computers

This example shows the genre attribute for each of the book nodes. You can also use attributes in
predicate expressions in the path:

PS> Select-Xml -Content $inventory `

-XPath '//book[@genre = "Novel"]' |

node

genre : Novel

title : Moby Dick

author : author

price : 11.99

stock : 10

This example uses the @genre attribute in the node to return only books in the Novel genre. Note
that, unlike the PowerShell relational operators, XPath operators are case-sensitive. If you
specify novel for the genre instead of Novel, nothing is retrieved, whereas doing the same thing
with the Where-Object cmdlet works fine.

Note

Remember that XPath is its own language and doesn’t necessarily behave the same way as the

(635)

equivalent expression in PowerShell.

Now let’s do some processing on the data in the document instead of only retrieving the node. In
this example, you’ll calculate the total value of the inventory, which is the sum of the product of
multiplying the price node and the stock node:

PS> Select-Xml -Content $inventory -XPath '//book' | node |

foreach {[double] $_.price * $_.stock } |

Measure-Object -Sum | foreach { $_.sum }

356.81

This code uses XPath to extract the relevant nodes and then uses PowerShell to perform the
calculations.

The examples in this section illustrate the basic mechanism for using XPath to extract data from
documents. They’re far from comprehensive, though. There’s a lot more to learn about the
details of the XPath language—the functions it supports, how to do calculations, and so forth—
but this level of detail is probably not needed for most scenarios because PowerShell can do all
of these things in a much more flexible way.

Rendering objects as XML

Up to this point, you’ve been working with XML as objects. Now you’re going to switch it
around and render objects into XML using cmdlets. PowerShell provides two cmdlets for
rendering objects as XML, each with slightly different purposes. The ConvertTo-Xml cmdlet
renders objects with relatively simple but verbose format. This cmdlet is useful for interoperating
between PowerShell and other environments. Conversions using Export-Clixml are much more
complex but also more compact and are intended for efficiently passing data between instances
of PowerShell.

Note

ConvertTo-XmL doesn’t automatically create an output file, but Export -CliXml does.

We’ll start with the simpler of the cmdlets: ConvertTo-Xml which takes an object as an argument
or (more commonly) as pipeline input and generates an XML document from it. Let’s use it to
produce XML from a list of Windows services. You’ll get the list using the Get-Service cmdlet,
but you’ll limit the number of services you’ll work with to three for brevity’s sake:

PS> $doc = Get-Service | select -First 3 | ConvertTo-Xml

PS> $doc

xml Objects

--- -------

version="1.0" encoding="utf-8" Objects

The collection of objects is rendered into an XML document with the top node Object, which, in
turn, contains a collection of Object elements as shown:

PS> $doc.Objects.Object

(636)

Type Property

---- --------

System.ServiceProcess.ServiceCo... {Name, RequiredServices, CanPau...

System.ServiceProcess.ServiceCo... {Name, RequiredServices, CanPau...

System.ServiceProcess.ServiceCo... {Name, RequiredServices, CanPau...

Here you see that each Object element has the type and properties of the source object included in
the output document. But this representation doesn’t show the document format effectively, so
use the -As parameter to display the document as a single string:

PS> Get-Service | select -First 1 | ConvertTo-Xml -As String

<?xml version="1.0" encoding="utf-8"?>

<Objects>

 <Object Type="System.ServiceProcess.ServiceController">

 <Property Name="Name" Type="System.String">AJRouter</Property>

 <Property Name="RequiredServices" Type="System.ServiceProcess.ServiceController[]" />

 <Property Name="CanPauseAndContinue" Type="System.Boolean">False</Property>

 <Property Name="CanShutdown" Type="System.Boolean">False</Property>

 <Property Name="CanStop" Type="System.Boolean">False</Property>

 <Property Name="DisplayName" Type="System.String">AllJoyn Router Service</Property>

 <Property Name="DependentServices" Type="System.ServiceProcess.ServiceController[]" />

 <Property Name="MachineName" Type="System.String">.</Property>

 <Property Name="ServiceName" Type="System.String">AJRouter</Property>

 <Property Name="ServicesDependedOn" Type="System.ServiceProcess.ServiceController[]" />

 <Property Name="ServiceHandle" Type="SafeServiceHandle">SafeServiceHandle</Property>

 <Property Name="Status"

Type="System.ServiceProcess.ServiceControllerStatus">Stopped</Property>

 <Property Name="ServiceType"

Type="System.ServiceProcess.ServiceType">Win32ShareProcess</Property>

 <Property Name="StartType" Type="System.ServiceProcess.ServiceStartMode">Manual</Property>

 <Property Name="Site" Type="System.ComponentModel.ISite" />

 <Property Name="Container" Type="System.ComponentModel.IContainer" />

 </Object>

</Objects>

Now the structure of the saved data is much clearer. The type name of the original object is
included as an attribute on the Object tab. The child elements of Object are a collection of
Property objects with the property name and type as attributes and the value as the element
content.

One thing we didn’t mention was the serialization depth. The default depth is 2. You see this in
the RequiredServices property, whose content is two additional nested properties. You can
override the default depth using the -Depth parameter on the cmdlet.

Note

You might be tempted to set the depth to a larger value to preserve more information, but be
aware that the size of the document can explode with deep nesting. For example, saving the
process table with the default depth of 2 produces a 700 KB file, which is already quite large.
Increasing the depth to 3 explodes the file to 7 MB—a tenfold increase in size!

The other parameter on the cmdlet that we haven’t talked about is -NoTypeInformation. When you
specify this parameter, no type information is included in the generated document:

PS> Get-Service | select -First 1 |

ConvertTo-Xml -As String -NoTypeInformation

(637)

<?xml version="1.0" encoding="utf-8"?>

<Objects>

 <Object>

 <Property Name="Name">AJRouter</Property>

 <Property Name="RequiredServices" />

 <Property Name="CanPauseAndContinue">False</Property>

 <Property Name="CanShutdown">False</Property>

 <Property Name="CanStop">False</Property>

 <Property Name="DisplayName">AllJoyn Router Service</Property>

 <Property Name="DependentServices" />

 <Property Name="MachineName">.</Property>

 <Property Name="ServiceName">AJRouter</Property>

 <Property Name="ServicesDependedOn" />

 <Property Name="ServiceHandle">SafeServiceHandle</Property>

 <Property Name="Status">Stopped</Property>

 <Property Name="ServiceType">Win32ShareProcess</Property>

 <Property Name="StartType">Manual</Property>

 <Property Name="Site" />

 <Property Name="Container" />

 </Object>

</Objects>

This simplifies the output even further. It makes sense if the target consumer for the generated
document isn’t a .NET-based application and therefore won’t be able to do much with the type
names.

The ConvertTo-XML cmdlet is useful for interoperation with non-PowerShell applications, but for
PowerShell-to-PowerShell communication, too much information is lost. For the PowerShell-to-
PowerShell scenario, a much better solution is to use the Export-Clixml and Import-Clixml
cmdlets, which provide a way to save and restore collections of objects from the PowerShell
environment with higher fidelity (less data loss) than the ConvertTo-Xml cmdlet.

The encoding the *-Clixml cmdlets use is what PowerShell remoting uses to send objects between
hosts. To recap our discussion, we mentioned that only a small set of types serialize with fidelity
and that other types are shredded into property bags. With the *-Clixml cmdlets, you can see what
the encoding looks like. Let’s try this out. First, create a collection of objects: a hashtable, a
string, and some numbers. Then serialize them to a file using the Export-Clixml cmdlet:

PS> $data = @{a=1;b=2;c=3},"Hi there", 3.5

PS> $data | Export-Clixml -Path C:\test\out.xml

Let’s see what the file looks like:

PS> Get-Content -Path C:\test\out.xml

<Objs Version="1.1.0.1" xmlns="http://schemas.microsoft.com/powershell/2004/04">

 <Obj RefId="0">

 <TN RefId="0">

 <T>System.Collections.Hashtable</T>

 <T>System.Object</T>

 </TN>

 <DCT>

 <En>

 <S N="Key">c</S>

 <I32 N="Value">3</I32>

 </En>

 <En>

 <S N="Key">b</S>

 <I32 N="Value">2</I32>

 </En>

 <En>

 <S N="Key">a</S>

 <I32 N="Value">1</I32>

 </En>

 </DCT>

 </Obj>

 <S>Hi there</S>

(638)

 <Db>3.5</Db>

</Objs>

You can use Import-Clixml to re-create the data. To show that the resultant object is identical to
the original test with Compare-Object, do this:

PS> Compare-Object -ReferenceObject $data `

-DifferenceObject (Import-Clixml -Path C:\test\out.xml) `

-IncludeEqual

InputObject SideIndicator

----------- -------------

{c, b, a} ==

Hi there ==

3.5 ==

These cmdlets provide a simple way to save and restore collections of objects, but they have
limitations. They can load and save only a fixed number of primitive types. Any other type is
“shredded,” which means it’s broken apart into a property bag composed of these primitive
types. This allows any type to be serialized but with some loss of fidelity. Objects can’t be
restored to exactly the same type they were originally. This approach is necessary because there
can be an infinite number of object types, not all of which may be available when the file is read
back. Sometimes you don’t have the original type definition. Other times there’s no way to re-
create the original object, even with the type information, because the type doesn’t support this
operation. By restricting the set of types that are serialized with fidelity, the Clixml format can
always recover objects regardless of the availability of the original type information.

There’s also another limitation on how objects are serialized. An object has properties. Those
properties are also objects that have their own properties, and so on. This chain of properties that
have properties is called the serialization depth. For some of the complex objects in the system,
such as the Process object, serializing through all the levels of the object results in a huge XML
file. To constrain this, the serializer traverses only to a certain depth. The default depth is 2. You
can override this default either on the command line using the -Depth parameter or by placing a
<SerializationDepth> element in the type’s description file. If you look at
$PSHome/types.ps1xml, you can see some examples of where this has been done.

So far, we’ve discussed manipulating files, strings, and text data. Now we need to discuss how to
convert text data into objects.

16.2.4. Converting text output to objects

One of the first things everyone learns about PowerShell is it works with objects. You can
execute legacy command-line applications in the PowerShell console but you get text output, as
shown in figure 16.6.

Figure 16.6. Output of the netstat.exe legacy application

Converting the output from text to objects is possible, but it requires a lot of work and the results
can be quite fragile if the application’s output changes. PowerShell v5 has a cmdlet
—ConvertFrom-String—that makes these conversions much simpler. Referring to figure 16.6 as
you progress through this section will clarify the code.

(639)

If you start by passing the output of netstat through Convert-String, you’ll discover the first
issue:

PS> netstat -n | ConvertFrom-String | Select-Object -First 5

P1 P2

-- --

Active Connections

 Proto

 TCP

 TCP

 TCP

The header line Active Connections is split to create two properties, P1 and P2. The default
delimiter is whitespace. The contents of the Proto (protocol) field are assigned to P2 and all other
data is dropped. Not quite what you wanted!

Let’s skip the first three lines:

PS> netstat -n | select -Skip 3 | ConvertFrom-String

Each line of netstat output looks something like this:

P1 :

P2 : TCP

P3 : 10.10.54.200:49723

P4 : 10.10.54.201:3389

P5 : ESTABLISHED

The first set of outputs is the field headers. Notice that the properties are given consecutive
names: P1, P2, P3, and so on. The next step is to discard the field header row and assign useful
names to the properties:

PS> netstat -n | select -Skip 4 |

ConvertFrom-String -PropertyNames Protocol,

LocalAddress, ForeignAddress, State

The output is a number of objects of this form:

Protocol :

LocalAddress : TCP

ForeignAddress : 10.10.54.200:49723

State : 10.10.54.201:3389

P5 : ESTABLISHED

The properties are assigned incorrectly because there are multiple whitespaces at the beginning
of each line. One way to deal with that is to assign a dummy property:

PS> netstat -n | select -Skip 4 |

ConvertFrom-String -PropertyNames Blank, Protocol,

LocalAddress, ForeignAddress, State

The output looks like this:

Blank :

Protocol : TCP

LocalAddress : 10.10.54.200:49723

ForeignAddress : 10.10.54.201:3389

State : ESTABLISHED

You should filter out the Blank property because it’s not required:

PS> netstat -n | select -Skip 4 |

ConvertFrom-String -PropertyNames Blank, Protocol,

(640)

LocalAddress, ForeignAddress, State |

Select-Object Protocol, LocalAddress, ForeignAddress, State

This will produce the output shown in figure 16.7.

Figure 16.7. Result of processing netstat output with ConvertFrom-String

(641)

(642)

Figures 16.6 and 16.7 look similar. The important point is now that you can convert the netstat
output to objects, you can apply standard PowerShell techniques to filter the data. For example:

PS> $nso = netstat -n | select -Skip 4 |

ConvertFrom-String -PropertyNames Blank, Protocol, LocalAddress, ForeignAddress, State |

Select-Object Protocol, LocalAddress, ForeignAddress, State

PS> $nso.where({$_.State -eq 'ESTABLISHED'})

PS> $nso | sort State

PS> $nso | where LocalAddress -like '192.168.0.5*' | sort ForeignAddress

That closes our look at files and working with text data. It’s time to turn your attention to the
older COM object model and how you can work with it in PowerShell.

(643)

16.3. Accessing COM objects

COM is an interface specification describing how to write libraries that can be used from
multiple languages or environments. Prior to technologies like COM, each programming
language required its own set of libraries. The COM specification allowed the creation of
libraries of components that could be accessed from multiple languages. But beyond sharing
library code, COM allowed running applications to expose automation interfaces that external
programs could use to remotely control them. In this section, we’ll introduce COM and show
you how to leverage COM classes using PowerShell. COM provides easy (and in some cases
trivial) access to many Windows features. We’ll work through a number of examples in a variety
of application scenarios, and we’ll complete our COM coverage by examining some of the issues
and limitations the PowerShell scripter may encounter.

Creating COM objects

The first thing you need to know if you want to work with COM (or any other object system for
that matter) is how to create instances of COM objects. As with .NET objects, you use the New-
Object cmdlet, but for COM objects you have to specify the -ComObject parameter:

PS> $word = New-Object -ComObject 'Word.application'

Unlike .NET objects, COM doesn’t have a way to pass arguments to the object’s constructor,
making it hard to initialize the object. As a workaround for this, in PowerShell v2 (and later) you
use the -Property parameter on New-Object to initialize properties on the constructed object before
returning it.

Unique to the COM parameter set is the -Strict switch. This switch tells the cmdlet to generate
an error if a .NET/COM Interop library is loaded. In chapter 2, we talked about how the
PowerShell type system uses adaptation to give the user a consistent experience with different
kinds of objects. COM objects are one of these adapted types, but the way the PowerShell
adapter works is affected by the presence or absence of a COM Interop library.

In effect, this Interop library is .NET’s own adaptation layer for COM. The net effect is that the
PowerShell COM adapter will project a different view of a COM object if an Interop library is
loaded versus when there’s not one. This becomes a problem because, for any given COM class
on any given machine, there may or may not be an Interop library, so you may or may not get the
doubly adapted COM object. If you want to be able to write scripts that behave consistently
everywhere, you need a way to control how the adaptation is done. The -Strict parameter allows
you to detect this when an Interop library is loaded. Once you know what’s happening, you can
decide whether you want to fail or continue but along a different code path. This kind of
portability issue is something to keep in mind when you’re writing a script using COM that you
plan to deploy on other machines. But for now, let’s move on to our next topic and see how to
find out which COM classes are available.

Identifying and locating COM classes

Officially, all COM classes are identified by a globally unique ID (GUID). This isn’t a
particularly friendly way to identify, well, anything. As far as PowerShell is concerned, COM
objects are identified by a much more usable name called the ProgID. This is a string alias that’s

(644)

provided when the class is registered on the system. Using the ProgID is the most human-
friendly way of identifying the object. By convention, the ProgID has the form

<Program>.<Component>.<Version>

which (at least according to the MSDN documentation) should be fewer than 39 characters in
length.

Note

Although this format is the recommended way to create a ProgID, there’s no real way to enforce
it, resulting in some interesting interpretations of what each of the elements means. Generally, it
seems in practice that <Program> is the application suite, toolset, or vendor that installed it;
<component> is the COM class name; and the version number is normally not used in calls, though
it may exist in even a multipart form.

COM objects are registered in (where else?) the Registry. This means that you can use the
Registry provider to search for ProgIDs from PowerShell.

Listing 16.10. Discovering ProgIds

function Get-ProgId

{

 param (

 $filter = '.'

)

 Get-ChildItem -Path 'REGISTRY::HKey_Classes_Root\clsid*\progid' |

 foreach {if ($_.name -match '\\ProgID$') { $_.GetValue('') }} |

 Where-Object {$_ -match $filter}

}

Using the function with the default search filter

PS> Get-ProgId | Sort-Object

will return all available ProgIds. If you want to restrict the search—for instance, for the ProgId
for Internet Explorer—use the filter:

PS> Get-ProgId -filter internet

Note

The CIM class Win32_ProgIDSpecification will return some but not all ProgIds. The safest option
is to use the function in listing 16.10.

As with everything else in PowerShell, examples save thousands of words, so we’ll show you
examples of working with COM objects, starting with how to automate some Windows basic
features.

(645)

Automating Windows with COM

The Shell.Application class provides access to Windows Explorer and its capabilities. It allows
automation of many shell tasks, like opening file browser windows, launching documents or the
help system, finding printers, computers, or files, and so on. The first thing you need to do is
create an instance of this class:

PS> $shell = New-Object -ComObject Shell.Application

As always in PowerShell, COM objects, like any other object type, can be examined using Get-
Member. It’s worth exploring the available methods; for instance, the Explore() method, which will
launch an Explorer window on the path specified:

PS> $shell.Explore('C:\Temp\')

At this point, you should see something like figure 16.8. This method call opened an Explorer
window in the Temp directory of the C: drive.

Figure 16.8. Launching Windows Explorer on C:\Temp

Here’s a handy function for laptop users who move around a lot. Many laptops have docking
stations that allow you to easily connect multiple peripherals. This is great except that you need
to undock the laptop before heading to a meeting. Depending on the laptop, this can be annoying,
so here’s a quick one-line function to undock a laptop:

PS> function eject { (New-Object -ComObject Shell.Application).EjectPC()}

This function gets an instance of the Shell.Application object and then calls the EjectPC() method
to undock the laptop.

The Windows() method on Shell.Application allows you to get a list of the Explorer and Internet
Explorer windows that are currently open:

(646)

PS> $shell.Windows() | select Name, LocationURL

or you can index directly into the collection of Windows:

PS> $shell.Windows()[0] | select Name, LocationURL

Name LocationURL

---- -----------

File Explorer file:///C:/Temp

PowerShell 5.0 changes

Prior to PowerShell v5 you’d have received an error when trying to index into the collection of
Windows:

PS> $shell.Windows()[0]

Unable to index into an object of type System.__ComObject.

At line:1 char:18

+ $shell.Windows()[0 <<<<]

The error occurred because the PowerShell interpreter didn’t know how to index these
collections, because they consisted of the COM object inside a .NET wrapper, which was then
adapted by PowerShell. You had to use this syntax:

PS> $shell.Windows().Item(0)

A number of changes were made to the way COM objects are processed during the development
of PowerShell v5, including being able to understand the wrappers and so index into the
collection.

The other big improvement was in processing speed. Utilizing COM objects could be glacially
slow, in particular the Excel objects when writing to a spreadsheet. PowerShell v5 shows a
significant increase in processing speed for COM objects.

Closing a window requires the Quit() method:

PS> $shell.Windows()[3].Quit()

You can even close a set of windows in one pass:

PS> $shell.Windows() | where LocationURL -match 'amazon' |

foreach {$_.Quit()}

There are many other methods for you to explore using the Shell.Application class. But for now,
we’ll turn our attention to Microsoft Word.

Using Microsoft Word for spell checking

Wouldn’t it be great if every environment you worked in had spell checking, like word
processors do? With PowerShell and COM, you can get at least part of the way there. You’re
going to write a script that will use Microsoft Word to spell check the contents of the clipboard
and then paste them back. You’ll call this script Get-Spelling.ps1. Try this in both the
PowerShell console and the ISE.

Let’s see how it’s used. First, put some text, with errors, on the clipboard:

(647)

PS> Set-Clipboard -Value 'Some text with errros'

Now run the function from listing 16.11:

PS> Test-Spelling

You’ll see the Word Spelling dialog box pop up, as shown in figure 16.9.

Figure 16.9. The Microsoft Word spell checker launched by the Test-Spelling function shows the misspelled text
that was copied from the clipboard.

You need to go through all the spelling errors and fix them as appropriate. Once all the errors are
fixed, the dialog box will disappear, and the pop-up box will be displayed, indicating that the
revised text is available in the clipboard.

Note

The *-Clipboard cmdlets were introduced in PowerShell v5.

You can view the changed text:

PS> Get-Clipboard

Some text with errors

and you’re finished. The text is correctly spelled. Now that you know how to use this script, let’s
look at the Test-Spelling code.

(648)

Listing 16.11. The Test-Spelling function

function Test-Spelling {

 $wshell = New-Object -ComObject WScript.Shell

 $word = New-Object -ComObject Word.Application

 $word.Visible = $false

 $doc = $word.Documents.Add()

 $word.Selection.Paste()

 if ($word.ActiveDocument.SpellingErrors.Count -gt 0)

 {

 $word.ActiveDocument.CheckSpelling()

 $word.Visible = $false

 $word.Selection.WholeStory()

 $word.Selection.Copy()

 $wshell.PopUp('The spell check is complete, ' +

 'the clipboard holds the corrected text.')

 }

 else

 {

 [void] $wshell.Popup('No Spelling Errors were detected.')

 }

 $x = [ref] 0

 $word.ActiveDocument.Close($x)

 $word.Quit()

}

The first thing you do is create the object instances you’re going to use. You need an instance of
WScript.Shell to pop up a message box and the Word.Application object for the bulk of the work.
Once you have the Word.Application object, you make the Word window invisible and then add
an empty document to hold the text you want to spell-check.

Next, you copy the contents from the clipboard to the Word document you created and see if you
need to spell check the text. If you do, you present the Spelling dialog box. When the spell check
is complete, you select all the text and copy it back to the clipboard so you can paste it into the
original document and inform the user that the corrected text is available. If there were no
spelling errors, you’d display a message box confirming this. The last step is to discard the
document you created and close the application. With this script, you can add spell-checking
capabilities to any application that lets you select and copy text.

Note

Obviously, if Microsoft Word isn’t your word processor of choice, it should be simple to modify
the script to work with any word processor that exports a similar automation model.

Using COM in PowerShell lets you automate applications, but there are also issues with COM
support, which we’ll cover in the next section.

Issues with COM

Support for COM in PowerShell is good but not perfect. In part, this is because PowerShell
depends on .NET, and .NET’s support for COM is also not perfect. In this section, we’ll explore
a few problems that you may run into when using COM from PowerShell, including more
information on the Interop assembly issue.

(649)

One problem that arises is that some COM objects are available only to 32-bit applications. On
64-bit systems, the 64-bit PowerShell binaries are run by default, so if you need to use a 32-bit–
only COM object, you’ll have to explicitly start the 32-bit version of PowerShell. This can also
be an issue when using remoting because the default remoting configuration on 64-bit systems is
64-bit as well. To remotely run a script that requires a 32-bit COM object, you’ll have to connect
to the 32-bit configuration on the remote machine, regardless of whether the local system is 32-
or 64-bit.

Another thing that can potentially cause problems has to do with the way the COM object has
been wrapped or adapted. There are three possible categories of COM objects you may
encounter: a COM object that has a .NET Interop library, a COM object that has a type library
(commonly called a typelib) but no Interop assembly, and a COM object that has neither.

In the first category, you get a COM object that has been wrapped in a .NET Interop wrapper.
This wrapper may introduce changes in the object’s interface or behavior that affect how you
work with that object compared to the raw COM object. For this reason, the New-Object cmdlet’s
ComObject parameter set has an additional parameter, -Strict, that causes a nonterminating error
to be written if an Interop assembly is loaded. Let’s look at examples. Start by creating an
instance of the Word.Application object you used earlier:

PS> $word = New-Object -ComObject Word.Application

Now try it again but with the -Strict parameter:

PS> $word = New-Object -ComObject Word.Application -Strict

New-Object : The object written to the pipeline is an instance of the type

 "Microsoft.Office.Interop.Word.ApplicationClass" from the component's

 primary interoperability assembly. If this type exposes different members

 than the IDispatch members, scripts that are written to work with this

 object might not work if the primary interoperability assembly is not

 installed.

At line:1 char:9

+ $word = New-Object -ComObject Word.Application -Strict

+ ~~

 + CategoryInfo : InvalidArgument: (Microsoft.Offic...pplication

 Class:ApplicationClass) [New-Object], PSArgument

 Exception

 + FullyQualifiedErrorId : ComInteropLoaded,Microsoft.PowerShell.Commands.NewObjectCommand

You get a detailed error message explaining that the object that was loaded is a wrapped object.
Note that this is a nonterminating error message, so the object is still returned and execution
proceeds. Here’s how to use this feature to write a script that can adapt its behavior
appropriately.

First, you don’t want the error message to appear in the output of your script, so redirect it to
$null. But even when you do this, the $? variable, which indicates whether the last command
executed was successful, is still set to $false so you know that an error occurred:

PS> $word = New-Object -ComObject Word.Application -Strict 2> $null

PS> $?

False

A script should check this variable and take an alternate action for the wrapped and nonwrapped
cases. Investigating further, let’s see what was returned by the call to New-Object:

PS> $word.GetType().Fullname

Microsoft.Office.Interop.Word.ApplicationClass

(650)

The output shows that the object is an instance of the Interop assembly mentioned earlier.

Next, look at an object for which there’s no Interop assembly and see how that behaves
differently. Create an instance of the Shell.Application class you worked with earlier:

PS> $shell = New-Object -ComObject Shell.Application

PS> $shell | Get-Member

 TypeName: System.__ComObject#{efd84b2d-4bcf-4298-be25-eb

542a59fbda}

Name MemberType Definition

---- ---------- ----------

AddToRecent Method void AddToRecent (Varian...

BrowseForFolder Method Folder BrowseForFolder (...

:

In this situation, you see that the type of the object is System.__ComObject followed by the GUID
of the registered type library. This type library allows you to see the members on the object but
doesn’t affect the object’s behavior.

There is another type of object you need to consider: those created using CIM.

(651)

16.4. Using CIM

CIM is an industry standard (a set of related standards) created by Microsoft, HP, IBM, and
many other computer companies with the goal of defining a common set of management
abstractions. By creating interoperable common models for managed elements like services,
processes, or CPUs, you can start to build management tools and processes that can be applied
universally. WMI is Microsoft’s original implementation of CIM.

Note

In this section we’ll show you how the CIM cmdlets work. If you want to dig deeper into CIM
(WMI), you should read PowerShell and WMI by Richard Siddaway (Manning Publications,
2012), which covers the WMI and CIM cmdlets and how to use them to administer Windows
systems.

There are standard ways of wrapping bits of management data in a well-defined package so you
can work with this data across different vendors and environments in a consistent way; these are
the standard or base CIM classes. To support environment-specific extensions, CIM also allows
vendors to create derived classes of the CIM base classes that can surface nonstandard features as
a set of extensions while still preserving the common base characteristics of the model. The goal
of all this is to make it easier to create system administration tools (and, by corollary, system
administrators) that can work effectively in heterogeneous environments. In the next section,
we’ll look at how the CIM/WMI infrastructure facilitates these goals.

CIM and WMI

One point of confusion that needs to be cleared up immediately is the difference between CIM
and WMI. The short and simple answer is that there isn’t any difference.

CIM is a standard created by the Distributed Management Task Force (DMTF) to provide a
common definition of management information across computers, networks, applications, and
services; see www.dmtf.org/standards/cim. The DMTF defines CIM like this:

“CIM provides a common definition of management information for systems, networks,
applications, and services, and allows for vendor extensions. CIM’s common definitions enable
vendors to exchange semantically rich management information between systems throughout the
network.”

WMI is the name Microsoft gave its original implementation of the CIM standard.

The new API and cmdlets introduced with PowerShell v3 use the CIM prefix to distinguish them
from the WMI cmdlets introduced in PowerShell v1 and v2. The WMI cmdlets use DCOM
(Distributed Component Object Model) to connect to remote machines. The newer CIM cmdlets
use WS-MAN for remote connectivity in a similar way to PowerShell remoting.

(652)

http://www.dmtf.org/standards/cim

PowerShell has supported CIM since version 1.0; in fact, Get-WmiObject was the only cmdlet in
the original PowerShell version that had the capability to access remote machines. The level of
CIM support in PowerShell has increased with subsequent versions. This section will explain
what CIM is, how to access it from PowerShell, and what you can do with CIM once you have
this access. You’ll work through a number of examples to see how things work, exploring the
sorts of tasks that can be accomplished.

PowerShell v3 introduced a new API and cmdlets for working with WMI. Usually referred to as
the CIM cmdlets, they have the ability to create and use connections to remote machines in a
similar manner to PowerShell remoting. We’ll concentrate on the CIM cmdlets in this section
rather than the older WMI cmdlets. The CIM cmdlets support both the original WMI providers
and the newer APIs, as shown in figure 16.10.

Figure 16.10. CIM cmdlet support for original WMI providers and modern API

16.4.1. The CIM cmdlets

The CimCmdlets module supplies a number of cmdlets for working with CIM, as shown in table
16.2. The equivalent WMI cmdlet is provided where applicable.

Table 16.2. The CIM cmdlets and their purpose compared with the WMI cmdlets

CIM cmdlet Purpose Equivalent WMI cmdlet

Get-CimClass Retrieves CIM class structure None
Get-CimInstance Retrieves objects from CIM Get-WmiObject

Get-CimAssociatedInstance Retrieves associated CIM
instances None

Invoke-CimMethod Invokes a method on a CIM
class Invoke-WmiMethod

(653)

New-CimInstance Creates a new instance of a
CIM class

None

Register-CimIndicationEvent Subscribes to events surfaced
through CIM Register-WmiEvent

Remove-CimInstance Removes a CIM instance from
the repository Remove-WmiObject

Set-CimInstance Sets the properties of a CIM
instance SetWmiInstance

Finding CIM classes

Before you can use Get-CimInstance to retrieve data, you need to know which class to use. CIM is
a self-describing technology, which means it provides ways for a client application to ask the
object manager on the target system what’s available. Get-CimClass leverages these mechanisms.
For example, to see all of the classes with BIOS in their name, use this:

PS> Get-CimClass -ClassName *bios*

The output shows each of the available class names along with the methods and properties
defined by those classes. Let’s look at a specific class:

PS> Get-CimClass -ClassName Win32_Bios

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties

------------ --------------- ------------------

Win32_BIOS {} {Caption, Description ...}

As you saw with .NET, the amount of information returned from the commands is frequently
enough for your purposes, but all the standard classes that Microsoft includes with Windows are
well documented on MSDN: http://mng.bz/43Da.

This documentation includes many examples showing how to use classes. Many of the examples
are written in VBScript, although this is becoming less true over time. CIM classes are arranged
in namespaces. In the previous output, you saw

 NameSpace: ROOT\cimv2

indicating that the classes listed were located in this namespace. Because this is PowerShell’s
default namespace, you haven’t needed to use the -Namespace parameter yet. All classes are
identified by a path of this form:

\\<computer>\<namespace>\<namespace>:<class>

Note

The vast majority of CIM classes that you’ll use on a regular basis live in the root\cimv2
namespace. PowerShell treats this as the default namespace, which is why you don’t force the
use of the -Namespace parameter. Because the -ClassName parameter is positional, many CIM
commands can be written as Get-CimInstance Win32_Bios.

(654)

http://mng.bz/43Da

Namespaces can contain nested namespaces and classes. The set of CIM namespaces and classes
available on a machine depends on what’s installed on that machine (both applications and
operating system).

Selecting CIM instances

Table 16.2 shows that Get-CimInstance (equivalent to the older Get-WmiObject) is used to retrieve
data from the CIM repository. If you’re dealing with the default namespace, the cmdlet is used
like this:

PS> Get-CimInstance -ClassName Win32_Bios

SMBIOSBIOSVersion : 2.05.0250

Manufacturer : American Megatrends Inc.

Name : 2.05.0250

SerialNumber : 036685734653

Version : OEMA - 1072009

To run this same command against a remote computer, you have to add the -ComputerName
parameter to the command. You get this:

PS> Get-CimInstance -ClassName Win32_Bios -ComputerName W510W16

SMBIOSBIOSVersion : 6NET61WW (1.24)

Manufacturer : LENOVO

Name : Ver 1.00PARTTBLX

SerialNumber : R81BG3K

Version : LENOVO - 1240

PSComputerName : W510W16

CIM cmdlet connectivity

The CIM cmdlets use different protocols to connect to systems depending on the scenario:

Local machine (no use of -ComputerName) = COM
Local machine using -ComputerName = WS-MAN
Remote machine using -ComputerName = WS-MAN
Remote machine using CIM session = WS-MAN
Remote machine using CIM session using DCOM protocol = DCOM

If you want to restrict the data returned from a CIM call, the most efficient way is to use the -
Filter parameter:

PS> Get-CimInstance -ClassName Win32_NetworkAdapterConfiguration `

-ComputerName W510W16 -Filter "DHCPEnabled = $true"

This is the equivalent of using a WMI Query Language (WQL) query:

PS> Get-CimInstance -ComputerName W510W16 `

-Query "SELECT * FROM Win32_NetworkAdapterConfiguration

WHERE DHCPEnabled = $true"

The -Filter parameter takes the part of the WQL query after the WHERE keyword.

Like .NET and COM objects, WMI objects have methods. You’ll see how to invoke these
methods in the next section.

(655)

Invoking CIM methods

CIM classes can have both static or class members and object or instance members. Static
methods are the easier types to call because you only need the class name, method name, and
arguments to call. Instance methods are more complex because you need to specify additional
information to identify which instance of the target class to invoke the method on.

As our test case for static methods, let’s use the static Create() method on the Win32_Process class
to create an instance of (start) a process—in this case, calc.exe. The command to do that looks
like this:

PS> Invoke-CimMethod -ClassName Win32_Process -MethodName Create `

-Arguments @{CommandLine = 'calc.exe'}

ProcessId ReturnValue PSComputerName

--------- ----------- --------------

 3620 0

If the method call is successful, then the ReturnValue will be 0, indicating success. Any other
value indicates failure and the error.The ProcessID will contain the process ID or handle of the
new process. The arguments for the method are supplied as a hashtable. If you have multiple
arguments, separate them with a semicolon (;):

PS> Invoke-CimMethod -ClassName Win32_Process -MethodName Create `

-Arguments @{CommandLine = 'notepad.exe'; CurrentDirectory = 'C:\test'}

The easiest way to invoke an instance method is to get the instance and pass it to Invoke-
CimMethod:

PS> Get-CimInstance -ClassName Win32_Process -Filter "Name='calculator.exe'"

 | Invoke-CimMethod -MethodName Terminate

A filter identifies the individual process, which is then passed to Invoke-CimMethod, and the
Terminate() method is called. The process is shut down.

Deleting CIM instances

The Remove-CimInstance cmdlet can be used to delete instances. You could use this instead of
calling the Terminate() method:

PS> Get-CimInstance -ClassName Win32_Process -Filter "Name='calculator.exe'" |

Remove-CimInstance

The final action you may need to take on a CIM instance is to modify its properties.

Modifying CIM instances

Many of the properties on CIM classes are read-only; you can’t alter them. You can check if an
individual property is read-only like this:

PS> (Get-CimClass -ClassName Win32_OperatingSystem).

CimClassProperties['Manufacturer']

Name : Manufacturer

Value :

CimType : String

Flags : Property, ReadOnly, NullValue

Qualifiers : {MappingStrings, read}

(656)

ReferenceClassName :

If you want to see all the read-only properties, use this:

PS> Get-CimClass -ClassName Win32_OperatingSystem |

select -ExpandProperty CimClassProperties |

where Flags -like '*ReadOnly*' |

select Name, CimType

Conversely, if you want to see the properties, you can change the -like operator to -notlike in
the previous code. This shows that on the Win32_OperatingSystem class you can modify the
Description and ForegroundApplicationBoost properties.

How do you modify a property value on a CIM instance? The clue is in the question. You use
Set-CimInstance. Let’s start by creating an environment variable:

PS> New-CimInstance -ClassName Win32_Environment -Property @{

Name = 'PiAvar';

VariableValue = 'PiA 2017';

UserName = "$($env:COMPUTERNAME)\bpayette"}

Name UserName VariableValue

---- -------- -------------

PiAvar LAPTOPO2\bpayette PiA 2017

Modify the value assigned to the variable:

PS> Get-CimInstance -ClassName Win32_Environment `

-Filter "Name = 'PiAvar'" |

Set-CimInstance -Property @{VariableValue='What about next year?'} `

-PassThru

Name UserName VariableValue

---- -------- -------------

PiAvar LAPTOPO2\bpayette What about next year?

The majority of the time when you’re accessing CIM data, you’re going to be working with
remote machines. When using PowerShell remoting to access remote machines (see chapter 11)
you can create connections (remoting sessions) that can be used many times. An analogous
situation exists when using the CIM cmdlets.

16.4.2. CIM sessions

Creating and destroying links from your administration machine to a remote machine is an
expensive proposition. You need to get the maximum return from creating that connection.
PowerShell remoting enables you to create a persistent session you can reuse. In a similar
manner, the CIM cmdlets have an option to use a CIM session.

Note

You can’t copy files over a CIM session as you can in a PowerShell v5 remoting session.

A CIM session is similar to a PowerShell remoting session in that it’s based on WS-MAN (by
default) but is designed to be utilized by the CIM-based cmdlets and connects to a different
endpoint (the WMI provider).

(657)

You create CIM sessions by passing one or more computer names to the New-CimSession cmdlet:

PS> $computers = 'W16DSC01', 'W16AS01'

PS> $cs = New-CimSession -ComputerName $computers

The CIM session object contains the computer name and the protocol:

PS> Get-CimSession -ComputerName W16DSC01

Id : 1

Name : CimSession1

InstanceId : 864bb2cf-3b08-4d65-8d0f-00f857f0a7a9

ComputerName : W16DSC01

Protocol : WSMAN

The session information is passed to the cmdlet through the -CimSession parameter:

PS> Get-CimInstance -CimSession $cs -ClassName Win32_OperatingSystem |

select SystemDirectory, BuildNumber, Version, PSComputerName

SystemDirectory BuildNumber Version PSComputerName

--------------- ----------- ------- --------------

C:\Windows\system32 9600 6.3.9600 W16DSC01

C:\Windows\system32 9600 6.3.9600 W16AS01

CIM sessions need WS-MAN 3.0 (introduced with PowerShell v3). If you try to access a
machine running PowerShell v2 (which used WS-MAN 2.0), you’ll get an error:

PS> $cs2 = New-CimSession -ComputerName W8R2STD01

PS> Get-CimInstance -CimSession $cs2 -ClassName Win32_OperatingSystem |

select SystemDirectory, BuildNumber, Version, PSComputerName

Get-CimInstance : The WS-Management service cannot process the request. A

 DMTF resource URI was used to access a non-DMTF class. Try again using a

 non-DMTF resource URI.

At line:1 char:1

+ Get-CimInstance -CimSession $cs2 -ClassName Win32_OperatingSystem | s ...

+ ~~~

 + CategoryInfo : NotSpecified: (root\cimv2:Win32_OperatingSystem:String) [Get-

CimInstance], CimException

 + FullyQualifiedErrorId : HRESULT

0x80338139,Microsoft.Management.Infrastructure.CimCmdlets.GetCimInstanceCommand

 + PSComputerName : W8R2STD01

The problem is that PowerShell v2 used WS-MAN 2.0. You can overcome this issue by creating
a DCOM-based CIM session:

PS> $opt = New-CimSessionOption -Protocol Dcom

PS> $csd = New-CimSession -ComputerName W8R2STD01 -SessionOption $opt

PS> $csd

Id : 4

Name : CimSession4

InstanceId : 2de6064f-f018-4b71-8d80-95fe2413089c

ComputerName : W8R2STD01

Protocol : DCOM

The DCOM-based CIM session is used in exactly the same manner as a WS-MAN session:

PS> Get-CimInstance -CimSession $csd -ClassName Win32_OperatingSystem |

select SystemDirectory, BuildNumber, Version, PSComputerName

SystemDirectory BuildNumber Version PSComputerName

--------------- ----------- ------- --------------

C:\Windows\system32 7601 6.1.7601 W8R2STD01

Once you have a CIM session created, the CIM cmdlets will use WS-MAN- and DCOM-based

(658)

sessions together:

PS> Get-CimInstance -CimSession ($cs + $csd) `

-ClassName Win32_OperatingSystem |

select SystemDirectory, BuildNumber, Version, PSComputerName

SystemDirectory BuildNumber Version PSComputerName

--------------- ----------- ------- --------------

C:\Windows\system32 7601 6.1.7601 W8R2STD01

C:\Windows\system32 9600 6.3.9600 W16DSc01

C:\Windows\system32 9600 6.3.9600 W16AS01

Note

You can create a DCOM-based CIM session to machines running WS-MAN 3.0 if required.

Many of the cmdlets in Windows 8.0 and later are created using Cmdlet Definition XML
(CDXML). The cmdlets in the NetAdapter and NetTCPIP modules are good examples.

Note

CDXML-based cmdlets are created using the cmdlets-over-objects technology introduced in
PowerShell v3. In this case, you wrap the CIM class in the appropriate XML and publish as a
PowerShell module. The CIM class must be on the remote machine for these cmdlets to work
remotely.

If you look at the syntax of those cmdlets, you’ll see that they have a -CimSession parameter but
don’t have a -ComputerName parameter. This is an artifact of the way they’re created. You have to
use CIM sessions when using these cmdlets against remote machines. You can use a computer
name as a value to the -CimSession parameter—it creates a session to the remote machine,
executes the command, and then removes the session. If you’re making multiple CIM calls to the
same machine, it’s more efficient to use a CIM session.

That concludes our investigation of using CIM through PowerShell and closes this chapter.

(659)

16.5. Summary

PowerShell providers supply a file system–like experience for other data stores.
Providers are exposed as PowerShell drives.
Core cmdlets work across providers.
The LiteralPath parameter suppresses pattern-matching behavior.
Use the *Content cmdlets to work with text files.
Get-Content has -Head and -Tail parameters to read the beginning and end of files.
Advanced string handling can be performed using the [string] and [regex] classes.
Use Select-String to search string data.
XML documents have to be created manually.
Select-Xml uses XPath queries.
ConvertFrom-String can convert text output from legacy applications to objects.
COM objects can be accessed from PowerShell.
COM processing speed is greatly increased in PowerShell v5.
The CIM cmdlets should be used in preference to the older WMI cmdlets.
Use Get-CimClass to discover CIM classes, methods, and properties.
CIM sessions provide a persistent connection to remote machines.
CIM sessions use WS-MAN by default; DCOM is available as an option for connecting to
PowerShell v2 systems.

In the next chapter, we’ll continue our investigation of how PowerShell works with data when
we look at using .NET and events.

(660)

Chapter 17. Working with .NET and events
This chapter covers

.NET and PowerShell
Real-time events

I love it when a plan comes together!

Col. John “Hannibal” Smith, The A-Team

The good news is that PowerShell is .NET -based and works with .NET objects. The not-quite-
so-good news is that not all of .NET is immediately available when you open PowerShell. Some
.NET functionality is available through cmdlets—for the rest you need to access the .NET
classes in your code. PowerShell doesn’t load the entire .NET framework, so you’ll need to load
assemblies before you can use them. Once an assembly is loaded, you have access to the rich
.NET functionality, including creating graphical applications in PowerShell.

Note

PowerShell v6 uses .NET core which has further restrictions as described in the appendix.

Windows is an event-based system. You can use PowerShell to access events from a number of
sources. Your scripts can then either display information about the event or take action based on
the event.

We’ll start with .NET before moving on to events.

(661)

17.1. .NET and PowerShell

The original PowerShell concept was to have cmdlets for every task, but that goal wasn’t
achievable in the time frame available for the release of PowerShell v1. Instead, the team made
the decision to make it easier to work directly with the .NET Framework. That way, although it
might not be as easy to do everything the way the team wanted, at least it would be possible.

In retrospect, this may have been one of the best things to happen to PowerShell. Not only did
the team backfill their original scenarios, but the set of problem domains (such as creating GUIs)
in which PowerShell was applicable greatly exceeded original expectations.

17.1.1. Using .NET from PowerShell

We’re assuming that you have a basic understanding of .NET. If you’re new to .NET or need a
refresher, we recommend you read http://mng.bz/RIvK before reading the rest of this chapter.
The basic arrangement of entities in .NET is as follows: members (properties, methods, and so
on) are contained in types (classes, structs, and interfaces) which are, in turn, grouped into
namespaces.

The arrangement of types into classes and namespaces is called logical type containment. You
also need to understand physical type containment. Where do these collections of types live on a
computer? This organization is done through the assemblies we mentioned earlier. An assembly
is a file stored somewhere so that the program loader can find it when needed. Each assembly
contains the definitions for one or more types. Because a set of types is contained in an assembly,
clearly the set of assemblies that’s loaded determines the complete set of types available to you.
PowerShell loads most of the assemblies you’ll need for day-to-day work by default when it
starts, but sometimes (like when you want to do GUI programming) you’ll have to load
additional assemblies.

Versioning and assemblies

With .NET, Microsoft tried to solve some of the problems with assemblies, in particular the issue
of versioning of DLLs. In effect, an assembly is a DLL with additional metadata in the form of
an assembly manifest.

This assembly manifest lists the contents of the DLL as well as the name of the DLL. The full (or
strong) name for an assembly is a complex beast and warrants some discussion. To try to solve
some of the identity and versioning problems, .NET introduced the idea of a strong name. As
well as the assembly filename, a strong name uses public key cryptography to add information
that will allow you to validate the identity of the DLL author. When a .NET program is linked
against a strong-named assembly, it will run only if exactly the same assembly it was linked
against is present. Replacing the file won’t work, because the strong name will be wrong.

One more thing that’s included in the strong name is the version number. The result is that when
the DLL is loaded, the correct version must always be loaded even if later versions are available.
But it also means that to service the assembly to fix bugs, you can’t change the version number
of the assembly because the version number is part of the strong name. You end up with two
versions of an assembly with the same version number. The net effect of all of this is that .NET
didn’t solve the versioning problem—it merely moved things around a bit.

(662)

http://mng.bz/RIvK

The default PowerShell assemblies

Now let’s talk about how PowerShell finds types and assemblies. All compiled programs contain
a list of assemblies needed for the program to execute. This list is created as part of the linking
phase when the program is compiled. When the program executes, the referenced assemblies are
loaded automatically as needed. When the system tries to locate a required assembly, the loader
performs a process called probing to find that assembly. It looks in a number of places
automatically; the most important one is the global assembly cache (GAC). If an assembly has
been installed in the GAC, you don’t have to care where it is—the system will find it for you as
long as you know its name.

Because the PowerShell interpreter is a compiled program, it also contains a list of required
assemblies. Through the automatic loading mechanism, all these assemblies and the types they
contain are available to PowerShell scripts by default.

You can view the assemblies PowerShell loads by default by opening a new PowerShell console
(ensures only defaults are loaded) and running:

PS> [System.AppDomain]::CurrentDomain.GetAssemblies() |

sort Fullname | select Fullname

The AppDomain class is .NET’s way of encapsulating an isolated execution environment. It’s
similar in some ways to PowerShell sessions but even more isolated. For example, each
AppDomain can have its own set of assemblies, whereas PSSessions all share the same assemblies.
The static CurrentDomain property lets you access the domain you’re executing in, and
GetAssemblies() gives you the list of assemblies currently loaded into the AppDomain.

Note

You’ll see an extended set of assemblies if you run the code in PowerShell ISE as opposed to the
console.

Once you have the list of assemblies, you can use the GetTypes() and GetExportedTypes() methods
on each assembly object to get all the types in that assembly. The GetExportedTypes() method
gives you all the public types, which is usually what you want. GetTypes() returns both public and
private types, which is primarily useful for exploring how things are organized below the public
façade. The function in the following listing gets the full names of all of the public types in each
assembly and matches them against the pattern provided in the function argument (which
defaults to matching everything).

Listing 17.1. Getting exported types from .NET assemblies

function Get-Type {

 [CmdletBinding()]

 param (

 [string]$Pattern='.'

)

 [System.AppDomain]::CurrentDomain.GetAssemblies() |

 Sort-Object FullName |

 foreach{

 $asm = $psitem

(663)

 Write-Verbose $asm.Fullname

 switch ($asm.Fullname) {

 {$_ -like

 'Anonymously Hosted DynamicMethods Assembly*'}{break}

 {$_ -like

 'Microsoft.PowerShell.Cmdletization.GeneratedTypes*'}

 {break}

 {$_ -like 'Microsoft.Management.Infrastructure.

 UserFilteredExceptionHandling*'}

 {break}

 {$_ -like 'Microsoft.GeneratedCode*'}{break}

 {$_ -like 'MetadataViewProxies*'}{break}

 default {

 $asm.GetExportedTypes() |

 Where-Object {$_ -match $Pattern} |

 Select-Object @{N='Assembly';

 E={($_.Assembly -split ',')[0]}},

 IsPublic, IsSerial,FullName, BaseType

 }

 }

 }

}

Use the function like this:

PS> Get-Type -Pattern '^system\.timers' |

Format-Table Assembly, IsPublic, Fullname

Assembly IsPublic FullName

-------- -------- --------

System True System.Timers.ElapsedEventArgs

System True System.Timers.ElapsedEventHandler

System True System.Timers.Timer

System True System.Timers.TimersDescriptionAttribute

Add the -Verbose switch on Get-Type to see the list of assemblies that are scanned as well as the
results.

Dynamic assembly loading

Automatic loading applies only to compiled programs like Notepad.exe or PowerShell.exe
because it depends on the required assembly list contained in the executable. PowerShell scripts
are interpreted and have no compile or “static” link phase, so if you want to make sure that an
assembly you need is loaded, you have to explicitly load it. In chapter 10, you saw how to do this
with module manifests; you add the list of required assemblies to the RequiredAssemblies manifest
element. In effect, module manifests are the dynamic equivalent to the static manifest found in an
assembly. But with simple scripts you don’t have a manifest, so in this case you’ll use the Add-
Type cmdlet—the “Swiss Army knife cmdlet”—for dealing with assemblies and compiled code.

Note

You’ll see numerous examples where [system.reflection.assembly] ::LoadWithPartialName is used
to load an assembly. This is a hangover from PowerShell v1 and shouldn’t be used because the
LoadWithPartialName method is obsolete.

You can dynamically load assemblies by name. You can even use wildcards in the assembly

(664)

name (but an error is generated if more than one assembly filename matches the pattern). For
example, to load the Windows Forms assembly (winforms) that’s in System.Windows.Forms, instead
of the full name, you can use:

PS> Add-Type -AssemblyName System*forms

This works because Add-Type has a fixed list of short names that correspond to specific versions
of the .NET Framework assemblies. Add-Type will allow you to use the short name only for
assemblies that are on this list. If it’s not on the list, you have to use the strong name for the
assembly. For winforms, the strong name looks like

"System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"

which is a bit unwieldy. Still, as long as you stick to the assemblies Microsoft ships with
Windows, you can use the short names and a wildcard. If you choose a non-Windows assembly,
you have to use the full name.

Creating your own types

You can create your own types using C#, Visual Basic, or JScript and then use Add -Type to
compile them into your PowerShell session.

In PowerShell v5 you can create classes in PowerShell, which we cover in chapter 19.

Creating instances of types

Now that you can find types, you generally need to create instances of these types to use their
properties and methods (although there are some types such as [System.Math] that have only static
members and so don’t require instantiation). For example, before you can search using the
[regex] type, you need to create an instance of that type from a pattern string. As you saw in
earlier chapters, you can use the New-Object cmdlet to create instances of types in PowerShell.

This cmdlet takes the name of the type to create, a list of parameters to pass to the type’s
constructor, and a hashtable of property name/values to set on the object once it has been
constructed.

The New-Object -Property parameter

The -Property parameter allows individual properties to be set on the object after it has been
constructed. In many cases, doing so can greatly simplify the code needed to completely
initialize an object. For a simple example, let’s create a Timer object:

PS> New-Object -TypeName System.Timers.Timer -Property @{

 AutoReset = $true

 Interval = 500

 Enabled = $true

}

AutoReset : True

Enabled : True

Interval : 500

Site :

SynchronizingObject :

Container :

(665)

In this example, you’re creating the object and then setting three properties—AutoReset, Interval,
and Enabled—in a single statement. Without -Property, you’d have to create an intermediate
variable and use four statements. We need to explain some more cautions.

A word of caution about using New-Object

Although the signature for the New-Object cmdlet is pretty simple, it can be more difficult to use
than you might think. People who are accustomed to programming in languages such as C# have
a tendency to use this cmdlet like the new operator in those languages. As a consequence, they
tend to write expressions like this:

PS> $x = 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'

PS> New-Object string($x,1,3)

Unfortunately, writing the expression this way obscures the fact that it’s a cmdlet, making things
confusing. It’ll work fine, but it looks too much like a function call in other programming
languages, and that leads people to misinterpret what’s happening. The syntax for New-Object is
as follows:

New-Object [-TypeName] <String> [[-ArgumentList] <Object[]>]

That means the previous example could be written like this:

PS> New-Object -TypeName string -ArgumentList $x,1,3

The comma notation indicates an argument that’s passed as an array. This is equivalent to

PS> $constructor_arguments= $x,1,3

PS> New-Object string $constructor_arguments

Note

You’re not wrapping $constructor_arguments in yet another array. If you want to pass an array as
a single value, you need to do it yourself and write it in parentheses with the unary comma
operator.

Working with generic types

With version 2.0 of .NET, a feature was added to the CLR type system called generic types (or
generics). Generics introduce the idea of a type parameter. Instead of passing objects as
arguments when creating an instance of type, generics also require you to pass in type
parameters that are used to determine the final types of some part of the object. This concept is
rather confusing if you haven’t encountered it. As usual, an example should make things clearer.

Generics are easiest to understand when you talk about creating collections. Before the
introduction of generics, if you wanted to create a collection class, you had to either write a new
version of the class for each type of object you wanted it to store or you had to allow it to hold
any type of object, which meant you had to do your own error checking. With generics, you can
write a collection that can be constrained to contain only integers or strings or hashtables. Let’s
look at examples.

(666)

We’ll start by creating a list—specifically, a list of integers. To do this, you need to know the
base type of the collection and the type parameter you need to pass when creating an instance of
the collection. The base type you’re going to use is System.Collections.Generic.List, which takes
a single type argument. To create an instance of the collection, you pass the closed type name to
New-Object. By closed, we mean that a concrete type has been specified as the type parameter. For
a collection of integers, this looks like

PS> $ilist = New-Object System.Collections.Generic.List[int]

where the name in the square brackets is the type parameter. You can use other types as well. To
create a list of strings, you’d write

PS> $slist = New-Object System.Collections.Generic.List[string]

You can even use generics in the type parameter:

PS> $nlist = New-Object `

System.Collections.Generic.List[System.Collections.Generic.List[int]]

This example defines a list of lists of integers. In general, nested generic types are discouraged
because they quickly become difficult to understand.

So far, we’ve dealt with only a single type parameter, but generics can take as many type
parameters as are needed. For example, a generic dictionary, which is similar to our old friend
the hashtable, takes two type parameters: the type of the key and the type of the value. This looks
like

PS> $stoi = New-Object 'System.Collections.Generic.Dictionary[string,int]'

Notice that this time you have to put quotes around the type name—otherwise, the comma
between the two type parameters would cause the type name to be treated as separate parameters.

With all this time we’ve spent playing the .NET trivia challenge game, we’re sure heads are
buzzing and coffee is being desperately sought. In the remainder of this section, we’ll look at
how you can apply some of the things you’ve learned to build more interesting applications.

17.1.2. PowerShell and GUIs

The full name of the PowerShell package is Windows PowerShell. In this section, we’ll look at
the Windows part of the name. You can do GUI programming with PowerShell, as you’ll see.

We’re going to look at both WinForms and Windows Presentation Foundation (WPF) because
the framework used in a particular scenario will depend on a number of criteria. First and
foremost, WPF can’t be used with PowerShell v1 because v1 doesn’t support the single-threaded
apartment (STA) threading model which allows a thread waiting on a time-consuming operation
to allow another thread to run. If you need to write a UI for use in an STA environment,
WinForms is your only choice.

Note

PowerShell v5 starts the shell using STA by default. This change was introduced in PowerShell
v3.

(667)

Second, the tools you have available will influence your choice. There are now GUI designers
that support using WinForms with PowerShell. This may make WinForms the better, easier, and
faster way to do things. WPF, conversely, makes it much easier to create rich, modern UIs. It
also supports clean separation of business logic and presentation, allowing the look of the
application to be changed without requiring changes to the underlying scripts. You’ll see more of
these details as we look at each framework. Finally, WinForms has been part of .NET since the
beginning, whereas WPF was added with .NET 3.0. If you need your GUI to run on a .NET 2.0–
only system, you should look at using WinForms.

Each of these libraries provides a framework and collection of utility classes for building
graphical application UIs. Let’s see what you can do with these libraries. We’ll begin by looking
at WinForms.

PowerShell and WinForms

The core concepts in WinForms are controls, containers, properties, and events. A control is an
element in a UI—buttons, list boxes, and so on. Most controls, like buttons, are visible controls
that you interact with directly, but there are some controls, such as timers, that aren’t visible yet
still play a role in the overall user experience. Controls have to be laid out and organized to
present a GUI. This is where containers come in. Containers include things such as top-level
forms, panels, splitter panels, tabbed panels, and so on. Within a container, you can also specify
a layout manager which determines how the controls are laid out within the panel. Properties are
regular properties, except that they’re used to set the visual appearance of a control. You use
them to set things such as the foreground and background colors or the font of a control.

The final piece in the WinForms architecture is the event. Events are used to define the behavior
of a control both for specific actions, such as when a user clicks the Do It button, as well as when
the container is moved or resized and the control has to take some action. Like everything else in
.NET (and PowerShell), events are represented as objects. For WinForms, the most common type
of event is System.EventHandler. For PowerShell, anywhere an instance of System.EventHandler is
required you can use a scriptblock. If you want a particular action to occur when a button is
clicked, attach a scriptblock to the button click event.

EventHandler arguments

For an event handler to do its job, it requires information about the event that caused it to be
invoked. You saw a similar pattern with ForEach-Object and Where-Object, where the value the
scriptblock operated on was passed using the automatic variable $_. The EventHandler integration
in PowerShell follows the same basic pattern. In .NET, when an EventHandler is invoked, it’s
passed two arguments: the object that fired the event and any arguments that are specific to that
event. The signature of the method that’s used to invoke an event handler looks like this:

void Invoke(System.Object, System.EventArgs)

These values are made available to the scriptblock handling the event using the automatic
variables $this and $_. The variable $this contains a reference to the object that generated the
event, and $_ holds any event-specific arguments that might have been passed. In practice, you
don’t need these variables most of the time because of the way variables in PowerShell work.
With global, script, and module scopes, you can usually access the objects directly. Still, it’s
good to be aware of them in case you need them.

(668)

Many elements in building a Windows Forms application are repeated over and over. If you’re
working in an environment such as Visual Studio, the environment takes care of generating the
boilerplate code. But if you’re building a form using Notepad, you need to be a bit more clever to
avoid unnecessary work. Let’s build a module containing a number of convenience functions that
make it easier to work with WinForms. We’ll call this module WPIAForms. If this module is
placed somewhere in your module path, then you can use it by including the line

Import-Module WPIAForms

at the beginning of your script.

Listing 17.2. The WPIAForms.psm1 module

Add-Type -Assembly System.Drawing, System.Windows.Forms 1

function New-Size 2

{

 param (

 [Parameter(mandatory=$true)] $x,

 [Parameter(mandatory=$true)] $y

)

 New-Object System.Drawing.Size $x,$y

}

function New-Control 3

{

 param (

 [Parameter(mandatory=$true)]

 [string]

 $ControlName,

 [hashtable] $Properties = @{}

)

 $private:events = @{}

 $private:controls = $null

 foreach ($pn in "Events", "Controls") 4

 {

 if ($v = $Properties.$pn)

 {

 Set-Variable private:$pn $v

 $Properties.Remove($pn)

 }

 }

 $private:control = if ($Properties.Count) { 5

 New-Object "System.Windows.Forms.$ControlName" `

 -Property $Properties }

 else {

 New-Object "System.Windows.Forms.$ControlName" }

 if ($controls) { 6

 [void] $control.Controls.AddRange(@(& $controls)) }

 foreach ($private:en in $events.keys) 7

 {

 $method = "add_$en"

 $control.$method.Invoke($events[$en])

 }

 if ($control -eq "form") { 8

 $c.add_Shown({ $this.Activate() }) }

 $control 9

}

1 Load required assemblies

(669)

2 Create Size objects
3 Create controls
4 Extract events and controls from the hashtable
5 Construct a control object
6 Add child controls
7 Bind event handlers
8 Ensure the form is visible
9 Return the configured control

The first thing a WinForms module should do is make sure that the necessary assemblies are
loaded 1. (Remember that trying to load an assembly multiple times is harmless.)

Next, you define a convenience function 2 for creating Size objects. Like many helper functions,
it hides the long type names used to construct the objects.

Then you come to the heart of the module: the New-Control function 3. This function is used to
construct all the controls for your UI. It takes as arguments the name of the WinForms control
class to instantiate and a hashtable containing three types of entries:

Simple properties to set on the control
An Events hashtable specifying which control events you want to handle
A scriptblock used to create the child controls for this form

The function iterates over the keys in the hashtable 4, looking to extract the Controls and Events
members because they aren’t simple properties on the object you’re creating. The scriptblock in
the Controls member will be evaluated, and any control objects it returns will be added as
children of the current control. The Events member requires more complex processing. It’s also a
hashtable, but in this case the keys are the names of control events, and the values are the
scriptblocks to bind to those events.

Once the two special members have been extracted, the function passes the cleaned-up hashtable
to the -Property parameter on New-Object 5 to initialize the control. Unfortunately, there’s an
annoying limitation on -Property: If the value passed to New-Object is either $null or empty, it will
error out. This necessitates wrapping the call to New-Object in an if statement so that -Property
gets used only when the hashtable is not empty.

Now that the control object exists, add any child controls that were extracted 6 and bind any
event handlers that were specified 7. One additional event handler is added to ensure that the
window is visible 8. Finally, the completely configured control object is returned 9.

Although there doesn’t seem to be much to this library, it can significantly clarify the structure of
the application you’re building. Try it out by re-implementing the one-button example and see
what it looks like. The result is shown in figure 17.1.

Figure 17.1. An example using the WPIAForms module. Both the code and the resulting window are shown
here.

(670)

The resulting code isn’t any shorter, but the hierarchical structure of the form is much more
obvious. The top-level form is created using New-Control and sets the title to “Hi” and the size of
the form to 100 x 60. The Controls member scriptblock creates the child controls for the form. In
this case you’re adding a Button object, and again you use New-Control to create the object, set the
Text and Dock properties, and define the Click event handler. Notice that at no point did you have
to write any conditional loops—instead of describing how to build the form, you’ve declared
what you want. In effect, you’ve created a simple DSL for defining WinForms-based UIs.

Note

A number of GUI builders on the market support building WinForms UIs in PowerShell,
including SAPIEN Technologies PowerShell Studio and iTripoli’s Admin Script Editor (which
has an integrated PowerShell forms designer and is now unsupported freeware). Both of these
tools provide sophisticated PowerShell authoring environments as well as (or with) the forms
designer. GUI builders eliminate most of the manual layout and UI construction code.

Let’s see where you’ve ended up. In the previous example, you invented a rather limited DSL for
building GUIs in a declarative way. Clearly the ability to separate UI structure from the
implementation logic is compelling, so it would be nice if, rather than inventing your own
language, you could use an existing GUI definition language. In practice, this is exactly what the
WPF is. Therefore, we’re going to spend time seeing how WPF can simplify building UIs in
PowerShell.

PowerShell and the WPF

In this section, you’ll learn how to use WPF from PowerShell to construct GUIs. WPF takes a
different approach to constructing a GUI compared to WinForms. With WPF the UI is written
declaratively using an XML-based markup language called XAML (Extensible Application
Markup Language). The approach used in WPF is similar to the DSL you wrote as well as to the
way HTML works: you describe the basic components, and the framework handles all the
construction details. An important aspect of the design of WPF is that the UI description is
decoupled from the UI logic. This separation of appearance and behavior aligns with well-
established best practices for UI design (such as coders write code and design specialists do
design).

You’ll see how this all works by building a simple GUI front end to some PowerShell

(671)

commands. We’ll cover only a fraction of the features of WPF—just enough to accomplish our
goal of quickly building a simple UI. First, you’ll have to satisfy a few prerequisites before you
can use WPF from PowerShell.

Although WPF has been around as long as PowerShell, in PowerShell v1 you weren’t able to use
WPF without a lot of tricks. That’s because WPF can only be called from an STA-mode thread
(yes, here it is again). With PowerShell v2 and later, this limitation ceased to be an impediment.
(And in the ISE, which is a WPF application, you always run in STA mode, so by default
everything will work.)

The other thing you need to do to use WPF in your scripts is to load the WPF assemblies,
PresentationCore and PresentationFramework, using Add-Type. With these prerequisites out of the
way, you can start working on our example project.

The goal of this exercise is to create a GUI front end to the Get-ChildItem and Select-String
cmdlets using WPF. You want novice users to be able to execute a file search without having to
be experts in PowerShell. A screen shot of the desired UI is shown in figure 17.2.

Figure 17.2. A dialog box that front-ends the PowerShell Get-ChildItem and Select-String cmdlets, allowing users
to search with PowerShell even if they don’t know the language

In this form, the user can specify the path to search (defaulting to the current directory), the
extension of the files to search, and the pattern to use when searching the file text. By default,
regular expressions will be used in the text search, but an option is provided to suppress this.
There are also options to indicate that subfolders should be searched as well and that only the
first match in each file may be returned. At the bottom of the dialog box are buttons to run or
cancel the search. There’s also a button that will display the command to be run before executing
it—a useful mechanism for learning PowerShell.

Although this is a simple dialog box, it would be annoying to implement with WinForms because
of the manual control layout required. WPF uses XAML to describe the interface. The XAML
text for the interface you’re going to create is shown next.

Listing 17.3. The search.xaml file declaring the file search interface

<Window 1

(672)

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 1

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 1

 Title="PowerSearch: Search Files for String" 1

 SizeToContent="WidthAndHeight" > 1

 <DockPanel>

 <StackPanel HorizontalAlignment="Left" Orientation="Horizontal" 2

 Width="425" DockPanel.Dock="Top" Margin="10,17,10,17">

 <Label Width="100" >Path to search</Label> 3

 <TextBox Name="Path" Width="300" >Add Row</TextBox> 4

 </StackPanel>

 <StackPanel HorizontalAlignment="Left" Orientation="Horizontal" 5

 Width="425" DockPanel.Dock="Top" Margin="10,17,10,17">

 <Label Width="70" >File Filter</Label>

 <ComboBox Name="FileFilter" Width="100" IsEditable="True"> 6

 *.ps1

 </ComboBox>

 <Label Width="100" >Search Pattern</Label>

 <TextBox Name="TextPattern" Width="125" >

 function.*[a-z]+

 </TextBox>

 </StackPanel>

 <StackPanel HorizontalAlignment="Left" Orientation="Horizontal"

 Width="425" DockPanel.Dock="Top" Margin="10,17,10,17">

 <CheckBox Name="UseRegex" Width="150" >

 Use Regular Expressions

 </CheckBox>

 <CheckBox Name="Recurse" Width="150" >

 Search Subfolders

 </CheckBox>

 <CheckBox Name="FirstOnly" Width="150" >

 First Match Only

 </CheckBox>

 </StackPanel>

 <StackPanel HorizontalAlignment="Left" Orientation="Horizontal"

 DockPanel.Dock="Top" Margin="75,5,5,5">

 <Button Width="100" Name="Run" Margin="5,0,5,0" > 7

 Run Command

 </Button>

 <Button Width="100" Name="Show" Margin="5,0,5,0" >

 Show Command

 </Button>

 <Button Width="100" Name="Cancel" Margin="5,0,5,0" >

 Cancel

 </Button>

 </StackPanel>

 </DockPanel>

</Window>

1 Create the top-level window.
2 Create a StackPanel to hold controls
3 Add a Label to the StackPanel.
4 Add a named TextBox to the StackPanel.
5 Create another StackPanel for the next row.
6 Add a ComboBox for the file filter.
7 Add dialog buttons to the bottom.

Looking through the XAML code, you see many things that are familiar from the WinForms
examples: Label controls, TextBoxes, Buttons, and so on. This means you don’t have to learn a lot
of new concepts, rather a new way to describe how they should be put together. In this UI
description, the dialog box is constructed as a set of rows of controls. A StackPanel layout control
is used to arrange the elements in each row, and a DockPanel holds all the rows.

Let’s look at one of the control declarations in detail. The XAML that declares the Run button
looks like this:

<Button Width="100" Name="Run" Margin="5,0,5,0" >

 Run Command

(673)

</Button>

By inspecting the text, you can see that you’re creating a Button control, setting the Width
property on that control to 100, and setting the control Margin property with values for left, top,
right, and bottom margins. Of particular importance is the Name property, which lets you associate
a unique name string with the control. You’ll need this information later when you’re binding
actions to the controls.

This XAML document describes what your form will look like but doesn’t say anything about
how it behaves.

Note

At this point, the XAML experts in the audience will be shouting that, in fact, many elements in
XAML do let you describe behaviors (animations, triggers, and such). These features are beyond
the scope of this exercise, but you’re encouraged explore all the things that can be done with
XAML. It’s amazing how much you can accomplish using markup.

You now have to attach your business logic to this markup. To display your form, you must load
the XAML into the session and use it to create an instance of System.Windows.Window. The WPF
framework includes utility classes to do most of the heavy lifting for this task. Once you have the
UI object, you have to attach PowerShell actions to the controls. The following listing shows the
script that does both of these things for you.

Listing 17.4. search.ps1: defining the file search behavior

Add-Type -Assembly PresentationCore,PresentationFrameWork 1

trap { break }

$mode = [System.Threading.Thread]::CurrentThread.ApartmentState

if ($mode -ne "STA")

{

 $m = "This script can only be run when powershell is " +

 "started with the -sta switch."

 throw $m

}

function Add-PSScriptRoot ($file) 2

{

 $caller = Get-Variable -Value -Scope 1 MyInvocation

 $caller.MyCommand.Definition |

 Split-Path -Parent |

 Join-Path -Resolve -ChildPath $file

}

$xamlPath = Add-PSScriptRoot search.xaml

$stream = [System.IO.StreamReader] $xamlpath 3

$form = [System.Windows.Markup.XamlReader]::Load(

 $stream.BaseStream)

$stream.Close()

$Path = $form.FindName("Path") 4

$Path.Text = $PWD

$FileFilter = $form.FindName("FileFilter") 5

$FileFilter.Text = "*.ps1"

(674)

$TextPattern = $form.FindName("TextPattern")

$Recurse = $form.FindName("Recurse")

$UseRegex = $form.FindName("UseRegex") 6

$UseRegex.IsChecked = $true

$FirstOnly = $form.FindName("FirstOnly")

$Run = $form.FindName("Run") 7

$Run.add_Click({

 $form.DialogResult = $true

 $form.Close()

 })

$Show = $form.FindName("Show")

$Show.add_Click({Write-Host (Get-CommandString)})

$Cancel = $form.FindName("Cancel")

$Cancel.add_Click({$form.Close()})

function Get-CommandString 8

{

 function fixBool ($val) { '$' + $val } 9

 "Get-ChildItem $($Path.Text) ``

 -Recurse: $(fixBool $Recurse.IsChecked) ``

 -Filter '$($FileFilter.Text)' |

 Select-String -SimpleMatch: (! $(fixBool $UseRegex.IsChecked)) ``

 -Pattern '$($TextPattern.Text)' ``

 -List: $(fixBool $FirstOnly.IsChecked)"

}

if ($form.ShowDialog()) 10

{

 $cmd = Get-CommandString

 Invoke-Expression $cmd

}

1 Load the WPF assemblies.
2 Compute the path to the XAML file.
3 Load the XAML that constructs the UI.
4 Find and set the Path control to $PWD.
5 Set the default file filter extension.
6 Set up the CheckBox controls.
7 Bind the button Click actions.
8 Build the command string
9 Format Booleans so “True” becomes $true.
10 Show the form and wait.

As was the case with the contents of the XAML file, many elements in this script should be
familiar from the WinForms examples. To add an action to a button, you use the add_Click()
event method, as you did with WinForms. You use the Text property on TextBox controls to get
and set the contents of those controls. CheckBoxes have an IsChecked property, as was the case with
WinForms. The biggest difference here is that, instead of binding actions as you construct the
form, the XAML loader does all the construction and returns the completed object. You then
have to find the controls by name to be able to access them. In practice, this turns out to be pretty
simple. Once you’ve located the control objects, everything else is much the same as it was with
WinForms. The Get-CommandString function is used to generate a string containing the PowerShell
command that will perform the search. This function uses the retrieved control objects along with
string expansion to produce a complete command.

Advantages of using WPF

The biggest advantage of using WPF is the separation of UI description from UI behavior. By

(675)

not mixing code and markup, each piece becomes simpler and can be modified fairly
independently. For example, because you’re identifying the controls by name, it doesn’t matter
where they get moved around in the form—you’ll still get the correct control when you ask for it
by name.

The other big advantage to this separation of concerns is that you can now use all the WPF
XAML GUI builders with PowerShell. Unlike WinForms, where the tools needed to know
PowerShell to work, XAML is XAML, so the programming language (for the most part) doesn’t
matter, and the UI can be designed independently, decoupled from any code. This also means
that the UI can be designed by an expert UI designer and the code added by an expert scripter.
Finally, the higher-level nature of the WPF framework means that more effective PowerShell
GUI frameworks can be created.

PowerShell frameworks for WPF

Inspired by possibilities that arise from the combination of PowerShell and WPF/XAML, the
PowerShell community has created a high-level library for building WPF GUIs in PowerShell.
The library is called ShowUI and is a free download from https://github.com/showui/showui. As
of this writing, the latest version is 1.5.

ShowUI is the result of merging the WPK library written by James Brundage (who was a
member of the PowerShell team) and the PowerBoots library, originally written and coordinated
by Joel “Jaykul” Bennett (who is a PowerShell MVP). ShowUI is packaged as a PowerShell
module and provides a multitude of useful features.

And with that, we’ve finished our tour of .NET and what you can do with it. It’s time to turn our
attention to working with events.

(676)

https://github.com/showui/showui

17.2. Real-time events

An event is exactly what it sounds like: something happens; for example, a file is changed, a
button is clicked, or a process is started. Events on a Windows machine can be synchronous or
asynchronous. In this section, we’ll spend more time working with synchronous events, but the
majority of the material will focus on asynchronous events. Asynchronous event handling allows
scripts to respond to real-world events in a timely manner. We’ll also explore the basic concepts
of event-driven scripting, the PowerShell eventing model and infrastructure, and how to apply
this feature.

17.2.1. Foundations of event handling

PowerShell supports three major categories, or sources, of events: .NET object events, CIM
events, and engine events (events generated by PowerShell itself). But before we go into specific
discussions on any of these topics, you need a common understanding of the concepts and
terminology used in event-based programming.

In the .NET Framework (and therefore in PowerShell), events are tangible objects represented
using classes. When you look at any class in the .NET Framework, you’ll see that, along with
methods and properties, each class also exposes some events. These event members are the focus
of our discussion of .NET eventing.

Now let’s talk about what an event is, and what makes event-based scripting different from
traditional procedural scripting. The key difference with event-based scripting is that instead of
an activity being executed as a result of an action in the script, a script (or at least a portion of it)
is executed as a result of an action by the system. This pattern is sometimes called inversion of
control, but it can be expressed more colorfully as don’t call me, I’ll call you.

Note

This way of characterizing event-based programming captures the essence of the model
perfectly. Crispin Cowan (Linux Security and now Windows Security Guru Extraordinaire)
suggested the “don’t call me, I’ll call you” definition as he and Bruce were hiking through the
Cougar Mountains in Washington. Clearly, inspiration can arrive anywhere.

The traditional and event-driven flow control patterns are shown in figure 17.3.

Figure 17.3. The normal flow of control in a script is compared to the flow in an event-based script.

(677)

Look at the traditional flow of control illustrated in figure 17.3. In the traditional model, the flow
of control always belongs to the mainline of the program. If an action is required, the mainline
program directly invokes that action. In contrast, with the eventing pattern, rather than directly
initiating actions, the mainline program registers the set of actions with an event source and then
goes to sleep. It never initiates any actions on its own. Instead, the event source is responsible for
initiating actions as required. In this scenario you are, in effect, turning control over to the event
service.

Note

In practice, we’ve been using this callback pattern all along, not only in GUIs. This is how the
ForEach-Object and Where-Object cmdlets work: You pass action scriptblocks to the cmdlets, and
the cmdlets take care of calling your code when it’s needed.

(678)

In other situations, the event service may be an active entity like another thread or process. In
practice, real programs rarely restrict themselves to a single model but instead use different
models at different times as appropriate.

17.2.2. Synchronous events

The defining characteristic of synchronous eventing is that there’s never more than one action
occurring at any given time. All the event-driven actions are synchronized, and no action is ever
interrupted. This is the event-handling pattern used in most GUI frameworks like Windows
Forms or Windows Presentation Foundation.

Synchronous eventing in GUIs

In synchronous GUI frameworks, you create a collection of GUI elements and then register
actions with these elements so that when the user does something like click a button, your actions
will be executed. Once you’ve finished creating the GUI and registering the event actions, you
hand control over to the framework, which will call the actions you defined when it needs to.

In PowerShell, for defining synchronous event handlers, you can usually attach a scriptblock
directly to the event member on the object. In fact, you’ve already applied this pattern many
times, as in the following, familiar example from chapter 1:

Add-Type -AssemblyName System.Windows.Forms

$form = New-Object -TypeName System.Windows.Forms.Form

$button = New-Object -TypeName Windows.Forms.Button

$button.text='Push Me!'

$button.Dock='fill'

$button.add_Click({$form.close()})

$form.Controls.Add($button)

$form.ShowDialog()

By now, you know that this code creates a button that will close its containing form when
clicked. The line $button.add_Click({$form.close()}) is where the event handler is attached, or
bound, to the control. The Button object has a Click event, which fires when the button is clicked.
To add the Click event handler, you call the add_Click() method, passing in the scriptblock to
execute. Because the add_Click() method requires an argument of type System.EventHandler,
PowerShell automatically wraps the scriptblock with a generated subclass of System.EventHandler.
The System.EventHandler class is an example of what is called a delegate in .NET terminology.

Delegates and delegation

In the GUI examples you saw in section 17.1, you set up control actions in the GUI by attaching
event handlers to the controls in the UI. When you set up event handlers like this, you are, in
effect, delegating the execution of that code to the UI and depending on it to call the code at the
right time. Because this involves delegated actions, a logical name for these event handlers
would be delegates—which is what they’re called in .NET.

Events are represented as members on a class. The delegate values you assign to event members
are represented by types that derive from a common base type. In this case, the common base
type is System.Delegate. Depending on the argument type for the target event member, the
required event handler argument will be a specific subclass of Delegate. In the PowerShell world,
the role of the delegate is always played by scriptblocks. But because scriptblocks don’t derive

(679)

from System.Delegate, the PowerShell runtime has to synthesize Delegate wrapper classes for the
scriptblock that match the argument type required by the event member. Let’s see how this
works in a non-GUI example.

Note

PowerShell v1 supported only the single subclass of delegate, System.EventHandler, because of
time restrictions. This type was chosen because it’s widely used in the .NET framework, in
particular by the GUI frameworks. This meant that there were many useful things you could do
even though you had only the one type. In v2 and later, the delegate-wrapping support is
generalized to cover all types of delegates, so you no longer have to deal with the limitations of
only one delegate type.

A non-GUI synchronous event example

Although the use of System.EventHandler is common in .NET, additional synchronous delegate
types in the .NET Framework don’t follow the System.EventHandler pattern. PowerShell v2 and
later versions have greatly improved support for delegate types, and the PowerShell runtime can
automatically generate wrappers for any type of delegate.

Note

You can generate a wrapper for any event type, but you can’t always automatically infer what
type to generate in all scenarios. For those cases, the use of an explicit cast is required to
disambiguate things. When you cast a scriptblock to the target type, the correct wrapper can be
synthesized.

In this example, we’ll look at how PowerShell’s enhanced delegate handling works. You’re
going to use a scriptblock as the MatchEvaluator in a call to the static Replace() method on the
[regex] class. View the overloads for the Replace() method by using this:

PS> [regex]::Replace

The overload of Replace() you’re interested in uses a delegate to do custom transformations
during the replace operation. The signature for this method is

static string Replace(

 string input,

 string pattern,

 System.Text.RegularExpressions.MatchEvaluator evaluator)

The first two arguments are the string to act on and the pattern to search for. The final argument
is a delegate of type

[System.Text.RegularExpressions.MatchEvaluator]

Now, examine this type:

(680)

PS> [System.Text.RegularExpressions.MatchEvaluator] |

Format-List Name,FullName,BaseType

Name : MatchEvaluator

FullName : System.Text.RegularExpressions.MatchEvaluator

BaseType : System.MulticastDelegate

You can see that it derives from System.MulticastDelegate. Because delegates are invoked using
the Invoke() method, by looking at this method’s signature you can see what parameters your
scriptblock requires. Let’s see what this method looks like for the MatchEvaluator delegate (note
the leading space in the ' Invoke' pattern, which reduces the set of matched members):

PS> [System.Text.RegularExpressions.MatchEvaluator] |

foreach {[string] ($_.GetMembers() -match ' Invoke')}

System.String Invoke(System.Text.RegularExpressions.Match)

You see that the delegate takes a single parameter representing the matched text, so the
scriptblock will look like this:

{param($match) ... }

Note that in this scriptblock definition, we omitted the type attribute for simplicity, and in
practice it isn’t needed. The delegate signature guarantees that the scriptblock will never be
called with the wrong argument types.

And now that you have the signature figured out, let’s find out what this method does. Looking
up the MatchEvaluator class on MSDN, you see the following:

You can use a MatchEvaluator delegate method to perform a custom verification or
manipulation operation for each match found by a replacement method such as
Regex.Replace(String, Match-Evaluator). For each matched string, the Replace method calls
the MatchEvaluator delegate method with a Match object that represents the match. The
delegate method performs whatever processing you prefer and returns a string that the
Replace method substitutes for the matched string.

For your purposes, this means that whatever the scriptblock returns will replace the matched
substring. Let’s try it out. Write an expression that will replace all the characters in a string with
their corresponding hex representation:

PS> $inputString = 'abcd'

PS> [regex]::replace($inputString, '.',

 [System.Text.RegularExpressions.MatchEvaluator] {

 param($match)

 '{0:x4}' -f [int] [char]$match.value

 }

)

0061006200630064

Inside the scriptblock, you take each argument character and then use the format operator to turn
it into a set of four hexadecimal digits.

By now, you should be comfortable with synchronous events. Asynchronous events introduce a
number of considerations that make handling them more complicated. But because asynchronous
events are a much more realistic way to model the world, the ability to handle them in
PowerShell is important in scenarios such as responding to alerts. Beginning with the next
section, you’ll spend quite a bit of time mastering these event patterns and learning how to apply
them to solve real problems.

(681)

17.2.3. Asynchronous events

Asynchronous events are much trickier to deal with than their synchronous cousins. A
synchronous event effectively runs on the same thread of execution as everything else. At no
point are there ever two actions occurring at the same time. Everything happens
deterministically, eliminating any collisions or consistency/coherency issues.

Unfortunately, that model doesn’t match the way much of the real world works. Real-world
events don’t occur in a strict deterministic order—they happen when they happen, interrupting
whatever else might be going on at that time. This type of concurrent operation makes life
difficult for scripters because it means things may possibly get changed out of order or in
unanticipated ways, resulting in inconsistencies and errors.

In PowerShell v1, there was no support for the asynchronous pattern, which made it pretty much
impossible to handle asynchronous events. To allow for robust handling of asynchronous events,
PowerShell v2 added an eventing subsystem that uses a centralized event manager to ensure that
this occurs in a rational sequence. This subsystem takes care of all the bookkeeping and
synchronization needed to ensure a stable and consistent system without a lot of work on the part
of the script author.

Note

PowerShell is single threaded, so when it’s busy executing something it can’t handle events.
They are queued and executed once PowerShell is available again.

Subscriptions, registrations, and actions

The scripting model PowerShell uses for handling asynchronous events involves a few core
concepts. The first is the idea of an event subscription, where you select the type of events you
want to know about and then subscribe to be notified when they occur. These subscriptions are
registered with a source identifier, which allows you to give a friendly name to each subscription.
Once registered, the event subscription will be notified about relevant events as soon as they
occur and will continue to receive notifications until the subscription is cancelled by explicitly
unregistering it. Each event subscription may optionally specify an action to be taken.

The eventing cmdlets

The PowerShell eventing cmdlets, shown in table 17.1, allow you to register and unregister event
subscriptions and list the existing subscriptions. You can also list pending events (as opposed to
subscriptions) and handle or remove them as desired. There is also a cmdlet that allows scripts to
generate their own events.

Table 17.1. The PowerShell eventing cmdlets

Cmdlet name Description

(682)

Register-ObjectEvent Registers an event subscription for events generated by .NET
objects.

Register-CimIndicationEvent
(Register-WmiEvent)

Registers an event subscription for events generated by WMI
objects

Register-EngineEvent Registers an event subscription for events generated by
PowerShell itself.

Get-EventSubscriber Gets a list of the registered event subscriptions in the session.
Unregister-Event Removes one or more of the registered event subscriptions.

Wait-Event

Waits for an event to occur. This cmdlet can wait for a specific
event or any event. It also allows a timeout to be specified
limiting how long it will wait for the event. The default is to
wait forever.

Get-Event Gets pending unhandled events from the event queue.
Remove-Event Removes a pending event from the event queue.
New-Event Allows the script to add its own events to the event queue.

When handling events, you need to be able to register actions in response to these events. You do
so using cmdlets, but because there are several types or sources of events, there are also several
event registration cmdlets, as you saw in the table. The event subscription registration cmdlets
are Register-EngineEvent, Register-ObjectEvent, Register-CimIndicationEvent, and Register-
WmiEvent. PowerShell-specific events are handled using the Register-EngineEvent cmdlet,
asynchronous events on .NET objects are handled using Register-ObjectEvent, and WMI events
are addressed with Register-CimIndicationEvent or Register-WmiEvent.

17.2.4. Working with asynchronous .NET events

You use the Register-ObjectEvent cmdlet to create subscriptions for asynchronous events on
.NET objects. First, you need to identify the event you’re interested in. For .NET events, this
means that you need an object and the name of the event member on that object to bind. This is
the same pattern you’ve already seen with Windows Forms and WPF, where, for example, a
Button object has a Click event accessed through the add_Click() member.

Once you’ve decided on the event to handle, you need to specify what to do with it. The -Action
parameter on the cmdlet allows you to provide a scriptblock to execute when an event fires. This
scriptblock will receive a lot of information about the event when it’s run, but there may be
additional, custom data that you want to pass to the event handler. You can do this with the -
MessageData parameter.

Finally, when you’re working with a number of events, the ability to attach a friendly name to
the subscription will make things easier to manage. This is what -Source -Identifier is for: It
allows you to name the event registration or event source.

There’s one last parameter we haven’t discussed yet: -SupportEvent. In larger event-driven
scripts, there may be a number of event registrations that exist only to support higher-level
constructs within the application. In these scenarios, it’s useful to be able to hide these
supporting events much like the rationale behind the way you hide supporting functions in
modules. This event-handler hiding is accomplished using the -SupportEvent switch. As was the
case with modules, if you do want to see the hidden events, you can specify the -Force switch on
Get-Event-Subscriber.

(683)

Writing a timer event handler

Okay, enough talk—let’s start doing something with .NET events. One of the most obvious
examples of an asynchronous event is a timer. A timer event fires at regular intervals regardless
of what else is going on. Let’s see how you can set up subscription events generated by the .NET
System.Timers.Timer class.

Note

These cmdlets can be used only for asynchronous .NET events. It’s not possible to set up event
handlers for synchronous events using the PowerShell eventing cmdlets. That’s because
synchronous events all execute on the same thread and the cmdlets expect (require) that the
events will happen on another thread. Without the second thread, the PowerShell engine will
block the main thread and nothing will ever get executed.

Creating the Timer object

The first thing you need for our example is a Timer object. You use New-Object to create it:

PS> $timer = New-Object -TypeName System.Timers.Timer

Events exist as members on a class, so you can use Get-Member, filtering the results on the Event
member type, to see what events this object exposes:

PS> $timer | Get-Member -MemberType Event

 TypeName: System.Timers.Timer

Name MemberType Definition

---- ---------- ----------

Disposed Event System.EventHandler Disposed(System.Objec...

Elapsed Event System.Timers.ElapsedEventHandler Elapsed...

From this output, you can see that the Elapsed event is what you’re looking for—it fires when the
timer period has elapsed.

Setting the timer event parameters

But you need to know more about this object than the events—you need to know how to set the
timer interval and start and stop the timer. Again, you can use Get-Member to find this information.
(Note that, for brevity, the output shown here has been trimmed to the interesting members.)

PS> $timer | Get-Member

 TypeName: System.Timers.Timer

Name MemberType Definition

---- ---------- ----------

Disposed Event System.EventHandler Disp...

Elapsed Event System.Timers.ElapsedEve...

Close Method System.Void Close()

Start Method System.Void Start()

Stop Method System.Void Stop()

ToString Method string ToString()

AutoReset Property System.Boolean AutoReset...

(684)

Enabled Property System.Boolean Enabled {...

Interval Property System.Double Interval {...

When you look at the output, the way to start and stop the timer is obvious. The AutoReset
property determines if the timer fires only once (AutoReset = $false) or fires repeatedly every
interval (AutoReset = $true). Finally, the Interval property controls the firing interval. Because
the value is a double, you can guess that it’s specified in milliseconds.

Note

Yes, you could’ve gone to the MSDN documentation. But why bother? With Get-Member and a
reasonably decent understanding of .NET, Get-Member is often all you need. This makes
PowerShell a useful tool for developers as well as IT professionals. Even in Visual Studio,
sometimes we’ll still flip over to a PowerShell window to search for information about a type.
Simple text and typing is still faster sometimes.

Binding the event action

Let’s register for an event on this object, which you do with the following command:

PS> Register-ObjectEvent -InputObject $timer `

-EventName Elapsed -Action { Write-Host '<TIMER>' } |

Format-List Id, Name, PSJobTypeName, State, HasMoreData,

Location, Command

Id : 4

Name : d1d302c6-7297-4c0b-b6c7-fc9f02195a2c

PSJobTypeName :

State : NotStarted

HasMoreData : False

Location :

Command : Write-Host '<TIMER>'

This command attaches a scriptblock to the event that will write out the phrase '<TIMER>' when it
fires. You have to use Write-Host in this scriptblock because the output from a triggered event
action is discarded.

Using Register-ObjectEvent

As a handy way to remember how to use the Register-ObjectEvent cmdlet, think of assigning the
scriptblock to the event member. If PowerShell supported this, it would look something like this:
$timer.Elapsed = { Write-Host "<TIMER>" }.

The Register-ObjectEvent command allows positional parameters in the same order, so the
command would look like

PS> Register-ObjectEvent $timer Elapsed { Write-Host "<TIMER2>" }

where the order of the elements is the same: object/member/action.

Now you’ll wait a minute—and nothing happens. That’s because you haven’t done all the other

(685)

things to the Timer object to make it start firing (though, obviously, binding the event handler
beforehand is usually a good idea).

Enabling the event

Let’s complete the remaining steps needed to start the timer triggering. Set the interval to 500 ms
so the timer will fire in half a second:

PS> $timer.Interval = 500

You want it to fire repeatedly, so set the AutoReset property to $true:

PS> $timer.AutoReset = $true

Next, enable the timer by setting the Enabled property to $true (or by calling the Start() method,
which also sets Enabled to $true):

PS> $timer.Enabled = $true

<TIMER>

<TIMER>

The timer starts running, and you see the output you expected. Next comes the hard part: getting
it to stop. The command is easy: type $timer.Stop() and press Enter. But in the console shell, the
timer is writing to the screen at the same time you’re typing. This results in scrambled output,
looking something like this:

<TIMER>

$timer.Stop()<TIMER>

<TIMER>

(Here’s another place where the ISE works better—the timer output doesn’t interfere with the
ability to run commands.) Once you’ve stopped the timer, you can restart it by calling the Start()
method a second time:

PS> $timer.Start()

<TIMER>

<TIMER>

<TIMER>

<TIMER>

PS> $timer.Stop()<TIMER>

Now that you know how to register a basic event subscription, we’ll look at how to manage these
subscriptions.

Managing event subscriptions

In this section, you’ll see how to find your event subscriptions and how to remove them when
you’ve finished with them. Being able to remove them is important because event subscriptions
persist in the session until explicitly removed.

Before you can remove a subscription, you have to find it. PowerShell provides the Get-
EventSubscriber cmdlet to do this. Let’s use it to look at the subscription you registered in the
previous section:

PS> Get-EventSubscriber

SubscriptionId : 2

SourceObject : System.Timers.Timer

(686)

EventName : Elapsed

SourceIdentifier : d1d302c6-7297-4c0b-b6c7-fc9f02195a2c

Action : System.Management.Automation.PSEventJob

HandlerDelegate :

SupportEvent : False

ForwardEvent : False

The Get-EventSubscriber cmdlet returns PSEventSubscriber objects, which have complete
information about the registration: the object generating the event, the action to execute, and so
on. There are a couple of interesting properties to note in this output.

Because you didn’t give the subscription a friendly name using -SourceIdentifier when you
created it, the Register-ObjectEvent generated one for you. This autogenerated name is the string
representation of a GUID, so you know it’s unique (but not that friendly). The other thing to
notice is that the action shows up as a PowerShell Job object. Because the relationship between
events and jobs is a somewhat longer discussion, we’ll defer it to section 17.2.14.

Now that you can list the event subscriptions, you can set about removing them. You registered
event subscriptions with Register-ObjectEvent, so what you need to do is unregister the
subscription, which you’ll do with Unregister-Event. The cmdlet noun in this case is Event, not
ObjectEvent, because you can use a common mechanism to unregister any kind of event. It’s only
the registration part that varies. The rest of the eventing cmdlets remain the same.

When you’re unregistering an event subscription, there are two ways of identifying the event to
unregister: by the SubscriptionId property or by the SourceIdentifier. The subscription ID is an
integer that’s incremented each time an event subscription is created. Because you didn’t give
your event registration a friendly name, you’ll use the SubscriptionId to unregister it:

PS> Unregister-Event -SubscriptionId 2 -Verbose

VERBOSE: Performing the operation "Unsubscribe" on target "Event subscription

 'd1d302c6-7297-4c0b-b6c7-fc9f02195a2c'".

Note that you include the -Verbose flag in this command so that you can see something
happening. If you try running the command again, it will result in an error. The Unregister-Event
cmdlet is silent as long as nothing goes wrong. If something does go wrong, you get an error.

We’ve covered the basics of creating and managing event subscriptions. But before the handlers
for these events can do much useful work, they’ll need access to additional information. In the
next section, you’ll write more sophisticated handlers and see how they can use the automatic
variables provided by the eventing subsystem.

17.2.5. Asynchronous event handling with scriptblocks

In this section, we’ll look at the automatic variables and other features that PowerShell provides
to allow scriptblocks to be used as effective event handlers.

17.2.6. Automatic variables in the event handler

In PowerShell eventing, the scriptblock that handles the event action has access to a number of
variables that provide information about the event being handled. These variables are described
in table 17.2.

Table 17.2. The automatic variables available in the event handler scriptblock

(687)

Variable Description

$event

This variable contains an object of type
System.Management.Automation.PSEventArgs that represents
the event being handled. It allows you to access a wide variety
of information about the event, as you’ll see in an example. The
value of this variable is the same object that the Get-Event
cmdlet returns.

$eventSubscriber

This variable contains the PSEventSubscriber object that
represents the event subscriber of the event being handled. The
value of this variable is the same object that the Get-
EventSubscriber cmdlet returns.

$sender The value in this variable is the object that generated the event.
This variable is a shortcut for $EventArgs.Sender.

$sourceEventArgs Contains objects that represent the arguments of the event being
processed. This variable is a shortcut for $Event.SourceArgs.

$sourceArgs

Contains the values from $Event.SourceArgs. Like any other
scriptblock, if there is a param statement, the parameters defined
by that statement will be populated and $args will contain only
leftover values for which there were no parameters.

Let’s write a quick test event handler to see what’s in the object in $Event. You’ll use the timer
event again:

PS> $timer = New-Object -TypeName System.Timers.Timer -Property @{

Interval = 1000; Enabled = $true; AutoReset = $false }

In the event subscription action, you’ll display the contents of the event object:

PS> Register-ObjectEvent $timer Elapsed -Action {$Event | Out-Host}

Id Name PSJobTypeName State HasMore

 Data

-- ---- ------------- ----- -------

3 54b59faf-5fea-45ff-b086-5c5d3b1eb4c5 NotStarted False

You’ll start the timer to generate the event:

PS> $timer.Start()

ComputerName :

RunspaceId : cd66f2a6-d112-4d09-851d-e02c3f6e459b

EventIdentifier : 1

Sender : System.Timers.Timer

SourceEventArgs : System.Timers.ElapsedEventArgs

SourceArgs : {System.Timers.Timer, System.Timers.ElapsedEventArgs}

SourceIdentifier : 54b59faf-5fea-45ff-b086-5c5d3b1eb4c5

TimeGenerated : 16/05/2017 14:30:01

MessageData :

In this output, you see the properties on the PSEvent object that correspond to the variables listed
in table 17.2. The Timer object that generated the event is available through the Sender property
on the object and the $sender variable in the scriptblock. The PSEvent object also includes context
data about the event, such as the time the event occurred, the event identifier, and the RunspaceId
this event is associated with. The ComputerName property is blank because this is a local event, but
in the case of a remote event, it would contain the name of the computer where the event

(688)

occurred.

17.2.7. Dynamic modules and event handler state

Because an event can fire at any time, you might never know what variables were in scope, and
this in turn could make it hard to know what state will exist when the action is executed. Instead,
you want to be able to run the event handlers in a well-defined, isolated environment. This
objective aligns with the design goals for PowerShell modules, so you can leverage this feature
by creating a dynamic module (section 10.4) for the action scriptblock. The eventing subsystem
does this by calling the NewBoundScriptBlockScriptblock() method to attach a dynamic module to
the handler scriptblock.

Beyond ensuring a coherent runtime environment for your event handler scriptblock, the module
also allows it to have private state. This ability can be quite useful when you’re monitoring a
system’s behavior over time. You can accumulate the information privately and then process it
once you’ve gathered enough samples. Let’s look at how this state isolation works. The
following is a trivial example where you maintain a count of the number of timer events fired.
Once you reach a predetermined limit, the timer will be stopped. Let’s walk through the
example. First, you create the Timer object:

PS> $timer = New-Object System.Timers.Timer -Property @{

Interval = 500; AutoReset = $true}

As usual, you subscribe to the Elapsed event on the timer:

PS> Register-ObjectEvent -InputObject $timer `

-MessageData 5 -SourceIdentifier Stateful `

-EventName Elapsed -Action {

 $script:counter += 1

 Write-Host "Event counter is $counter"

 if ($counter -ge $Event.MessageData)

 {

 Write-Host 'Stopping timer'

 $timer.Stop()

 }

} > $null

In the handler scriptblock for this event, you’re updating a script-scoped variable
$script:counter, which holds the number of times the event has fired. This variable will be
visible only within the dynamic module associated with the event, preventing your $counter from
colliding with any other users of a variable called $counter. After the variable is incremented, you
print the event count and then check to see whether the limit has been reached. Notice that you’re
making use of the -MessageData parameter to pass the limit to the event handler, which it retrieves
from the MessageData property on the Event object. Now start the timer running to see it in action:

PS> $timer.Start()

Event counter is 1

Event counter is 2

Event counter is 3

Event counter is 4

Event counter is 5

Stopping timer

As intended, the timer message is displayed five times and then the timer is stopped. This
example can easily be modified to, for example, monitor CPU usage or process working sets
over a period of time.

Setting up action scriptblocks for asynchronous events allows you to efficiently handle events in

(689)

the background. This, in turn, lets the main thread of your script continue execution in the
foreground or, in interactive sessions, allows you to continue entering commands at the shell
prompt. There are, however, many monitoring scenarios where there’s no main thread and all
you want to do is wait for events to happen. If a service process crashes or faults, you want to be
notified so you can take action to restart it. Otherwise, you wait for the next event to arrive. This
“wait for an event” pattern is addressed using the Wait-Event cmdlet.

17.2.8. Queued events and the Wait-Event cmdlet

As an alternative to setting up numerous individual event handler actions, you can use the Wait-
Event cmdlet to process events in a loop. This cmdlet allows you to block the PowerShell session,
waiting until an event or events happen. When the event arrives, you can take whatever action is
required and then loop and wait for the next event. This event loop pattern is common in GUI
programming. The syntax for the Wait -Event command is simple:

Wait-Event [[-SourceIdentifier] <string>] [-Timeout <int>]

By using the -SourceIdentifier parameter, you can wait for a specific named event. If you don’t
use it, then any unhandled event will unblock you. By using the -Timeout parameter, you can
limit the length of time you’ll wait for the event. This allows you to take remedial actions if the
event you’re waiting for failed to occur in the prescribed time.

Note

You can either register an action for an event or wait for an event, but you can’t do both. If an
action has been registered, when the event fires the event object will be removed from the queue
and passed to the action scriptblock for processing. As a result, any Wait-Event calls listening for
this event will never receive it and will block forever.

Let’s experiment with this cmdlet using something other than the timer event. In this example,
you’ll work with the file system watcher class: System.IO.FileSystemWatcher. This class is used to
generate events when changes are made to monitored portions of the file system. Let’s look at
the events exposed by this type:

PS> [System.IO.FileSystemWatcher].GetEvents() | Select-String .

System.IO.FileSystemEventHandler Changed

System.IO.FileSystemEventHandler Created

System.IO.FileSystemEventHandler Deleted

System.IO.ErrorEventHandler Error

System.IO.RenamedEventHandler Renamed

System.EventHandler Disposed

Using this class, you can register for notifications when a file or directory is created, changed,
deleted, or renamed. You can create a FileSystemWatcher object that will monitor changes to your
desktop. First, you need to get the resolved path to the desktop folder:

PS> $path = (Resolve-Path ~/desktop).Path

You have to do this because, as discussed previously, when you use PowerShell paths as
arguments to .NET methods (including constructors), you must pass in a fully resolved path

(690)

because .NET doesn’t understand PowerShell’s enhanced notion of paths.

Now, construct the file watcher object for the target path:

PS> $fsw = [System.IO.FileSystemWatcher] $path

Set up an event subscription for the Created and Changed events:

PS> Register-ObjectEvent -InputObject $fsw –EventName Created `

-SourceIdentifier fsw1

PS> Register-ObjectEvent -InputObject $fsw –EventName Changed `

-SourceIdentifier fsw2

Finally, enable event generation by the object:

PS> $fsw.EnableRaisingEvents = $true

At this point, when you call Get-Event, you should see nothing:

PS> Get-Event

This assumes that no other process is writing to the desktop while you’re doing this. Let’s
perform an operation that will trigger the event. Create a new file on the desktop:

PS> Get-Date | Out-File -LiteralPath ~/desktop/date.txt

You didn’t set up an action for either of the event registrations, so you won’t see anything
happen immediately. The events, however, haven’t been lost. Unhandled events are added to the
session event queue where they can be retrieved later. Let’s see what’s in the queue at this point:

PS> Get-Event | select SourceIdentifier

SourceIdentifier

fsw1

fsw2

In the output, you see that two events have been added: one for the creation of the date.txt file
and a second indicating that a change to the containing directory has occurred. Note that reading
the events doesn’t remove them from the queue. You need to use the Remove-Event cmdlet to do
this—otherwise, you’ll keep rereading the same event objects. The Remove-Event cmdlet allows
events to be removed either by SourceIdentifier or by EventIdentifier. To discard all the events
in the queue, pipe Get-Event into Remove-Event:

PS> Get-Event | Remove-Event

The queue is now empty, so you can call Wait-Event and the session will block until a new event
is generated (or you press Ctrl-C):

PS> Wait-Event

To trigger an event, from another PowerShell session update the date.txt file:

PS> Get-Date > ~/desktop/date.txt

This code will cause an event to be added to the queue, terminating the Wait-Event, which will
write the terminating event object to the output stream:

(691)

ComputerName :

RunspaceId : cd66f2a6-d112-4d09-851d-e02c3f6e459b

EventIdentifier : 12

Sender : System.IO.FileSystemWatcher

SourceEventArgs : System.IO.FileSystemEventArgs

SourceArgs : {System.IO.FileSystemWatcher, date.txt}

SourceIdentifier : fsw2

TimeGenerated : 16/05/2017 17:07:56

MessageData :

Although you’re unblocked, the event hasn’t technically been handled, so it still exists in the
queue and you still have to manually remove it from the queue:

PS> Get-Event | Remove-Event

If you use the -Timeout parameter on Wait-Event and no event is generated, the session will
automatically unblock. This makes it easy to distinguish between a timeout and an event.

Now let’s move on to the second type of events that can be handled by the PowerShell eventing
infrastructure: CIM events.

17.2.9. Working with CIM events

In this section, we’re going to cover how to work with CIM (WMI) events in PowerShell. As
was the case with .NET events, you handle CIM events using a cmdlet to register actions
associated with the events: the Register-CimIndicationEvent cmdlet.

Note

Register-CimIndicationEvent is a replacement for Register-WmiEvent and should be used in
preference to the older WMI cmdlet.

All the other eventing cmdlets remain the same as you saw for object events and will also be the
same for any new object sources that might be added in the future.

CIM event basics

CIM events are, in some ways, considerably more sophisticated than .NET events. First, CIM
events are represented as CIM objects and so, like all CIM objects, can be retrieved from either a
local or remote computer in a transparent way. Second, because CIM event subscriptions can
take the form of a WQL query, event filtering can take place at the event source instead of
transmitting all events to the receiver, which is forced to do all the filtering. This is important if
you’re monitoring a small set of events on a large number of computers. By doing the filtering at
the source (remote) end, far less data is transmitted to the receiver and much less processing
needs to be done by the receiver, allowing for the overall monitoring task to scale to far more
computers than would otherwise be possible.

Note

(692)

Unlike object events, there’s no notion of synchronous CIM events, so all event handling must
go through the eventing subsystem.

We’ll begin our exploration of CIM events by looking at the Win32_*Trace classes, which are
much simpler to deal with than the full query-based event subscriptions.

17.2.10. Class-based CIM event registration

Before jumping into the full complexity of query-based event subscriptions, we’ll look at some
predefined CIM event classes. These classes hide a lot of the complexity required by query-based
event registration, making them easier to use. You can use the following command to get a list of
these classes—you’ll also display their superclasses to see the relationships between the classes:

PS> Get-CimClass Win32_*trace | select CimClassName, CimSuperClassName

CimClassName CimSuperClassName

------------ -----------------

Win32_SystemTrace __ExtrinsicEvent

Win32_ProcessTrace Win32_SystemTrace

Win32_ProcessStartTrace Win32_ProcessTrace

Win32_ProcessStopTrace Win32_ProcessTrace

Win32_ThreadTrace Win32_SystemTrace

Win32_ThreadStartTrace Win32_ThreadTrace

Win32_ThreadStopTrace Win32_ThreadTrace

Win32_ModuleTrace Win32_SystemTrace

Win32_ModuleLoadTrace Win32_ModuleTrace

By inspecting the class/superclass relationships, you can see that these classes form a hierarchy
of event sources, where the farther you go from the root, the more specific the event becomes.
This hierarchy is illustrated in figure 17.4.

Figure 17.4. This figure shows the hierarchy of classes representing simplified WMI event sources. The most-
derived class matches the most-specific event. Win32_ProcessStartTrace will fire only for process starts, whereas
Win32_ProcessTrace will fire for both process starts and process stops.

(693)

Let’s work through an example that shows how this works.

Note

Because these event sources fire for any process event, regardless of who starts them, these
commands must be run from an elevated shell on Windows Vista and later. Also, be aware that
because you’re recording all process events in the first set of examples, you may see additional
output from other processes starting and stopping.

Using the Win32_ProcessTrace events

You’ll use the Win32_Process*Trace classes in this experiment. First, you’ll set up an event
subscription to the Win32_ProcessStartTrace, which will fire every time a process starts:

PS> Register-CimIndicationEvent -ClassName Win32_ProcessStartTrace -Action {

 'Process Start: ' +

 $event.SourceEventArgs.NewEvent.ProcessName |

 Out-Host

}

You can assign an action scriptblock to these event subscriptions, as you did with object events.
In the scriptblock body, you’ll write a message indicating what type of event was fired along
with the process name. You’ll set up similar event handlers for the Win32_ProcessStopTrace and
Win32_ProcessTrace events, again displaying the type of the event and the process name:

PS> Register-CimIndicationEvent -ClassName Win32_ProcessStopTrace -Action {

 'Process Stop: ' +

 $event.SourceEventArgs.NewEvent.ProcessName |

 Out-Host

}

PS> Register-CimIndicationEvent -ClassName Win32_ProcessTrace -Action {

 'Process Any: ' +

 $event.SourceEventArgs.NewEvent.ProcessName |

 Out-Host

}

From the hierarchy (and the names of the events), you know that Win32_ProcessStartTrace fires
when a process starts, Win32_ProcessStopTrace fires when a process is terminated, and
Win32_ProcessTrace fires on either kind of process event. To test these subscriptions, run the
following command, which will start and stop an instance of the calc process a number of times
(on Windows 10 – earlier versions of Windows called the process calc:

PS> & {

 Start-Process calc

 Start-Sleep 3

 Stop-Process -Name Calculator

 Start-Sleep 3

 Start-Process calc

 Start-Sleep 3

 Stop-Process -Name Calculator

 Start-Sleep 3

}

In this command, you’re using Start-Process to start the calc process. After three seconds, you
use Stop-Process to terminate the calculator instance. This pattern is repeated two times, and the
whole thing is wrapped in a scriptblock to cause it to be executed as a single command, so you

(694)

avoid having your commands mixed in with the output and cluttering things up. Here’s the
output produced by this command (Windows 10 also refers to calc.exe as calculator.exe):

Process Start: calc.exe

Process Start: Calculator.exe

Process Any: calc.exe

Process Any: Calculator.exe

Process Any: calc.exe

Process Stop: calc.exe

Process Stop: Calculator.exe

Process Any: Calculator.exe

Process Start: calc.exe

Process Any: calc.exe

Process Start: Calculator.exe

Process Any: Calculator.exe

Process Any: calc.exe

Process Stop: calc.exe

Process Stop: Calculator.exe

Process Any: Calculator.exe

The first two records were generated by the first calc process starting. You get both
Win32_ProcessStartTrace and Win32_ProcessTrace firing, but not Win32_ProcessStopTrace. The calc
process is then stopped, resulting in two more records, and this is repeated one more time for a
total of eight records. (The order in which the specific and general events are fired is
nondeterministic, so the exact order will change with different runs of the start/stop command.)

The final step in this experiment is to clean up the event subscriptions you created. Here’s the
easiest way to do that:

PS> Get-EventSubscriber | Unregister-Event

PS> Get-Job | Remove-Job

Note

This code removes all event subscriptions for this session. That’s fine for experimentation, but
you should be careful doing this in a production environment and be selective about what is
removed.

This completes the easy part of CIM event handling. Although setting up event handlers this way
was easy, it was also limited. When you retrieve CIM object instances using Get-CimInstance,
you’re able to perform sophisticated filtering and can be precise about the objects you retrieve.
You can be as precise with events, but doing so requires the use of WQL queries. We’ll cover
that in the next section.

Query-based CIM event registrations

In chapter 16, you used the WMI Query Language to select and filter CIM objects. The format of
those instance-based WQL queries was

SELECT <propertyList> FROM <ObjectClass> WHERE <predicateExpression>

With a little bit of additional syntax, WQL can also be used to select and filter CIM events.

(695)

Note

In CIM parlance, what you filter is called a notification, not an event. CIM defines an event as
something that happens at a particular time like a process starting or a user logging on.
Notifications are the object representation (or model) for these event occurrences. For simplicity,
we’re going to stick to using event for both cases in the rest of this chapter.

The core syntax for event queries is the same as for instance queries but with some additional
features. We’ll look at these features in the next couple of sections.

The WITHIN keyword

The first of the additional keywords we’ll discuss is WITHIN. This keyword is used in a query as
follows:

SELECT <propertyList> FROM <EventClass> WITHIN <Seconds> WHERE <predicateExpression>

The WITHIN keyword is used to specify the polling interval that the WMI service should use to
monitor and relay event data. The polling interval is the frequency with which the monitored
resource is checked. The smaller the polling interval, the more often the monitored resource will
be checked. This results in faster and more accurate event notifications, but it also places a
greater burden on the monitored system. The argument to the WITHIN keyword is a floating-point
number. This means you could theoretically specify polling intervals of less than one second. But
specifying a value that’s too small (like 0.001 seconds) could cause the WMI service to reject a
query as not valid due to the resource-intensive nature of polling. The polling interval should be
chosen based on the type of event being monitored. If the event doesn’t require instant action,
it’s generally recommended that the polling interval be greater than 300 seconds (5 minutes).

The CIM intrinsic event classes

The objects you query for are also a bit different. With object events, you create an instance of an
object and then subscribe to an event on that object. With CIM event queries, you subscribe to
the type of event and then specify the event-generating class you’re interested in. Some of the
most useful of these intrinsic-event classes are _Instance-CreationEvent, _InstanceDeletionEvent,
and _InstanceModificationEvent, which are all derived from _InstanceOperationEvent. These
classes and their relationships are shown in figure 17.5.

Figure 17.5. The class hierarchy for the CIM instance operation event class. These events are generated when a
CIM is object is created, deleted, or modified. The base event class is triggered for all three.

(696)

These classes mirror the pattern you saw in the previous section, where Win32_ProcessTrace was
the root event with Win32_ProcessStartTrace and Win32_ProcessStopTrace as derived events. The
difference here is that there’s no class like Win32_Process mentioned in these events. They are
general-purpose events generated by all objects. When you want to register an event subscription
for one of these events, you use the ISA operator to select which class you’re interested in
receiving instance notifications from. Let’s see what a query using the WITHIN keyword and these
instance notifications events looks like:

PS> $svcQuery = @"

 SELECT * FROM __InstanceOperationEvent WITHIN 1

 WHERE TargetInstance ISA 'Win32_Service'

 AND TargetInstance.Name='BITS'

"@

This query says to retrieve all events from InstanceOperationEvent with a polling interval of 1
second (this is an experiment, so you use a small value) where the object generating the event is
an instance of the Win32_Service class and the Name property on the instance is BITS (Background
Intelligent Transfer Service). You want to generate an event anytime something happens to the
BITS service.

Use the Register-CimIndicationEvent cmdlet to subscribe to this event. In the action field, display
a message indicating the source of the event and then print out the contents of the $event
variable:

PS> Register-CimIndicationEvent -Query $svcQuery -Action {

 Write-Host 'Got instance operation event on Win32_Service'

 $Event | Format-List * | Out-Host

}

With the event subscription set up, trigger the event by starting the BITS service:

PS> Start-Service BITS

Got instance operation event on Win32_Service

ComputerName :

RunspaceId : 2e7fa8de-aa03-4061-bce7-edf3a58d846d

EventIdentifier : 1

Sender : Microsoft.Management.Infrastructure.CimCmdlets.CimIndicationWatcher

SourceEventArgs :

Microsoft.Management.Infrastructure.CimCmdlets.CimIndicationEventInstanceEventArgs

SourceArgs : {Microsoft.Management.Infrastructure.CimCmdlets.CimIndicationWatcher, }

SourceIdentifier : 2587f4cc-fea5-4711-8a6d-4ae648e2524d

TimeGenerated : 16/05/2017 17:20:20

MessageData :

After a second or so, you see the message printed out by the action scriptblock. Stop the service

(697)

and you get a second message because the event you’ve subscribed to fires for any change.

In the next section, we’ll look at additional features for improving the network behavior of the
system by grouping events instead of sending them one at a time.

Aggregating events with GROUP

The next keyword we’ll cover is GROUP. The GROUP clause is used to aggregate the events based on
certain criteria. This means that instead of generating one notification per event, the WMI service
will group them together with a count and a representative instance. This is another way to
reduce the load on the client and the network:

SELECT * FROM EventClass [WHERE property = value]

 GROUP WITHIN interval [BY property_list]

 [HAVING NumberOfEvents operator integer]

You create a query-based WMI event registration using the -Query parameter set on Register-
CimIndicationEvent. Let’s set up this new event subscription. First, save your query in a string and
set up a counter that will record the total number of events:

PS> $GroupQuery = @"

 Select * From __InstanceOperationEvent Within .5

 Where TargetInstance Isa 'Win32_Service'

 and TargetInstance.Name='BITS'

 Group Within 20

"@

PS> $global:TotalEvents = 0

Now register this event subscription:

PS> Register-CimIndicationEvent -Query $GroupQuery -Action {

 Write-Host 'Got grouped event'

 $ne = $Event.SourceEventArgs.NewEvent

 $ti = $ne.Representative.TargetInstance

 $global:TotalEvents += $ne.NumberOfEvents

 $msg = 'Type: ' + $ne.__CLASS +

 ' Num Evnts: ' + $ne.NumberOfEvents +

 ' Name: ' + $ti.Name +

 ' (' + $ti.DisplayName + ')' |

 Out-Host

}

In the body of the event action scriptblock, you’ll format a string containing some of the more
interesting fields (at least for the purpose of this experiment). You’ll show the type of the event
class, the number of events that have been aggregated, and then the Name and DisplayName for the
matched service. You’ll generate a series of events using a foreach loop to cause the event
aggregation to fire:

PS> foreach ($i in 1..3){

 Start-Service -Name BITS

 Start-Sleep 2

 Stop-Service -Name BITS

 Start-Sleep 2

}

These events will all be accumulated in the event group, and when the group interval expires,
you should get an event notification. Use the Start-Sleep command to wait for the timeout to
expire:

PS> Start-Sleep 10

Got grouped event

Type: Num Evnts: 6 Name: BITS (Background Intelligent Transfer Service)

(698)

The event count shows your total:

PS> "Total events: $TotalEvents"

Total events: 6

Now that you have your event, let’s clean up the event subscription:

PS> Get-EventSubscriber | Unregister-Event

In this example, you’ve seen how you can use the GROUP keyword to further reduce the number of
events that need to be sent to the monitoring script.

This completes our look at CIM eventing, so let’s move on to something a bit different. Up until
now, we’ve only been talking about how to respond to events. In the next section, you’ll see how
to generate some events of your own.

17.2.11. Engine events

The last category of events we’re going to look at is engine events. With engine events, the
notifications are generated by the PowerShell engine itself, either through one of the predefined
engine events or by explicitly generating an event in a script using the New-Event cmdlet.

Predefined engine events

There’s currently only one predefined engine event identified by the string “PowerShell.Exiting”.
This string can also be retrieved using a static method as follows:

PS> [System.Management.Automation.PsEngineEvent]::Exiting

PowerShell.Exiting

This event is triggered when the PowerShell engine is shutting down and allows you to perform
actions before the session exits. Here’s an example event registration:

PS> Register-EngineEvent `

 -SourceIdentifier PowerShell.Exiting `

 -Action {

 "@{Directory='$PWD'}" > ~/pshState.ps1

 }

This command registers an action to take when the PowerShell session ends. This action writes a
hashtable to the file pshState.ps1 in the user’s directory. The hashtable captures the user’s current
directory at the time the session was exited. Let’s use this in an example. You’ll create a child
PowerShell.exe process to run your script so you don’t have to exit the current process.
PowerShell recognizes when a scriptblock is passed to the PowerShell.exe command and makes
sure that everything gets passed to the command correctly. Let’s run the command:

PS> powershell {

 Register-EngineEvent `

 -SourceIdentifier PowerShell.Exiting `

 -Action {

 "@{Directory='$PWD'}" > ~/pshState.ps1

 } | Format-List Id,Name

 cd ~/desktop

 exit

 }

Id : 3

Name : PowerShell.Exiting

(699)

Now look at the content of the file:

PS> Get-Content ~/pshState.ps1

@{Directory='C:\Users\brucepay.REDMOND\desktop'}

You see that the file contains a hashtable with the current directory recorded in it. This example
can easily be expanded to include things like the user’s history or the contents of the function:
drive, but adding those extensions is left as an exercise for the reader.

The other class of engine events is script-generated events. We’ll look at those next.

17.2.12. Generating events in functions and scripts

The last of the core eventing cmdlets to look at is the New-Event cmdlet. This cmdlet allows a
script to generate its own events. Let’s use this cmdlet in an example to see how it works. First,
you create the timer object:

PS> $timer = New-Object System.Timers.Timer -Property @{

 Interval = 5000; Enabled = $true; AutoReset = $false }

Then you register the event subscription:

PS> Register-ObjectEvent $timer Elapsed -Action {

 Write-Host '<TIMER>'

 New-Event -SourceIdentifier generatedEvent -Sender 3.14

} > $null

In the handler scriptblock, as well as writing out a message, you’re calling New-Event to generate
a new event in the event queue. Finally, start the timer

PS> $timer.Start() > $null

and wait for the event. Pipe the object returned from Wait-Event into the foreach cmdlet for
processing:

PS> Wait-Event -SourceIdentifier generatedEvent |

foreach {

 'Received generated event'

 $_ |

 Format-Table -AutoSize SourceIdentifier, EventIdentifier, Sender

 $_ | Remove-Event

}

Received generated event

SourceIdentifier EventIdentifier Sender

---------------- --------------- ------

generatedEvent 2 3.14

You see the output from Wait-Event. In the foreach block, you display the source identifier of the
event generated by New-Event, and the Sender field shows the number you passed to the cmdlet.
When you’ve finished with this example, you’ll remove the event subscription:

PS> Get-EventSubscriber | Unregister-Event

This pretty much completes the local event-handling story. But with PowerShell’s remoting
capabilities, obviously your eventing infrastructure needs to work in a distributed environment as
well. In the next section you’ll see how to work with events in remote scenarios.

(700)

17.2.13. Remoting and event forwarding

Being able to set up local event handlers is useful, but you also need to be able to process events
generated on remote computers to manage distributed datacenters. The PowerShell eventing
subsystem, by building on top of PowerShell remoting, makes this surprisingly easy. In figure
17.6 notice the -Forward parameter. This parameter does exactly what you might expect: it
forwards the subscribed event to a remote session. This is where the -SourceIdentifier parameter
becomes critical. The source identifier name that’s specified at the event source end becomes the
name of the event to process on the receiving end. This process is illustrated in figure 17.6.

Figure 17.6. The second-hop authentication changes when credential delegation is used. Without delegation, the
second hop from server 1 to server 2 authenticates as the user that the service is running under. With credential
forwarding enabled, server 1 can use the client credentials to authenticate to server 2 as the client user.

Here’s where the engine events come into play. The forwarded events are handled using engine
event processing. Register-EngineEvent lets you register subscriptions that trigger the event
handler based on the subscription identifier sent from the remote end. The events generated by
New-Event in the previous section are also engine events. In the next section, we’ll look at a
detailed example where you forward an event from one machine for processing on another.

Handling remote EventLog events

In this section, you’re going to apply what you’ve learned. Your goal is to be notified locally
every time an event is written into the event log on a remote computer. The .NET EventLog class
exposes such an event: EntryWritten. To set this up, you must establish event forwarding on the
remote machine and then register a load event handler. You’ll also need to maintain a connection
to the remote end using the duration of time you want to get events because the events are being

(701)

forwarded over this channel.

The first thing you need to do is to establish a connection to the target computer. You do so with
the New-PSSession cmdlet, passing credentials if needed:

PS> $s = New-PSSession -ComputerName W16DSC01

This is the session you’ll use to set up the event forwarding and then transfer the forwarded
events. Next, you’ll use Invoke-Command to set up the event-forwarding registration. The code to
do that looks like this:

PS> Invoke-Command -Session $s {

 $myLog = New-Object System.Diagnostics.EventLog application

 Register-ObjectEvent `

 -InputObject $myLog `

 -SourceIdentifier EventWatcher1 `

 -EventName EntryWritten `

 -Forward

 $myLog.EnableRaisingEvents = $true

}

Inside the scriptblock passed to Invoke-Command, you’re creating an EventLog object associated with
the Application event log. Then you use Register-ObjectEvent to set up event forwarding for
events that occur on the EntryWritten event. You’ll use the source identifier name EventWatcher1.
Finally, you enable raising events on the event log object.

With the remote end configured, it’s time to set up the local end. This task is much simpler. You
register an engine event handler that will trigger on the source ID matching the remote end:

PS> Register-EngineEvent -SourceIdentifier EventWatcher1 -Action {

 param($sender, $event)

 Write-Host "Got an event: $($event.entry.message)"

}

And you’re finished. Now whenever an entry is added to the Application event log on the remote
computer, you’ll see the entry message displayed on your console. If you’re impatient, you can
trigger an event yourself. Use the .NET FailFast() API to cause a “Watson” event to be
generated by crashing a PowerShell process on the remote machine:

PS> powershell "[System.Environment]::FailFast('An event')"

After a short time, you’ll see something like the following displayed on the console:

Got an event:

Well, this sort of worked. The event did trigger the event handler, and you got the part of the
event you wrote. Unfortunately, the most interesting piece—the message in the event itself—is
mysteriously absent. You’ll see what happened in the next section.

Serialization issues with remote events

The serialization mechanism used by remoting can sometimes cause problems when using
remote events. Because the event is being sent over the remoting channel, it has to be serialized
by the PowerShell serializer. By default, the serialization depth is only 1. This means you get the
top-level properties but not the second-level properties. To preserve the message content in

(702)

$event.Entry.Message, you need to change the serialization depth for this type of object to 2. You
need an XML document that you can pass to Update-TypeData to change the serialization depth for
System.Diagnostics.EntryWrittenEventArgs to 2. Save this XML in a variable as a string for now:

$typeSpec = @'

<Types>

 <Type>

 <Name>System.Diagnostics.EntryWrittenEventArgs</Name>

 <Members>

 <MemberSet>

 <Name>PSStandardMembers</Name>

 <Members>

 <NoteProperty>

 <Name>SerializationDepth</Name>

 <Value>2</Value>

 </NoteProperty>

 </Members>

 </MemberSet>

 </Members>

 </Type>

</Types>

'@

Now before you use this to set up new events, you should remove the existing event registrations
on both the local and remote ends of the connection:

PS> Invoke-Command $s { Unregister-Event EventWatcher1 }

PS> Unregister-Event EventWatcher1

You have the XML in a local variable but you need to update the type metadata on the remote
end. You need to get the content of the $typeSpec variable over to the remote machine, which
you’ll do by passing it as an argument to the Invoke-Command scriptblock:

PS> Invoke-Command -ArgumentList $typeSpec -Session $s {

 param ($typeSpec)

 $tfile = New-TemporaryFile

 $newfilename = $tfile.FullName -replace '\.tmp$', '.ps1xml'

 Rename-Item -Path $tfile.FullName -NewName $newfilename

 Set-Content -Value $typeSpec -Path $newfilename

 Update-TypeData -PrependPath $newfilename

 Remove-Item -Path $newfilename -Force

}

Let’s go over what’s happening in this scriptblock. First, you’re using the PowerShell v5 cmdlet
New-TemporaryFile to create a temporary file in your TEMP folder. Because the default extension
on the filename that’s returned is .tmp and you need it to be .ps1xml, you use the -replace
operator to change the extension and rename the file. Then you write $typeSpec to the file using
Set-Content, call Update-TypeData to load the file, and clean up by removing the temp file.

With the type metadata updated, you can set up the remote event registration as before:

PS> Invoke-Command $s {

 $myLog = New-Object System.Diagnostics.EventLog application

 Register-ObjectEvent `

 -InputObject $myLog `

 -SourceIdentifier EventWatcher1 `

 -EventName EntryWritten `

 -Forward

 $myLog.EnableRaisingEvents = $true

}

then set up the local event subscription:

(703)

PS> Register-EngineEvent -SourceIdentifier EventWatcher1 -Action {

 param($sender, $event)

 Write-Host "Got an event: $($event.entry.message)"

}

And finally, you’re ready to try your event trigger on the remote machine again:

PS> powershell "[System.Environment]::FailFast('An event')"

This time, you’ll see the event messages including the text from the call to FailFast() as written
into the event log on the remote system.

Congratulations! We’ve pretty much reached the end of our eventing discussion and you’re still
with us. Event processing is an advanced topic, even for full-time programmers. Understanding
how multiple actions are going to interoperate can be mind-boggling. PowerShell’s approach to
eventing is designed to make this as simple as possible, but understanding how it works under
the hood can go a long way toward helping you figure things out. Let’s take a peek.

17.2.14. How eventing works

The eventing infrastructure relies on two other components of PowerShell: modules (for
isolation, as discussed earlier) and jobs (for managing subscriptions). When you registered an
event subscription, you saw that an object was returned. This object is, in fact, a job object, with
the same base class as the object you get back from Start-Job or the -AsJob parameter on Invoke-
Command. Once an event subscription is created, it will show up in the Job table, which means you
can use the Get-Job cmdlet as another way to find this subscription. Let’s go back to our timer
event subscription and see what this looks like:

PS> $timer = New-Object -TypeName System.Timers.Timer

PS> Register-ObjectEvent -InputObject $timer `

 -EventName Elapsed -Action { Write-Host '<TIMER>' }

PS> Get-Job | Format-List

Module : __DynamicModule_c83413eb-bad9-47eb-88b0-e4d38ff2aa7f

StatusMessage :

HasMoreData : False

Location :

Command : Write-Host '<TIMER>'

JobStateInfo : NotStarted

Finished : System.Threading.ManualResetEvent

InstanceId : 1f73bb6b-5fe0-4ce4-8d2e-f750f3a4c1ed

Id : 4

Name : d49bc9da-dfd5-4b5a-9cc9-5b44b508415c

ChildJobs : {}

PSBeginTime :

PSEndTime :

PSJobTypeName :

Output : {}

Error : {}

Progress : {}

Verbose : {}

Debug : {}

Warning : {}

Information : {}

State : NotStarted

Let’s start the timer running again, setting the interval to something large so you can still type:

PS> $timer.Interval = 60000

PS> $timer.Start()

(704)

Now when you run Get-Job after the timer has started (you may need to wait a little while)

PS> Get-Job | Format-Table State,Command -AutoSize

State Command

----- -------

Running Write-Host '<TIMER>'

you see that the job state has been changed to Running. The other thing you should be able to do if
it’s a Job is to stop it by calling Stop-Job. It works. But this code has done more than stop the job
—it’s also removed the event subscription!

Because event handlers are effectively running in the background, it seems logical to manage an
active subscription as a Job. You should note that, although the executing event handler is
represented as a Job, it wasn’t started using Start-Job and, unlike PowerShell jobs, still runs in
process with the session that set up the subscription.

At the beginning of our discussion on events, we talked about the issues involved in dealing with
asynchronous events. Because these events can occur in any order, great care is required to make
sure that the integrity of shared data structures is maintained. To maintain this integrity, you have
to make sure that programs synchronize access to the shared objects, and doing so turns out to be
difficult. In fact, this is one of the most common reasons that a program stops responding and
appears to be hung. If two actions are trying to update a synchronized object at the same time,
they can end up blocking each other, each trying to get exclusive access to the resource. This
type of contention is called a deadlock.

PowerShell deals with this problem by imposing a strict order on the actions instead of on
individual data objects. When an asynchronous event occurs, the eventing subsystem adds that
event object to the event queue. Then, at various points in the PowerShell runtime, the engine
checks to see if there are any events posted to the event queue. If there are, the engine suspends
the mainline activity, pulls an event off the queue, switches to the module context for that event
handler, and then executes the event scriptblock. This queuing mechanism is illustrated in figure
17.7.

Figure 17.7. How asynchronous event processing is handled in PowerShell. As events occur, they’re added to the
queue asynchronously. At various stable points, the engine checks the queue and pulls events off to execute.
Once the event execution is complete, normal processing resumes.

(705)

Events are added to the queue as they arrive and then are pulled off the queue by the engine and
processed when a convenient spot is reached.

To make sure events are processed in a timely manner, the engine needs to check the queue fairly
often, but if it checks too often, it will substantially slow down the interpreter. In PowerShell, the
engine checks for events in all calls that write objects, including between each stage in a
pipeline. It also checks between each statement in a script and anywhere the engine might loop
for a long time. This provides a good trade-off between event latency and overall performance.
In the case where multiple events are pending on the queue at the time of the check, the engine
will use a throttling policy to decide how many of the pending events will be processed before
returning to the mainline so that the foreground activity isn’t “starved.” (As an aside, the places
where the event queue is checked are the same places that the engine checks to see if it has been
requested to stop executing, such as when the user presses Ctrl-C.)

If the event has an action block associated with it, that scriptblock executes until it’s completed.
Once the event action is finished, the mainline activity is resumed. Because the engine processes
events only when it knows the system state is stable, problems related to inconsistent system
state don’t arise, and all activity is effectively synchronous.

Note

An event action runs until it’s complete. As long as it’s running, no other events are processed,
and the mainline activity is suspended. This means that event handlers shouldn’t be written to
execute for a long time. The same consideration exists when writing GUIs. If a control’s event
handler runs on the UI thread for a long time, the UI will be blocked, unable to respond to
events, causing it to appear to hang.

This architecture isn’t as efficient as the more fine-grained techniques, so it’s not appropriate for
programs that are performance-sensitive. It is, however, simple, effective, and completely
sufficient for PowerShell scripting. It makes asynchronous event handling in PowerShell a
reasonable if somewhat advanced proposition.

(706)

17.3. Summary

PowerShell doesn’t load all .NET classes by default.
Use Add-Type to load additional assemblies.
You can write GUI applications in PowerShell, but that doesn’t mean you should.
PowerShell can work with WinForms or WPF.
PowerShell can work with events from .NET, CIM, and the PowerShell engine.
Synchronous events occur one at a time—for instance, a button click in a GUI application.
Asynchronous events can occur at any time and can interrupt other actions.
Events are registered in a PowerShell session. If the session is closed, the registrations are
lost.
Use a source identifier to identify events.
Use scriptblocks to define the action to be taken if an event is triggered.
New-Event is used to create events from within scripts and functions.
Events work with the job system.
Events can be forwarded from a remote machine to the local machine.
Serialization can cause problems with remote events—you need to change serialization
depth to 2.

It’s time to investigate some of the newer features in PowerShell. We’ll start with Desired State
Configuration in the next chapter.

(707)

Chapter 18. Desired State Configuration
This chapter covers

The need for Desired State Configuration (DSC)
Configuration management theory
DSC architecture
DSC modes: push and pull
Local configuration manager
Partial configurations

Make it so!

Captain Jean-Luc Picard, USS Enterprise-D

The need to build and configure servers quickly in a consistent, repeatable manner has been a
longstanding problem in IT. One solution is to adopt Desired State Configuration (DSC), a
PowerShell extension introduced with Windows Server 2012 R2 (PowerShell v4) and extended
in Windows Server 2016 (PowerShell v5). DSC provides a mechanism to manage the
configuration of your server estate, including:

Add or remove Windows features
Manage registry, files, and folders
Manage processes and services
Install and manage software packages

In addition, DSC can monitor the server configuration you’ve applied and, if necessary, reset the
configuration to the desired state if the current configuration has been modified so that it doesn’t
match the desired state. DSC can also be configured to manage reboots required by configuration
changes.

In this chapter, we’ll introduce you to DSC. We’ll start by explaining the need for DSC and
going over the underlying theory of configuration management. After reviewing the architecture
of DSC, we’ll demonstrate how it works with examples.

DSC can work in two modes: push and pull. In push mode, you’re responsible for delivering the
configuration to the server. In pull mode, the target server pulls its configuration from the DSC
server. We’ll explain how to set up both options and why push mode scales better to the
enterprise.

We’ll also explore the Local Configuration Manager, a DSC component local to each target
server. The chapter closes with a look at how configurations can be broken into parts that can be
managed by different teams, called partial configurations.

First let’s look at the theory.

(708)

18.1. DSC model and architecture

In this section, we’ll look at why you need DSC, then examine the DSC model and architecture.
First, let’s recap why we need configuration management in general and DSC in particular.

18.1.1. The need for configuration management

The number of servers in an organization has grown significantly over the years, and continues
to grow. The introduction of virtualization, containers, and programming methodologies such as
Agile programming, means that servers can and must be created quickly to meet the changing
business needs of the organization. Organizations are moving new applications into production
with increasing frequency; sometimes multiple new builds are issued in a day, all needing new
servers.

The “traditional” method of manually configuring servers fails for a number of reasons:

It’s a slow process— Installing and configuring the operating system and required
software can take a minimum of several hours.
The process is error prone— Even with checklists it’s easy to miss a step.
It’s non-repeatable— You can’t guarantee that two servers will be configured identically.
Different administrators may have differing views about how a server should be
configured or be working from different versions of the build instructions.
Undocumented changes are made— Configurations drift from the baseline with time.

This situation is also summed up in figure 18.1, where the requirement is to build six identical
servers. In reality, even if the same person builds each server, there will be differences. The
potential differences become greater if the servers are built by different people.

Figure 18.1. A common requirement of six identically configured servers. The reality is that each will be
different.

One approach is to script your builds. Scripting has a number of drawbacks, including the fact

(709)

that not all administrators are comfortable with it. Also, ensuring that a common version of the
script is used can be problematic. Some configuration tasks require advanced scripting skills that
may not be available in the organization.

The server configuration problem becomes twofold: first, you need the processes in place to
manage configuration management, and second, you need the tools to perform configuration
management. Configuration management is part of a wider DevOps framework and should be
introduced into your organization as part of your adoption of DevOps processes. How you move
your organization to embracing the DevOps principles is outside of our scope.

A number of tools have been created in recent years for managing configurations. Some
examples are Puppet (https://puppet.com), Chef (www.chef.io), Salt (https://saltstack.com), and
Ansible (www.ansible.com). These tools are all from the UNIX/Linux world and so require a
Linux system to install them on. As a consequence of their origin, Puppet, Chef, and the other
tools work well in the Linux space. But when it came to implementing their toolsets on
Windows, they’ve struggled. This was partly because Windows is an API-driven operating
system, as opposed to the document-driven nature of Linux. Also, many Windows administrators
have been reluctant to learn Linux merely to bring configuration management into their
environment.

Enter DSC. It is intended to supply a basic configuration management framework for Windows
that can be used directly by Windows administrators. It’s also intended to make it easier for the
manufacturers of existing configuration tools to work with Windows by enabling them to use
DSC.

Now you know why you need DSC. Before we look at its architecture, let’s look at the DSC
model of configuration management.

18.1.2. Desired State Configuration model

Creating a PowerShell script to configure one or more servers builds on the knowledge and skills
you already possess. Everything you’ve learned in the book so far can help you create those
scripts.

DSC introduces you to a different way of thinking. You’re telling the system how you want it to
be configured, you’re not necessarily worried about how it gets to the desired state. You are in
effect creating a model of the desired state and applying that model. In practice, this means that
you create a configuration that is transported and applied to the target server. The sequence of
operations is:

1. A configuration is created.
2. A MOF file is generated from the configuration.
3. The MOF file is transported to the target server.
4. The target server implements the configuration.

MOF files

DSC uses Managed Object Format (MOF) files to transfer configuration information to the target
machine. MOF is part of the DMTF CIM standard (originally implemented on Windows as WMI
—see chapter 16). The MOF file generated from a configuration is a fully resolved pure-data
representation of the configuration. There are no unresolved variables in the MOF file. MOF was

(710)

https://puppet.com
http://www.chef.io
https://saltstack.com
http://www.ansible.com

chosen because it’s a format that allows you to represent the classes defining an object as well as
instances of those objects.

In this section, we’ll discuss these concepts and explain how DSC differs from the PowerShell
scripting you know and love.

Declarative programming

One of the exercises from our English lessons in school was having to write a set of instructions
to perform a task. Think about making a cheese sandwich. You have to perform a number of
discrete steps:

Remove two slices of bread from packet
Butter one side of each slice
Put one slice on plate butter side up
Cut cheese into slices
Place slices on bead
Put second slice on top of cheese, butter side down
Cut sandwich in half

That list shows the major steps. The process could easily run to 30 or more steps if each were
broken down further. You may not realize it, but this is how your PowerShell scripts work—you
provide a set of instructions that PowerShell (hopefully) executes to completion. This approach
is known as procedural, or imperative, programming. You tell the system how to perform the
tasks.

DSC doesn’t work this way. DSC is declarative. You tell the system how you want it to be
configured, and it goes off and performs the task without your having to provide all the
intermediate commands. Captain Picard doesn’t tell his subordinates how to do things. He tells
them what they have to do, and when they’re ready to proceed he says, “Make it so.” Applying
that philosophy to our cheese sandwich example, we’d have a single step that stated, “Make a
cheese sandwich.”

Now that you understand how you’ll be thinking about things in a different way, let’s look at the
DSC model.

DSC model breakdown

The DSC model requires three things:

1. An external representation of the desired state of the system, called a configuration
2. A way to get and set the system state
3. A way to compare the desired state against the current state and enact the changes that

need to be made to bring the system into compliance with the desired state

This model is illustrated in figure 18.2.

Figure 18.2. DSC model showing the initial and desired state

(711)

Let’s examine the individual model parts. We’ll be covering each in greater depth later in the
chapter. The most important point is that you need a representation of the desired state that exists
independently from the current state of the system. This allows you to compare the desired state
against the current state, compute the differences, and then perform the necessary steps to bring
the current state into compliance with the desired state.

DSC configuration

The representation of the desired state of the system is called a configuration. In DSC, a
configuration is made up of components called resources, which represent concrete aspects of
the system, like files, processes, or services. An example of a DSC configuration containing a
single resource looks like this:

Configuration AddFile {

 File TestFolder {

 Ensure = 'Present'

 Type = 'Directory'

 DestinationPath = 'C:\TestFolder'

 Force = $true

 }

}

The configuration checks whether a folder called TestFolder is present on the C: drive of the
target machine. If the folder isn’t found, it is created. We’ll cover creation of DSC configurations
in more detail later in this chapter.

Once you have a configuration, you need a way to apply it against the target machine. Doing that
involves testing the current configuration and making any changes to bring it in line with the
desired configuration.

Note

(712)

DSC requires the ability to uniquely identify a resource on the system: the key property. (In some
cases, such as the WindowsProcess resource, this had to be fudged by the PowerShell team).

A DSC configuration represents a single terminal state for the target machine. That’s why you
can’t have a document that says a resource is both 1 and 0, because that’s a temporally
impossible terminal state.

The DSC agent is monotonic in operation—each resource moves you closer to the desired
terminal state. It never moves you farther away (though the resource implementation may do that
internally).

DSC resources

DSC configurations are created using DSC resources. The previously mentioned configuration
uses the File resource, though we didn’t explicitly state this. The File resource is one of a small
number of DSC resources installed with PowerShell. These resources enable you to

Manage files and folders
Manage the registry, event logs, processes, and services
Manage Windows operating system roles and features
Manage local users and groups

There are many more resources on the PowerShell Gallery—over 900 at the time of writing. You
can find the available resources using

PS> Find-DscResource

Name Version ModuleName Repository

---- ------- ---------- ----------

Group 2.3.0.0 PSDscResources PSGallery

GroupSet 2.3.0.0 PSDscResources PSGallery

Registry 2.3.0.0 PSDscResources PSGallery

Script 2.3.0.0 PSDscResources PSGallery

Service 2.3.0.0 PSDscResources PSGallery

xDefaultGatewayAddress 3.1.0.0 xNetworking PSGallery

xDHCPClient 3.1.0.0 xNetworking PSGallery

xDnsClientGlobalSetting 3.1.0.0 xNetworking PSGallery

cNtfsPermissionEntry 1.3.0 cNtfsAccessControl PSGallery

cNtfsPermissionsInheritance 1.3.0 cNtfsAccessControl PSGallery

Note

This is a small sample of the available resources.

You’ll notice that some of the resources have a c or an x as a prefix. These prefixes indicate that
a resource is supplied by the PowerShell community (c) or is a Microsoft-supplied resource
that’s classed as experimental (x, meaning it may change).

Resources are delivered as modules. To use a resource from the gallery, download and install the
module that contains the resource, as discussed in chapter 9. If you can’t find a ready-made
resource, you can write your own—we’ll show you how to do that in chapter 19 when we discuss

(713)

PowerShell classes.

Idempotent operation

What happens if you run an imperative script that changes your server’s configuration and then
rerun it at some future time? If you’re lucky, nothing bad happens during the rerun, but it’s quite
possible for the server configuration to be damaged so that the server becomes unusable.

DSC (like all good configuration management systems) is idempotent—the configuration can be
applied multiple times without changing the result beyond the initial application. For a simple
example, multiplying by 1 is an idempotent operation:

PS> 9*1

9

PS> 9*1*1

9

PS> 9*1*1*1

9

PS> 9*1*1*1*1

9

You can multiply a number by 1 as many times as you want, and you’ll always get the same
result.

Applying a DSC configuration multiple times to the same target gives the desired configuration.
DSC checks whether the server is compliant with the configuration and, if so, doesn’t make any
changes. We’ll show this in action in section 18.2.

DSC versions

DSC was originally introduced with Windows Server 2012 R2. Since that time, a number of
changes have been made to DSC that produce different versions. The major changes occurred as
follows:

Windows 2012 R2 RTM, July 2013
Windows 2012 R2 General Availability, October 2013
Windows 2012 R2 Update, November 2014
DSC for Linux, versions 1.0 and 1.1, May 2015 and September 2015 respectively
WMF 4.0 update for Windows 2012 and 2008 R2, January 2016
WMF 5.0 RTM, December 2015
Windows 2016 and WMF 5.1, October 2016

In practical terms, this means there are potential conflicts in the MOF file (usually the
introduction of new properties) between these versions. The versions are backward-compatible;
old versions work with new versions, but not vice versa. You need to either be consistent
between the DSC versions on the machine on which you create the configuration and the
machine to which you apply it, or modify the MOF as applicable to accommodate the
differences. We recommend consistency between DSC versions as the safest approach.

18.1.3. DSC architecture

The architecture of DSC is illustrated in figure 18.3.

(714)

Figure 18.3. DSC architecture

The important point in the DSC architecture is the separation of the managed node (the large box
in figure 18.3) from the source configuration (written in PowerShell) on the pull server or the
push node (on the left-hand side of the figure). The server passes a static, intermediate
representation of the configuration (a MOF file) to the Local Configuration Manager (LCM) on
the managed node.

The LCM takes each resource in the MOF file and passes it to the corresponding resource
provider. The resource providers are pieces of PowerShell code contained in modules that are
responsible for ensuring that the system is compliant with the resources in the configuration.

The configuration controller does a couple of things: It validates the MOF file (valid syntax
schema is correct, and so on) and it checks to see if all the necessary resource providers are
available. If there are missing providers, and a pull server is configured, then the resources are
downloaded. If it’s not configured to download resources, then it fails the validation process. The
execution engine is only responsible for interpreting the configuration and calling the providers.
If you push the configuration to the managed node, you have to ensure that the required modules
are also installed on the managed node.

On Windows, the resources can be written in PowerShell or in unmanaged code as WMI
providers, though that’s not encouraged—resources should be written only in PowerShell. On
Linux, they are currently written in Python. Generalizing the LCM-to-resource-provider interface
to allow the providers to be written in pretty much any language has been discussed by the
PowerShell team, but that won’t happen in the near future.

This architecture and set of abstractions let Windows administrators manage Linux without
needing any special knowledge of Linux, and vice versa. In the case of simple configurations,
they can be written without even knowing much about PowerShell!

Enough theory—it’s time to see how this works in practice.

(715)

18.2. Push mode to a single node

Push mode is the simplest way to use DSC. You can construct configurations that apply to single
nodes or multiple nodes. In a single configuration file, you can set one or many configuration
items with interlocking dependencies, based on the complexity of your configuration. Installing a
single Windows feature may require only a single configuration item, whereas installing and
configuring multiple features could require a number of configuration items.

Note

You’ll get most benefit from this chapter by trying these examples in your test environment.
Viewing the output from the application of a configuration is useful and educational.

Push mode is the ideal place to start with DSC, but it has issues—and limitations—you need to
understand. We’ll start by showing you how to create a DSC configuration for a single node.

18.2.1. Create configuration

In section 18.1 we showed you an example configuration that creates a folder:

Configuration AddFile {

 File TestFolder {

 Ensure = 'Present'

 Type = 'Directory'

 DestinationPath = 'C:\TestFolder'

 Force = $true

 }

}

Let’s use another option: create the folder and add a file to the folder, as shown here.

Listing 18.1. A simple push configuration

Configuration AddFile {

 Node W16TGT01 { 1

 File TestFile { 2

 Ensure = 'Present'

 Type = 'File'

 DestinationPath = 'C:\TestFolder\TestFile1.txt'

 Contents = 'My first Configuration'

 Force = $true

 }

 }

}

AddFile -OutputPath .\MOF 3

1 Define target name
2 Define file configuration
3 Create MOF file

The configuration is named AddFile. Configuration names are arbitrary. The Node keyword 1

(716)

defines the computer to which the configuration will be applied. If you don’t use Node, the
configuration will be applied to the local machine (the MOF file will be named localhost.mof).

The configuration item 2 uses the File resource to ensure that a file named TestFile1.txt is
present in the folder and has 'My first configuration' set as its contents. If the folder structure
you specify in the path for your file isn’t present, the configuration will create the appropriate
path.

The configuration is run 3, and a MOF file is created in the MOF subfolder of the current folder.

Note

If you don’t use -OutputPath when you run the configuration, your MOF file will be created in a
subfolder with the same name as the configuration. How you organize your MOF files is up to
you, but we recommend you decide on a method and stick with it.

18.2.2. MOF file contents

Running the configuration produces the following output:

PS> AddFile -OutputPath .\MOF

WARNING: The configuration 'AddFile' is loading one or more built-

 in resources without explicitly importing associated modules. Add

 Import-DscResource –ModuleName 'PSDesiredStateConfiguration' to your

 configuration to avoid this message.

 Directory: C:\Scripts\MOF

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 05/02/2017 11:09 2868 W16TGT01.mof

You can stop the warning message appearing by adding this line of code immediately before the
Node keyword:

 Import-DscResource –ModuleName PSDesiredStateConfiguration

See listing 18.4 for an example.

Note

You need to import any resou.rces you use other than the built-in resources, so this is a good
habit to get into.

Here is the MOF file you generated.

Listing 18.2. MOF file created by listing 18.1

(717)

/*

@TargetNode='W16TGT01'

@GeneratedBy=Richard

@GenerationDate=05/02/2017 11:09:03

@GenerationHost=W16DSC01

*/

instance of MSFT_FileDirectoryConfiguration as $MSFT_FileDirectoryConfiguration1ref

{

ResourceID = "[File]TestFile";

 Type = "File";

 Ensure = "Present";

 Contents = "My first Configuration";

 DestinationPath = "C:\\TestFolder\\TestFile1.txt";

 Force = True;

 ModuleName = "PSDesiredStateConfiguration";

 SourceInfo = "C:\\Scripts\\PIA3e\\Listing18.1.ps1::3::5::File";

ModuleVersion = "1.0";

 ConfigurationName = "AddFile";

};

instance of OMI_ConfigurationDocument

 {

 Version="2.0.0";

 MinimumCompatibleVersion = "1.0.0";

 CompatibleVersionAdditionalProperties=

{"Omi_BaseResource:ConfigurationName"};

 Author="Richard";

 GenerationDate="05/02/2017 11:09:03";

 GenerationHost="W16DSC01";

 Name="AddFile";

 };

Note

We’ve removed some blank lines from listing 18.2 to save space.

The MOF file starts with a header block that includes information on the target node and the
machine and user that generated the file. Each resource instance has a corresponding block in the
MOF file that starts

instance of MSFT_FileDirectoryConfiguration

You can compare the information in these blocks directly with the corresponding configuration
item. The CIM classes given in the MOF file can be found in the
ROOT\Microsoft\Windows\DesiredStateConfiguration namespace.

The last block in the MOF file starts

instance of OMI_ConfigurationDocument

The contents of this block vary, depending on the version of PowerShell used to generate the
MOF file. If you don’t have matching DSC versions on your target machines and the machine
you use to generate the MOF file, you may get an error when you apply the MOF file. The best
approach is to ensure the PowerShell versions match—otherwise, you may need to edit the MOF
file to remove lines that earlier versions of PowerShell can’t handle. The error message should
indicate the line in the MOF file causing the problem.

The next step is to apply the MOF to the target computer.

(718)

18.2.3. Applying the configuration

Once you’ve generated the MOF file, you can apply the configuration to your target machine:

PS> Start-DscConfiguration -ComputerName W16TGT01 -Path .\MOF\ `

-Wait -Verbose

VERBOSE: Perform operation 'Invoke CimMethod' with following parameters,

 ''methodName' = SendConfigurationApply,'className' =

MSFT_DSCLocalConfigurationManager,'namespaceName' = root/Microsoft/Windows/

 DesiredStateConfiguration'.

VERBOSE: An LCM method call arrived from computer W16DSC01 with

user sid S-1-5-21-759617655-3516038109-1479587680-1104.

VERBOSE: [W16TGT01]: LCM: [Start Set]

VERBOSE: [W16TGT01]: LCM: [Start Resource] [[File]TestFile]

VERBOSE: [W16TGT01]: LCM: [Start Test] [[File]TestFile]

VERBOSE: [W16TGT01]: [[File]TestFile] The system

 cannot find the path specified.

VERBOSE: [W16TGT01]: [[File]TestFile] The related

 file/directory is: C:\TestFolder\TestFile1.txt.

VERBOSE: [W16TGT01]: LCM: [End Test] [[File]TestFile] in 0.0320

 seconds.

VERBOSE: [W16TGT01]: LCM: [Start Set] [[File]TestFile]

VERBOSE: [W16TGT01]: [[File]TestFile] The system

 cannot find the path specified.

VERBOSE: [W16TGT01]: [[File]TestFile] The related

 file/directory is: C:\TestFolder\TestFile1.txt.

VERBOSE: [W16TGT01]: LCM: [End Set] [[File]TestFile] in 0.0000

 seconds.

VERBOSE: [W16TGT01]: LCM: [End Resource] [[File]TestFile]

VERBOSE: [W16TGT01]: LCM: [End Set]

VERBOSE: [W16TGT01]: LCM: [End Set] in 0.3590 seconds.

VERBOSE: Operation 'Invoke CimMethod' complete.

VERBOSE: Time taken for configuration job to complete is 0.738 seconds

There are a few things to note before we discuss the output:

The MOF file doesn’t have to be specified, just the path to it. Start-DscConfiguration
figures out the correct MOF file to use based on the name of the machine you specify.
The MOF file is transported to the target machine over WS-MAN. You can specify the
target machine through the -ComputerName parameter or you can create a CIM session to the
target machine. If you have a folder that contains MOF files for only the machines you
want to configure, you can supply the -Path.
You don’t need to use -Verbose all the time, but it’s a good idea when you’re testing a
configuration because you can see what’s happening as the configuration is applied.
If you don’t specify -Wait, the configuration is applied by a PowerShell job of job type
ConfigurationJob. You can manage the jobs created by DSC with the standard PowerShell
job cmdlets (see chapter 13).

As you read through the output from Start-DscConfiguration, you’ll notice that you’re invoking a
CIM method. The LCM on the target machine receives the configuration and tests whether the
configuration matches the configuration document. In this case, the LCM is testing for the
existence of the file C:\TestFolder\TestFile1.txt.

The configuration item isn’t found, so the configuration is applied—look for Start Set and End
Set pairs. It’s confusing, but the application of the configuration will generate a message that the
item can’t be found. It makes sense when you think that the configuration wouldn’t be applied if
it already existed!

Now would be a good time to show that DSC is idempotent. Reapply the configuration:

(719)

PS> Start-DscConfiguration -ComputerName W16TGT01 -Path .\MOF\ `

-Wait -Verbose

VERBOSE: Perform operation 'Invoke CimMethod' with following parameters,

 ''methodName' = SendConfigurationApply,'className' =

MSFT_DSCLocalConfigurationManager,'namespaceName' = root/Microsoft/Windows/

 DesiredStateConfiguration'.

VERBOSE: An LCM method call arrived from computer W16DSC01 with user

sid S-1-5-21-759617655-3516038109-1479587680-1104.

VERBOSE: [W16TGT01]: LCM: [Start Set]

VERBOSE: [W16TGT01]: LCM: [Start Resource] [[File]TestFile]

VERBOSE: [W16TGT01]: LCM: [Start Test] [[File]TestFile]

VERBOSE: [W16TGT01]: [[File]TestFile] The

 destination object was found and no action is required.

VERBOSE: [W16TGT01]: LCM: [End Test] [[File]TestFile] in 0.0310

 seconds.

VERBOSE: [W16TGT01]: LCM: [Skip Set] [[File]TestFile]

VERBOSE: [W16TGT01]: LCM: [End Resource] [[File]TestFile]

VERBOSE: [W16TGT01]: LCM: [End Set]

VERBOSE: [W16TGT01]: LCM: [End Set] in 0.3440 seconds.

VERBOSE: Operation 'Invoke CimMethod' complete.

VERBOSE: Time taken for configuration job to complete is 0.543 seconds

You’ll receive messages stating 'The destination object was found and no action is required',
and you’ll see Skip Set statements

You can test whether a server is configured to match the configuration document.

18.2.4. Testing the configuration application

One test is to see if the configuration item is present:

PS> Invoke-Command -ComputerName W16TGT01 -ScriptBlock {

 Get-Content -Path c:\testfolder\testfile1.txt

 }

My first Configuration

Unfortunately, that doesn’t test whether the configuration is correct. The correct test is to use
Test-DscConfiguration:

PS> Test-DscConfiguration -ComputerName W16TGT01

True

It would be nice to see a bit more information, so you can include the MOF file in the test:

PS> Test-DscConfiguration -ComputerName W16TGT01 `

-ReferenceConfiguration .\MOF\W16TGT01.mof |

Format-List

InDesiredState : True

ResourcesInDesiredState : {[File]TestFile}

ResourcesNotInDesiredState :

ReturnValue : 0

PSComputerName : W16TGT01

Alternatively, you can use the -Verbose parameter:

PS> Test-DscConfiguration -ComputerName W16TGT01 -Verbose

VERBOSE: Perform operation 'Invoke CimMethod' with following parameters,

 ''methodName' = TestConfiguration,'className' =

MSFT_DSCLocalConfigurationManager,'namespaceName' = root/Microsoft/Windows/

 DesiredStateConfiguration'.

VERBOSE: An LCM method call arrived from computer W16DSC01 with user sid S-1-

 5-21-759617655-3516038109-1479587680-1104.

VERBOSE: [W16TGT01]: LCM: [Start Test]

(720)

VERBOSE: [W16TGT01]: LCM: [Start Resource] [[File]TestFile]

VERBOSE: [W16TGT01]: LCM: [Start Test] [[File]TestFile]

VERBOSE: [W16TGT01]: [[File]TestFile] The

 destination object was found and no action is required.

VERBOSE: [W16TGT01]: LCM: [End Test] [[File]TestFile] True in

 0.0310 seconds.

VERBOSE: [W16TGT01]: LCM: [End Resource] [[File]TestFile]

VERBOSE: [W16TGT01]: LCM: [End Test] Completed processing test

 operation. The operation returned True.

VERBOSE: [W16TGT01]: LCM: [End Test] in 0.0630 seconds.

VERBOSE: Operation 'Invoke CimMethod' complete.

True

VERBOSE: Time taken for configuration job to complete is 0.201 seconds

The output shows that the configuration items were found and the configuration is correct.

18.2.5. Viewing the current configuration

You can view the current configuration of the target machine. In this case we’ll use a CIM
session:

PS> $cs = New-CimSession -ComputerName W16TGT01

PS> Get-DscConfiguration -CimSession $cs

CimSession and ComputerName

You may want to use a CIM session if you’re going to be performing multiple actions against the
target machines—for instance, setting, testing, and getting the configuration.

You can simplify the approach because the -CimSession parameter on Get-Dsc-Configuration (and
other cmdlets that have a -CimSession parameter) will take an array of computer names (or a
single computer name) instead of a CIM session object. If you use a computer name, a CIM
session will be created, used, and destroyed in the background. This is approach is fine if you’re
performing a single action, but a CIM session is recommended if you’re performing multiple
actions because it’s a more efficient technique.

For each configuration item in the configuration document, you’ll see output of this form:

ConfigurationName : AddFile

DependsOn :

ModuleName : PSDesiredStateConfiguration

ModuleVersion :

PsDscRunAsCredential :

ResourceId : [File]TestFile

SourceInfo :

Attributes : {archive}

Checksum :

Contents :

CreatedDate : 02/05/2017 11:09:47

Credential :

DestinationPath : C:\TestFolder\TestFile1.txt

Ensure : present

Force :

MatchSource :

ModifiedDate : 02/05/2017 11:09:47

Recurse :

Size : 25

SourcePath :

SubItems :

Type : file

PSComputerName : W16TGT01

(721)

CimClassName : MSFT_FileDirectoryConfiguration

Don’t forget to remove the CIM session if you don’t need it:

PS> Remove-CimSession -CimSession $cs

You’ve seen how to apply and test a configuration. The last part of the lifecycle is to remove the
configuration.

18.2.6. Removing a configuration

There will come a time when you need to remove the configuration items from your target
because you’re repurposing the machine or the configuration is no longer appropriate. In the case
of a file, you could perform a deletion, but it’s better practice to reverse the configuration. This
shows the reversal of the configuration from listing 18.1.

Listing 18.3. Removing a configuration

Configuration AddFile {

 Node W16TGT01 {

 File TestFile {

 Ensure = 'Absent' 1

 Type = 'File'

 DestinationPath = 'C:\TestFolder\TestFile1.txt'

 Force = $true

 }

 File TestFolder {

 Ensure = 'Absent' 1

 Type = 'Directory'

 DestinationPath = 'C:\TestFolder'

 Force = $true

 DependsOn = '[File]TestFile' 2

 }

 }

AddFile -OutputPath .\MOF

1 Ensure item removal
2 Remove file before folder

Two important points to note. First, the Ensure parameter is set to Absent 1. This ensures that the
item is removed if present. Second, the folder removal should be dependent 2 on the file
removal. Once the MOF file is created you can apply it:

PS> Start-DscConfiguration -ComputerName W16TGT01 -Path .\MOF\ -Wait

Use Test-DscConfiguration to determine if the file has been removed. As a second check, you can
use Test-Path:

PS> Test-Path -Path \\W16TGT01\C$\TestFolder\TestFile1.txt

False

We’ve spent quite a long time walking you through creating, applying, testing, and deleting a
configuration. This only applied to a single machine. It’s more likely that you’ll want to apply a
configuration to multiple machines—preferably simultaneously.

(722)

18.3. Pushing to multiple nodes

If you need to apply the same configuration to multiple machines, you could run listing 18.1 a
number of times, changing the computer name each time. That’s inefficient, not to mention
boring and error-prone, so we’ll show you how to parameterize your configurations. First, we’ll
show how to change only the nodes to which you’ll apply the configuration. Then we’ll show
you how to use configuration metadata to change the configuration being applied based on the
machine name.

18.3.1. Parameterizing the computer name

If you have a number of machines you need to apply exactly the same configuration to, the
easiest approach is to parameterize the computer name.

Listing 18.4. Parameterizing the computer name

Configuration AddFile {

 param (

 [Parameter(Mandatory=$true)]

 [string[]]$ComputerName 1

)

 Import-DscResource –ModuleName PSDesiredStateConfiguration

 Node $ComputerName { 2

 File TestFile {

 Ensure = 'Present'

 Type = 'File'

 DestinationPath = 'C:\TestFolder\TestFile1.txt'

 Contents = 'My first Configuration'

 Force = $true

 }

 }

}

AddFile -OutputPath .\MOF -ComputerName 'W16TGT01', 'W16DSC02' 3

1 Parameter block
2 Node uses parameter
3 Computer names supplied

The configuration is an evolution of listing 18.1. The parameter block 1 defines a single
mandatory parameter—ComputerName—which is an array of strings, each element of which is a
computer name. A statement to explicitly import the resources being used has been added:

Import-DscResource –ModuleName PSDesiredStateConfiguration

This will stop the warning messages being issued that we saw with listing 18.1. The Node 2 is
modified to use the ComputerName parameter name rather than having a hardcoded computer name.

When the configuration is run 3, the -ComputerName parameter is used to supply the names of the
computers you’ll apply the configuration to. You’ll see output similar to this:

 Directory: C:\scripts\MOF

Mode LastWriteTime Length Name

---- ------------- ------ ----

(723)

-a---- 02/05/2017 14:50 2128 W16TGT01.mof

-a---- 02/05/2017 14:50 2128 W16DSC02.mof

A MOF file is produced for each computer name that you supply to the configuration. Notice that
you didn’t have to create any looping structures in your code to manage multiple machines—it’s
all done for you.

Note

If you think the parameter block looks like that used in functions and scripts, you’re correct.

You can now apply your configuration:

PS> Start-DscConfiguration -ComputerName W16TGT01, W16DSC02 `

-Path .\MOF\ -Wait

If you don’t use the -Wait parameter, you’ll only see a single job managing the application of the
configuration. But if you look at the child jobs

PS> Get-Job -IncludeChildJob

Id Name PSJobTypeName State HasMoreData Location Command

-- ---- ------------- ----- ----------- -------- -------

22 Job22 ConfigurationJob Completed True W16TGT01,W16DSC02 Sta...

23 Job23 ConfigurationJob Completed True W16TGT01 Sta...

24 Job24 ConfigurationJob Completed True W16DSC02 Sta...

you’ll see that there is one child job per machine to be configured. The parent job manages the
creation and running of the child jobs.

Test the application of the configuration:

PS> Test-DscConfiguration -ComputerName W16TGT01, W16DSC02

True

True

If you need more details on the applied configurations:

PS> Get-DscConfiguration -CimSession W16TGT01, W16DSC02 |

Format-Table PSComputerName, ConfigurationName, Ensure, Type -AutoSize

PSComputerName ConfigurationName Ensure Type

-------------- ----------------- ------ ----

W16TGT01 AddFile present file

W16DSC02 AddFile present file

We’ll leave the creation of the configuration to remove the folders and file to you (hint: modify
listing 18.3). A version of the code is available in the book’s download file:
RemoveListing18.4.ps1.

As well as parameterizing the computer names, you can also supply other information to the
configuration, including the parts of the configuration to apply.

18.3.2. Using configuration data

(724)

You can parameterize your configurations beyond the computer name by supplying
configuration data in the form of hashtables. In fact, you can configure anything you want using
parameters. But the purpose of configuration data is to allow you to easily separate configuration
(also known as environment configuration) from topology (structural configuration). You can
also think of it as separating the what (topology) from the where (configuration). This is an
important point that people seem to miss. The canonical example is http://mng.bz/3LsX. It
defines three roles (configurations) and then uses configuration data to map those roles to
physical machines. All three roles can be on one machine, or each role can be on a discrete
machine or on multiple machines for High Availability scenarios.

This example modifies the contents of the text file depending on the machine being configured.

Listing 18.5. Using configuration metadata

$ConfigurationData = @{ 1

 AllNodes = @(

 @{NodeName = 'W16TGT01';FileText='Configuration for Role 1'},

 @{NodeName = 'W16DSC02';FileText='Configuration for Role 2'}

)

}

Configuration AddFile {

 Import-DscResource –ModuleName PSDesiredStateConfiguration

 Node $AllNodes.NodeName { 2

 File TestFile {

 Ensure = 'Present'

 Type = 'File'

 DestinationPath = 'C:\TestFolder\TestFile1.txt'

 Contents = $Node.FileText 3

 Force = $true

 }

 }

}

AddFile -OutputPath .\MOF -ConfigurationData $ConfigurationData 4

1 Configuration data
2 Setting node name
3 Setting text
4 Running configuration

Configuration data 1 is supplied as a hashtable that must have one key named AllNodes. Other
keys are permitted, though seldom used. AllNodes is an array of hashtables; each hashtable
defines the configuration for a single machine and must have a key named NodeName (name of the
machine to be configured). Again, other keys are permitted.

You can define the configuration data hashtable in a .psd1 file and access it as

AddFile -OutputPath .\MOF -ConfigurationData ./confdata.psd1

Note

Forgetting to include the -ConfigurationData parameter and the hashtable is a common error when
you start using this approach.

(725)

http://mng.bz/3LsX

When the configuration is run, $AllNodes.NodeName 2 is accessed to process each individual
machine affected by the configuration. As the configuration is processed, other elements of the
machine’s hashtable, as defined in the configuration data, are accessed—for instance,
$Node.FileText 3 to set the file’s contents.

The configuration data is linked to the configuration when it’s run using the -ConfigurationData
parameter 4 and passing the variable containing the configuration hashtable. A MOF file is
produced for each machine listed in the configuration data, as you would expect.

Applying the configuration is performed in the usual way—supply the computer names or a CIM
session together with the path to the MOF files:

PS> Start-DscConfiguration -ComputerName W16TGT01, W16DSC02 `

 -Path .\MOF\ -Wait -Verbose

You can test the configurations individually:

PS> Test-DscConfiguration -ComputerName W16TGT01

True

PS> Test-DscConfiguration -ComputerName W16DSC02

True

or simultaneously:

PS> Test-DscConfiguration -ComputerName W16TGT01, W16DSC02

True

True

The final test is to view the content of the files:

PS> Invoke-Command -ComputerName W16TGT01, W16DSC02 `

-ScriptBlock {Get-Content -Path C:\TestFolder\TestFile1.txt}

Configuration for Role 1

Configuration for Role 2

You can remove this configuration, if required, using the RemoveListing18.4.ps1 script in the
download code.

So far, you’ve seen how to apply a configuration to multiple machines. There are many situations
where you need to create a set of machines, each of which has its own unique requirements.

18.3.3. Configuration data and roles

Imagine that you’re creating the infrastructure for an internet-facing system such as an e-
commerce site. You’d need to create a number of identical web servers, a server to run your
business logic, and possibly a database server. Also, you’ll need to rebuild this infrastructure on
a frequent basis as new versions of the software are released.

You could set up a single configuration for each server type and run that. In fact, that’s how you
would probably start for development purposes. But you should look at a single configuration
that works with all your servers and applies the correct configuration based on the role of the
server.

This is easier to grasp with an example. This listing shows a role-based configuration.

Listing 18.6. Role-based configurations

(726)

$ConfigurationData = @{ 1

 AllNodes = @(

 @{NodeName = 'W16TGT01';Role = 'Hyper-V'},

 @{NodeName = 'W16CN01';Role = 'AD'}

)

}

Configuration RoleConfiguration 2

{

 param ($Role)

 switch ($Role) {

 'Hyper-V' {

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 WindowsFeature Hyper-V {

 Ensure = 'Present'

 Name = 'Hyper-V-PowerShell'

 }

 }

 'AD' {

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 WindowsFeature AD {

 Ensure = 'Present'

 Name = 'RSAT-AD-PowerShell'

 }

 }

 }

}

Configuration ToolsConfig 3

{

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 node $allnodes.NodeName

 {

 RoleConfiguration ServerRole

 {

 Role = $Node.Role

 }

 }

}

ToolsConfig -ConfigurationData $ConfigurationData `

-OutputPath .\MOF 4

1 Configuration metadata
2 Composite resource
3 Main configuration
4 Run configuration

We start with the configuration metadata 1 held within the $ConfigurationData hashtable. The
metadata defines the server name and the role it will take. The role controls the configuration
applied to the server.

A configuration called RoleConfiguration 2 performs the configuration. It takes a role as a
parameter, and using a switch parameter determines which Windows feature—Hyper-V
PowerShell module or Active Directory PowerShell module—is installed. You could have
further nesting at this point by calling additional configurations. As with all nesting options,
achieving the correct balance between granularity and maintainability will depend on your exact
circumstances and the scenarios you’re working with.

Composite resources

A composite resource is a DSC configuration that’s used as a resource in another configuration.
In the case of listing 18.6, the configuration RoleConfiguration performs the task of configuring
the target based on the role assigned to that system. RoleConfiguration is used as a composite
resource by the ToolsConfig configuration.

(727)

In this case, the composite configuration is contained in the same file as the top-level
configuration. If you wanted to reuse the composite resource in many other different
configurations, you could save it with a .schema.psm1 extension. You’d also need to create a
module manifest that defined the .schema.psm1 file as the root module.

A worked example of using composite resources in this manner is available at
http://mng.bz/1e6G.

The ToolsConfig configuration 3 is the master configuration that calls RoleConfiguration.
ToolsConfig is the configuration that’s run 4 and to which the configuration data is passed.

Once the MOF files are created, the configuration can be applied:

PS> Start-DscConfiguration -ComputerName W16TGT01, W16CN01 `

-Path .\MOF\ -Wait -Verbose

If you watch the output, you’ll see these two lines:

VERBOSE: [W16CN01]: [[WindowsFeature]AD::

[RoleConfiguration]ServerRole]

Successfully installed the feature RSAT-AD-PowerShell.

VERBOSE: [W16TGT01]:

[[WindowsFeature]Hyper-V::[RoleConfiguration]ServerRole]

Successfully installed the feature Hyper-V-PowerShell.

They indicate that the configuration has been successfully applied.

Testing the configuration is a little more difficult:

PS> Invoke-Command -ComputerName W16TGT01, W16CN01 -ScriptBlock {

Get-WindowsFeature -Name Hyper-V-PowerShell, RSAT-AD-PowerShell

} | sort Name |

Format-Table Name, DisplayName, Installed, PSComputerName

Name DisplayName Installed PSComputerName

---- ----------- --------- --------------

Hyper-V-PowerShell Hyper-V Module... True W16TGT01

Hyper-V-PowerShell Hyper-V Module... False W16CN01

RSAT-AD-PowerShell Active Directo... True W16CN01

RSAT-AD-PowerShell Active Directo... False W16TGT01

You can see from the output that the correct configuration has been applied to each machine.

Even with parameterization, push mode has a number of issues that limit its usefulness.

18.3.4. Issues with push mode

You’ve been introduced to DSC in push mode and the benefits you gain in terms of managing
your server configurations. DSC push mode is a huge step forward compared to manually
configuring servers, but as with most things, it has its minuses.

Here are the main drawbacks to using push mode:

Doesn’t scale— Using push mode on 10 servers is manageable. At a scale of hundreds or
thousands of servers, manual processes break down. A situation with frequent builds
required by new application versions also causes push mode to be unsatisfactory.

(728)

http://mng.bz/1e6G

Delivering resource modules to target— The PowerShell module containing the DSC
resources used by a configuration has to be installed on the target machine. When using
push mode, it’s your responsibility to ensure this (hint: copying files over a PowerShell
remote session is a great way to perform this action).
Fire and forget— Monitoring and reporting are manual processes. Once you’ve pushed
the configuration to the target node, that’s it. All finished. If you want to monitor the
configuration and correct any configuration drift, it’s your job to figure out how to do that
and create the required scripts.

These points bring us to the conclusion that DSC push mode is great for development and
testing. It’s also adequate for small environments. But if you have a large environment to manage
through DSC, or you have frequent software releases for which you need to build new
infrastructure each time, you need something more. That something is DSC pull mode.

(729)

18.4. DSC in pull mode

In the DSC examples you’ve seen so far, the configuration has been pushed to the target server.
As you saw in section 18.3.4, push mode doesn’t scale well. In this section, we’ll cover DSC in
pull mode, where the target server contacts the pull server and pulls—and then applies its
configuration.

We’ll start by covering the pull server architecture and then move on to showing you how to
create a pull server using DSC. When the pull server is running, you need to create your
configuration and publish the MOF file (together with any required modules) to the pull server.

The final part of the picture is to configure the target machine’s LCM to work with the pull
server, which we’ll postpone to section 18.5.

What does DSC look like in pull mode?

18.4.1. Pull server architecture

The architecture of DSC in pull mode is illustrated in figure 18.4.

Figure 18.4. DSC in pull mode

A DSC configuration is created. This is usually on a separate machine from the pull server—
development on a production server is a bad thing in many organizations. The configuration is
run to create a MOF file. The MOF file, together with any required DSC resource modules, is
published to the pull server.

(730)

Note

The pull server protocol specification is available through the Microsoft Open Specifications
program. Its designation is MS-DSCPM. See http://mng.bz/TzY3 for the specification of the
protocol.

The target server is configured via the LCM to periodically poll the pull server for its
configurations. When a configuration is found, it and any associated resource modules are
downloaded to the target server and applied.

Note

LCM configuration is covered in section 18.5.

The target server can be configured to report the status of its configuration to the pull server. The
LCM can also be configured to reapply the configuration if the target server’s configuration
drifts from the desired state (you can also do this in push mode, but it’s rare to see that done).
These mechanisms provide a compliance regime for your environment. You can confidently state
what a server’s configuration should be and prove that its state matches the desired state.
PowerShell 1, Auditors 0.

The next big question is: How do you create a pull server?

18.4.2. Creating a pull server

The best way to create a DSC pull server is to use DSC. In this section, we’ll show you how to
create a web-based pull server.

Pull server on SMB Share

You can set up a DSC pull server based on an SMB share instead: http://mng.bz/uWRh.

Our simple advice is don’t.

An SMB share–based pull server isn’t as versatile as the full pull server we’re going to show you
and should only be used for testing the pull concept or for situations where it’s impossible to use
an HTTP-based pull server.

If you have a machine you’re using as a push server, then you can create the configuration and
push it to the relevant server. If you have a pull server already in your environment and want to
create another one, get the new pull server to pull its configuration from the original pull server.

Before you can create the pull server, you need to take care of a few prerequisites.

Pull server prerequisites

(731)

http://mng.bz/TzY3
http://mng.bz/uWRh

There are two main prerequisites. First, if you want to secure and encrypt the web traffic to and
from your pull server, you need to install an SSL certificate on the machine. This will be used
during the creation of the pull server. You’ll need to know the thumbprint of the certificate:

PS> Get-ChildItem -Path Cert:\LocalMachine\My\

 PSParentPath: Microsoft.PowerShell.Security\Certificate::LocalMachine\My

Thumbprint Subject

---------- -------

FF24E1BA4B32D2F75A8F9648DECC1D070F1F2B13 CN=W16DSC02

Second, you’ll need to install the modules containing the DSC resources you require to install
and configure the pull server. These modules can be found on the PowerShell Gallery.

The following modules are required:

PS C:\Scripts> Find-Module xPSDesiredStateConfiguration

Version Name Repository Description

------- ---- ---------- -----------

5.1.0.0 xPSDesiredStateConfiguration PSGallery The xPSD...

PS> Find-Module xWebAdministration

Version Name Repository Description

------- ---- ---------- -----------

1.16.0.0 xWebAdministration PSGallery Module w...

Both xPSDesiredStateConfiguration and xWebAdministration are classed as experimental and as
such are subject to change, including breaking changes, with no notice. If the versions you find
are different from those mentioned, you’ll need to test the code we use to ensure there haven’t
been any breaking changes.

These two modules need to be installed on the pull server and any system you use for creating
configurations:

PS> Install-Module -Name xPSDesiredStateConfiguration, xWebAdministration ` -Force

The modules will be installed to C:\Program Files\WindowsPowerShell\Modules, as are all
modules obtained from the PowerShell Gallery.

Now it’s time to create the configuration for your pull server.

Pull server and Local Configuration Manager

You need to do three things to configure your DSC environment to use a pull server:

1. You need to configure a pull server—which we’ll be covering in a moment.
2. You’ll need to create a configuration to operate in pull mode and publish it to the pull

server. That will be covered in section 18.4.3
3. You’ll need to configure the LCM on the target machine(s) to use the pull server. We’ll

postpone that discussion until section 18.5, where we cover all aspects of the LCM.

Creating the pull server

(732)

Using a DSC configuration to create a DSC pull server is a fitting way to proceed.

Listing 18.7. Creating a pull server

$ConfigurationData=@{ 1

 AllNodes = @(

 @{

 NodeName = 'W16DSC02'

 Role = @('Web', 'PullServer')

 CertThumbPrint = Invoke-Command -Computername 'W16DSC02' -ScriptBlock {

 Get-Childitem -Path Cert:\LocalMachine\My |

 where Subject -Like 'CN=W16DSC02*' |

 Select-Object -ExpandProperty ThumbPrint}

 }

);

}

Configuration Pullserver {

 Import-DscResource -ModuleName PSDesiredStateConfiguration 2

 Import-DscResource -ModuleName xPSDesiredStateConfiguration

 Import-DscResource -ModuleName xWebAdministration

 Node $AllNodes.where{$_.Role -eq 'Web'}.NodeName { 3

 WindowsFeature IIS {

 Ensure = "Present"

 Name = "Web-Server"

 }

 WindowsFeature NetExtens4 { 4

 Ensure = "Present"

 Name = "Web-Net-Ext45"

 DependsOn = '[WindowsFeature]IIS'

 }

 WindowsFeature AspNet45 {

 Ensure = "Present"

 Name = "Web-Asp-Net45"

 DependsOn = '[WindowsFeature]IIS'

 }

 WindowsFeature ISAPIExt {

 Ensure = "Present"

 Name = "Web-ISAPI-Ext"

 DependsOn = '[WindowsFeature]IIS'

 }

 WindowsFeature ISAPIFilter {

 Ensure = "Present"

 Name = "Web-ISAPI-filter"

 DependsOn = '[WindowsFeature]IIS'

 }

 WindowsFeature DirectoryBrowsing { 5

 Ensure = "Absent"

 Name = "Web-Dir-Browsing"

 DependsOn = '[WindowsFeature]IIS'

 }

 WindowsFeature StaticCompression {

 Ensure = "Absent"

 Name = "Web-Stat-Compression"

 DependsOn = '[WindowsFeature]IIS'

 }

 WindowsFeature Management { 6

 Name = 'Web-Mgmt-Service'

 Ensure = 'Present'

 DependsOn = @('[WindowsFeature]IIS')

 }

(733)

 Registry RemoteManagement {

 Key = 'HKLM:\SOFTWARE\Microsoft\WebManagement\Server' 7

 ValueName = 'EnableRemoteManagement'

 ValueType = 'Dword'

 ValueData = '1'

 DependsOn = @('[WindowsFeature]IIS','[WindowsFeature]Management')

 }

 Service StartWMSVC {

 Name = 'WMSVC'

 StartupType = 'Automatic'

 State = 'Running'

 DependsOn = '[Registry]RemoteManagement'

 }

 xWebsite DefaultSite {

 Name = "Default Web Site"

 State = "Started"

 PhysicalPath = "C:\inetpub\wwwroot"

 DependsOn = "[WindowsFeature]IIS"

 }

 }

 Node $AllNodes.where{$_.Role -eq 'PullServer'}.NodeName { 8

 WindowsFeature DSCServiceFeature {

 Ensure = "Present"

 Name = "DSC-Service"

 }

 xDscWebService DSCPullServer {

 Ensure = "Present"

 EndpointName = "PullServer"

 Port = 8080

 PhysicalPath = "$env:SystemDrive\inetpub\wwwroot\PullServer"

 CertificateThumbPrint = $Node.CertThumbprint

 ModulePath = "$env:PROGRAMFILES\WindowsPowerShell\DscService\Modules"

 ConfigurationPath = "$env:PROGRAMFILES\WindowsPowerShell\DscService\Configuration"

 State = "Started"

 UseSecurityBestPractices = $false

 DependsOn = "[WindowsFeature]DSCServiceFeature"

 }

 xDscWebService DSCComplianceServer {

 Ensure = "Present"

 EndpointName = "ComplianceServer"

 Port = 9080

 PhysicalPath = "$env:SystemDrive\inetpub\wwwroot\ComplianceServer"

 CertificateThumbPrint = "AllowUnencryptedTraffic"

 State = "Started"

 UseSecurityBestPractices = $false

 DependsOn = ("[WindowsFeature]DSCServiceFeature","[xDSCWebService]DSCPullServer")

 }

 }

}

Pullserver -ConfigurationData $ConfigurationData -outputPath .\MOF

1 Configuration data
2 Required resource modules
3 Install IIS
4 IIS sub-features to install
5 IIS sub-features to block
6 IIS management
7 Registry configuration
8 Install DSC

This long configuration breaks down into a number of chunks. The first chunk 1 is the
configuration data. In this example, we’re setting two roles—Web and PullServer—for our server,

(734)

called W16DSC02 in this case. The certificate thumbprint for the SSL certificate on the pull server is
recovered through a script rather than hardcoding. This makes your code more portable and saves
the error-prone exercise of typing in the thumbprint. Let PowerShell do the work for you.

Moving on to the configuration itself, the first step 2 is to import the modules required by the
configuration.

Note

You should have installed these modules in the previous section. If you haven’t, make sure
they’re installed on both the authoring server and the machine that will become your pull server.

Creating a pull server requires IIS and DSCServiceFeature to be installed. We’ll start with IIS 3
and install the basic web server Windows feature. Unfortunately, this won’t give us quite what
we need, so we have to ensure that a number of the IIS sub-features are present. 4 These sub-
features include ISAPI and ASP. Likewise, there are a number of IIS features we don’t want
installed—ever. These include 5 Directory Browsing and Static Compression.

Note

We’ve shown only a few features that we don’t want installing. Your organization may have
others that it thinks shouldn’t be installed. The pattern shown in listing 18.7 is infinitely
adaptable. You can add more configuration items as required.

It’s always a good idea to be able to manage your servers remotely, so make sure that you install
the management service 6 and set the registry keys 7 to enable this scenario. The IIS
configuration concludes by setting the IIS service (WMSVC) startup to automatic and ensures
that the default website—which DSC uses—will be started when IIS starts.

The DSC configuration 8 is simpler. The first part ensures that the DSC service is installed. The
pull server—DSCPullServer—is then configured. Most of the settings should be self-explanatory
by now. The port that the pull server clients will use to connect is set to 8080. This is arbitrary;
you can use another port if required. A specific port is specified to separate traffic if another
application is using the default website. The ModulePath and ConfigurationPath settings control
where the pull server stores configurations and modules that its clients need to pull. If you don’t
put them in that place, the client won’t find them.

It may seem odd to set UseSecurityBestpractices to $false. Setting this property to $true will reset
registry values, which in this case will be controlling SSL, under
"HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL". This environment change
enforces the use of a stronger encryption cypher and may affect legacy applications. More
information can be found at http://mng.bz/U3dr and http://mng.bz/747N.

(735)

http://mng.bz/U3dr
http://mng.bz/747N

Note

You’ll have noticed the heavy use of DependsOn in listing 18.7. It’s worth tracing the dependencies
and the interaction of the IIS and DSC configurations with each other and the configuration data.
This is a complicated configuration, and if you can understand this, you’re well on the way to
mastering DSC.

The final part of the DSC configuration is for the compliance server. This provides reporting and
compliance information on the configuration of the pull server’s client machines. For now, we’re
only configuring the compliance server. The configuration of the compliance server is similar to
the pull server, but we’re allowing unencrypted traffic to use the compliance server and we’re
configuring a different port.

The last line of listing 18.7 runs the configuration and creates the MOF file as usual. You then
need to push the configuration to the machine you’re creating a pull server on:

PS> Start-DscConfiguration -ComputerName W16DSC02 -Path .\MOF\ `

-Wait -Verbose

Expect it to run a while. Restart the new pull server:

PS> Restart-computer -ComputerName W16DSC02 -Wait -Force

Your DSC pull server should now be ready for use. Before jumping into using the pull server, we
should test the configuration:

PS> Test-DscConfiguration -ComputerName W16DSC02

You should also test the pull server by connecting to the web service. From your authoring server
(or another machine in the domain):

PS> Start-Process `

-FilePath iexplore.exe https://W16DSC02:8080/PSDSCPullServer.svc

You should see something like figure 18.5.

Figure 18.5. Testing the pull server

(736)

Notice the name of the service: PSDSCPullServer.svc. It’s hardcoded into the DSC resource. If
you need to modify that, check carefully that you find all the places it’s specified.

Your pull server is up and running. It appears to be working correctly. The next step is creating
and publishing a MOF file to the pull server.

18.4.3. Publishing a MOF file

When you’re working with DSC in push mode, you create a MOF file and manually push it to
the target server. You’re implicitly assuming that the server is running and ready to receive its
configuration. When working in pull mode you don’t care about the state of the target server
because you publish the MOF file to the pull server and leave the target server to pull its
configuration when it’s ready.

A number of steps are required to create a configuration to pull:

1. Create the configuration.
2. Copy to the pull server.
3. Ensure resources are on the pull server.
4. Force pull (for demo or testing). In production, wait for the target machine to be ready to

pull its configuration.

Examples are everything, so we’ll demonstrate this process by creating a MOF file that’ll
configure the target server with a file share. The configuration is shown in listing 18.8.

Before you start to create the configuration file, you need to ensure that required resources are on
the authoring server. In this case, you’ll need to download the xSmbShare resource module from
the PowerShell gallery:

(737)

PS> Install-Module -Name xSmbShare -Force

Once that’s installed, you have everything you need to create the configuration to be pulled.

Listing 18.8. Configuration to be pulled

Configuration stdShare {

 param

 (

 [Parameter(Mandatory=$true)]

 [string[]]$ComputerName

)

 Import-DscResource -ModuleName PSDesiredStateConfiguration 1

 Import-DscResource -ModuleName xSmbShare

 Node $ComputerName {

 File TestFolder { 2

 Ensure = 'Present'

 Type = 'Directory'

 DestinationPath = 'C:\TestFolder'

 Force = $true

 }

 File TestFile { 3

 Ensure = 'Present'

 Type = 'File'

 DestinationPath = 'C:\TestFolder\TestFile1.txt'

 Contents = 'My first Configuration'

 Force = $true

 }

 xSmbShare StandardShare 4

 {

 Ensure = "Present"

 Name = "Standard"

 Path = 'C:\TestFolder'

 Description = "This is a test SMB Share"

 ConcurrentUserLimit = 0

 }

 }

}

stdShare -ComputerName W16TGT01 -OutputPath .\MOF

1 Import resources
2 Create folder
3 Create file
4 Create share

You’ve already seen this configuration earlier in the chapter. Creating a file in a folder was our
first simple configuration example. The configuration starts by importing the required resources
1. Creating the folder 2 and its associated file 3 are performed in two steps this time. Creating the
share is equally straightforward 4. A name for the share and the path to the folder are required.
The description and concurrent user limits are optional.

Run the configuration to create your MOF file. If you were using push mode, you’d use Start-
DscConfiguration to push the MOF file to the target machine (assuming you’d remembered to
copy the required resource module to the target). With push mode, you have a few more hoops to
jump through.

You need to rename the MOF file so that it matches the identification of the target server. A
GUID is used as the identifier. You generate a new GUID by using New-Guid:

(738)

PS> $psclientid = New-Guid | select -ExpandProperty guid

PS> $psclientid

5827c542-20bb-487c-89cb-484cbe5f0b1f

Getting the GUID in production

The important thing is that the same GUID is used for the target machine’s configuration ID and
the data sent to the pull server. If your target machine has already been configured to use the pull
server, it’ll have a configuration ID, so you can find the GUID like this:

PS> $pscs = New-CimSession -ComputerName <target machine>

PS> $psclientid = Get-DscLocalConfigurationManager -CimSession $pscs |

select -ExpandProperty ConfigurationID

We’ll use this GUID to rename the MOF file:

PS> Get-ChildItem -Path C:\scripts\MOF\W16TGT01.mof |

Rename-Item -NewName "C:\scripts\MOF\$psclientid.mof"

You then need to create a checksum of the MOF file:

PS> New-DscChecksum -Path "C:\scripts\MOF\$psclientid.mof" -Force

The MOF and checksum files

5827c542-20bb-487c-89cb-484cbe5f0b1f.mof

5827c542-20bb-487c-89cb-484cbe5f0b1f.mof.checksum

need to be transferred to the pull server.

Note

The checksum files are used by the target machine when it pulls its configuration, and any
required resource modules, to ensure that the integrity of those items hasn’t been compromised.

The ability to copy files across a PowerShell remoting session makes life easier here:

PS> $s = New-PSSession -ComputerName W16DSC02

PS> Get-ChildItem -Path .\MOF\ -Filter "$psclientid.*" |

Copy-Item -Destination "C:\program Files\WindowsPowerShell\DscService\Configuration" `

-ToSession $s -Force

The last step in preparing the configuration is to get a copy of the resource module onto the pull
server. This has to be archived into a zip file with a name that includes the module version. It’s
always advisable to use the module you’ve installed on your authoring server to ensure there are
no compatibility issues. First, get the module path and version:

PS> $module = Get-Module -ListAvailable xSmbShare

PS> $modulepath = "$(Split-Path -Path $module.Path)*"

PS> $moduleversion = $module.Version.ToString()

Then create a zip file and generate a checksum:

PS> Compress-Archive -Path $modulepath `

-DestinationPath "C:\scripts\ModuleZips\xSMBShare_$moduleversion.zip" `

(739)

-Force

PS> New-DscChecksum `

-Path "C:\scripts\ModuleZips\xSMBShare_$moduleversion.zip" `

-Force

The destination isn’t important. Keeping the zip files together helps organize the files.

Note

The archive cmdlets were introduced in PowerShell v5. The archive module is now part of the
PowerShell open source projects on GitHub.

Your final step is to copy the module’s zip and checksum files to the pull server:

PS> Get-ChildItem `

-Path "C:\scripts\ModuleZips\xSMBShare_$moduleversion.*" |

Copy-Item `

-Destination "C:\Program Files\WindowsPowerShell\DscService\Modules\" `

-ToSession $s -Force

The pull server has now been configured and has a configuration ready to be pulled. It’s now
time to configure the target machine to use the pull server, but before moving on to that, don’t
forget to remove any unwanted PowerShell remoting sessions you created in this section.

(740)

18.5. Configuring the Local Configuration Manager

The previous sections in this chapter have been concerned with supplying the configuration
you’ll apply to your target server, either through push or pull mode. In this section, we’ll
concentrate on the target machine and, more specifically, on the LCM.

Note

This section is specifically targeted at PowerShell v5. For LCM configuration in PowerShell v4,
see http://mng.bz/A84O.

Every target machine has an independent LCM. It is DSC’s local engine with responsibility for
applying the configurations received by the machine. It also controls the following:

Setting how the machine receives configurations—push or pull mode
Timing with which the machine pulls and applies configurations
Controlling pull servers used by the machine
Controlling reporting servers used by the machine
Managing partial configurations (see section 18.6)

We’ll look at the default LCM settings and see what can be changed and how those changes can
be applied. Then we’ll show you how to use DSC to configure the LCM to use a pull server.

18.5.1. LCM settings

All machines running Windows PowerShell v4 and above have a copy of the LCM running. It’s
part of the operating system—or it’s installed through the Windows Management Framework if
you’ve upgraded PowerShell on an older copy of Windows. We’ll show you the default LCM
settings in this section and then see how to change them.

Default LCM settings

The default LCM settings can be viewed on a newly created machine (or one you can guarantee
hasn’t been modified):

PS> $cs = New-CimSession -ComputerName W16TGT01

PS> Get-DscLocalConfigurationManager -CimSession $cs

ActionAfterReboot : ContinueConfiguration

AgentId : CBE8E714-C86B-11E6-841F-00155D36C90B

AllowModuleOverWrite : False

CertificateID :

ConfigurationDownloadManagers : {}

ConfigurationID :

ConfigurationMode : ApplyAndMonitor

ConfigurationModeFrequencyMins : 15

Credential :

DebugMode : {NONE}

DownloadManagerCustomData :

DownloadManagerName :

LCMCompatibleVersions : {1.0, 2.0}

(741)

http://mng.bz/A84O

LCMState : Idle

LCMStateDetail :

LCMVersion : 2.0

StatusRetentionTimeInDays : 10

SignatureValidationPolicy : NONE

SignatureValidations : {}

MaximumDownloadSizeMB : 500

PartialConfigurations :

RebootNodeIfNeeded : False

RefreshFrequencyMins : 30

RefreshMode : PUSH

ReportManagers : {}

ResourceModuleManagers : {}

PSComputerName : W16TGT01

PSComputerName : W16TGT01

You can also run Get-DscLocalConfigurationManager locally if required.

Note

You can use the machine name with the -CIMSession parameter if accessing the target machine
once. We’re using a CIM session here because we’ll be accessing the machine multiple times.

The most important point to note is the RefreshMode property. By default, it’s set to PUSH. This
makes it easy to push configurations to a machine, but it means you have to do some work to
convert to a pull environment.

Most of the properties are self-explanatory. Documentation for the LCM properties can be found
at http://mng.bz/e7n8. We need to call out a few of the properties.

ConfigurationModeFrequencyMins controls how often (in minutes) the current configuration is
checked and applied. It’s ignored if ConfigurationMode is set to ApplyOnly.

RefreshFrequencyMins controls how often (in minutes) the LCM checks a pull server to get
updated configurations. This is ignored if LCM isn’t configured to use a pull server.

Note

ConfigurationModeFrequencyMins must be a multiple of RefreshFrequency-Mins, or
RefreshFrequencyMins must be a multiple of Configuration-Mode-FrequencyMins.

ConfigurationMode has a number of possible settings:

ApplyOnly—DSC applies the configuration. No further action is taken until a new
configuration is available.
ApplyAndMonitor—Default value. In this mode, the LCM applies any new configurations,
and if the configuration of the machine drifts from the desires state (due to a manual
change possibly), the change is logged.
ApplyAndAutoCorrect—New configurations are applied. Any drift in configuration is logged,
and the current configuration is reapplied.

(742)

http://mng.bz/e7n8

RefreshMode—Can be PUSH (default) or PULL. If set to PULL, a pull server must be configured
through the ConfigurationRepositoryWeb property.
ConfigurationID—A GUID used to identify the machine to a pull server.

Now that you’ve been introduced to the LCM properties, let’s look at changing the LCM
settings.

Changing LCM settings

You use Get-DscLocalConfigurationManager to view the LCM settings, so it’s probably not a big
surprise that you use Set-DscLocalConfigurationManager to change the LCM settings. You can’t
use the cmdlet directly. You first need to provide a configuration.

Listing 18.9. Changing the LCM settings

[DSCLocalConfigurationManager()]

Configuration LCM {

 Param (

 [Parameter(Mandatory=$true)]

 [string[]]$ComputerName

)

 Node $Computername

 {

 Settings

 {

 ConfigurationMode = 'ApplyAndAutoCorrect'

 RebootNodeIfNeeded = $true

 }

 }

}

LCM -computername W16TGT01 -OutputPath .\MOF

The first thing to notice is the [DSCLocalConfigurationManager()] decorator. This is required if
you’re working with the LCM—otherwise, DSC will assume you’re using a normal resource. A
parameter block is used to supply the computer names to which the configuration will be applied.

The Settings resource is used to modify the basic LCM settings. You’ll see other options that can
be used for controlling pull servers in the next section. In this example, we’re changing the LCM
so that it automatically corrects configuration drift and allows the machine to reboot if needed
during the application of a configuration.

Running the configuration produces a MOF file, as expected:

PS> C:\Scripts\Listing18.9.ps1

 Directory: C:\scripts\MOF

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 13/02/2017 12:48 1166 W16TGT01.meta.mof

But notice the name of the MOF file: W16TGT01.meta.mof. The .meta.mof extension is used to
differentiate MOF files used to configure the LCM from standard configuration MOF files used
to configure the server.

Note

(743)

This file is commonly known as the metaconfiguration because it contains information that
configures the local configuration manager.

Set-DscLocalConfigurationManager applies the LCM configuration rather than Start-
DscConfiguration:

PS> Set-DscLocalConfigurationManager -CimSession $cs -Path .\MOF\ -Verbose

VERBOSE: Performing the operation "Start-DscConfiguration:

 SendMetaConfigurationApply" on target "MSFT_DSCLocalConfigurationManager".

VERBOSE: Perform operation 'Invoke CimMethod' with following parameters,

 ''methodName' = SendMetaConfigurationApply,

'className' = MSFT_DSCLocalConfigurationManager,

'namespaceName' = root/Microsoft/Windows/DesiredStateConfiguration'.

VERBOSE: An LCM method call arrived from computer W16TGT01 with user sid S-1-

 5-21-759617655-3516038109-1479587680-1104.

VERBOSE: [W16TGT01]: LCM: [Start Set]

VERBOSE: [W16TGT01]: LCM: [Start Resource] [MSFT_DSCMetaConfiguration]

VERBOSE: [W16TGT01]: LCM: [Start Set] [MSFT_DSCMetaConfiguration]

VERBOSE: [W16TGT01]: LCM: [End Set] [MSFT_DSCMetaConfiguration]

 in 0.0470 seconds.

VERBOSE: [W16TGT01]: LCM: [End Resource] [MSFT_DSCMetaConfiguration]

VERBOSE: [W16TGT01]: LCM: [End Set]

VERBOSE: [W16TGT01]: LCM: [End Set] in 0.7620 seconds.

VERBOSE: Operation 'Invoke CimMethod' complete.

VERBOSE: Set-DscLocalConfigurationManager finished in 1.105 seconds.

Let’s check our change:

PS> Get-DscLocalConfigurationManager -CimSession $cs |

select ConfigurationMode, RebootNodeIfNeeded

ConfigurationMode RebootNodeIfNeeded

----------------- ------------------

ApplyAndAutoCorrect True

and our target machine’s LCM shows the settings we desire.

Now that you know how to modify the LCM settings, it’s time to discover how to configure the
LCM to use a pull server.

18.5.2. Configuring LCM to use a pull server

Configuring a machine’s LCM to use a pull server involves modifying the LCM settings and
providing the data the LCM needs to find the pull server. An example configuration to enable the
use of the pull server we created earlier is shown in the following listing.

Listing 18.10. Configuring LCM to use the pull server

[DSCLocalConfigurationManager()]

Configuration LCMpull {

 param (

 [Parameter(Mandatory=$true)]

 [string[]]$ComputerName,

 [Parameter(Mandatory=$true)]

 [string]$guid,

 [Parameter(Mandatory=$true)]

 [string]$ThumbPrint

)

 Node $ComputerName {

(744)

 Settings { 1

 AllowModuleOverwrite = $True

 ConfigurationMode = 'ApplyAndAutoCorrect'

 RefreshMode = 'Pull'

 ConfigurationID = $guid

 }

 ConfigurationRepositoryWeb DSCHTTPS { 2

 ServerURL = 'https://W16DSC02:8080/PSDSCPullServer.svc'

 CertificateID = $thumbprint

 AllowUnsecureConnection = $false

 }

 ReportServerWeb RepSrv { 3

 ServerURL = 'http://W16DSC02:9080/PSDSCPullServer.svc'

 CertificateID = 'AllowUnencryptedTraffic'

 AllowUnsecureConnection = $true

 }

 }

}

#$guid = New-Guid | select -ExpandProperty Guid 4

$guid = '5827c542-20bb-487c-89cb-484cbe5f0b1f'

$thumbprint=Invoke-Command -Computername W16DSC02 { 5

Get-Childitem Cert:\LocalMachine\My |

where Subject -Like 'CN=W16DSC02*' |

Select-Object -ExpandProperty ThumbPrint}

LCMpull -computername W16TGT01 -Guid $guid ` 6

-Thumbprint $thumbprint -OutputPath .\MOF

1 LCM settings
2 Pull server settings
3 Report server settings
4 Setting GUID
5 Certificate thumbprint
6 Create MOF

The configuration starts with the [DSCLocalConfigurationManager()] decorator to ensure it targets
the LCM. The important changes to the LCM settings 1 are to change the RefreshMode to PULL and
to supply the GUID that’ll be used for the ConfigurationId.

The pull server configuration 2 includes the URL of the server and its certificate thumbprint. The
reporting server 3 is configured to use unencrypted traffic (HTTP instead of HTTPS). In a
production environment, you’ll want to encrypt all traffic.

In this case, the GUID 4 for the ConfigurationId is supplied. The alternate option is to generate a
new GUID.

Note

Configuring the target node or creating the first configuration to be pulled is a chicken-and-egg
scenario: which is first? The correct answer is whichever works for the problem you’re trying to
solve.

The pull server’s certificate thumbprint 5 can be retrieved directly from the pull server. Running
the configuration 6 produces a .meta.mof file.

(745)

The LCM modifications are applied:

PS> Set-DscLocalConfigurationManager -ComputerName W16TGT01`

 -Path .\MOF\ -Verbose

Testing the LCM has to be done over a CIM session:

PS> Get-DscLocalConfigurationManager -CimSession $cs

ActionAfterReboot : ContinueConfiguration

AgentId : CBE8E714-C86B-11E6-841F-00155D36C90B

AllowModuleOverWrite : True

CertificateID :

ConfigurationDownloadManagers : {[ConfigurationRepositoryWeb]DSCHTTPS}

ConfigurationID : 5827c542-20bb-487c-89cb-484cbe5f0b1f

ConfigurationMode : ApplyAndAutoCorrect

ConfigurationModeFrequencyMins : 15

Credential :

DebugMode : {NONE}

DownloadManagerCustomData :

DownloadManagerName :

LCMCompatibleVersions : {1.0, 2.0}

LCMState : Idle

LCMStateDetail :

LCMVersion : 2.0

StatusRetentionTimeInDays : 10

SignatureValidationPolicy : NONE

SignatureValidations : {}

MaximumDownloadSizeMB : 500

PartialConfigurations :

RebootNodeIfNeeded : False

RefreshFrequencyMins : 30

RefreshMode : Pull

ReportManagers : {[ReportServerWeb]RepSrv}

ResourceModuleManagers : {}

PSComputerName : W16TGT01

PSComputerName : W16TGT01

The machine is now configured to use the pull server.

You can either wait for the DSC refresh cycle to pull the configuration, or if you’re impatient,
you can force a refresh:

PS> Update-DscConfiguration -CimSession $cs -Verbose -Wait

As always you should test the configuration:

PS> Test-DscConfiguration -CimSession $cs

True

You can also test that the share exists:

PS> Get-SmbShare -CimSession $cs

Name ScopeName Path Description PSComputerName

---- --------- ---- ----------- --------------

ADMIN$ * C:\Windows Remote Admin W16TGT01

C$ * C:\ Default share W16TGT01

IPC$ * Remote IPC W16TGT01

Standard * C:\TestFolder This is a test SMB Share W16TGT01

And that the file can be accessed:

PS> Get-Content -Path "\\W16TGT01\Standard\TestFile1.txt"

My first Configuration

So far, you’ve created configurations as a complete unit. In some circumstances, you may need

(746)

to adopt a more granular approach—which leads us to the use of partial configurations.

(747)

18.6. Partial configurations

Partial configurations were introduced in PowerShell v5. They allow you to deliver fragments of
the configuration to your target rather than a complete configuration. The LCM on the target
machine will combine the fragments before applying as a single configuration. In this section,
we’ll examine your options for using partial configurations, when you should use them, and,
possibly more importantly, when you shouldn’t. We’ll close with an example.

18.6.1. Partial configurations: yes or no

In this section, we’ll examine the reasons why you might want to use partial configurations and
issues you may encounter when using partial configurations.

Partial configuration use case

Why would you want to use partial configurations? Isn’t life complicated enough without
splitting your configurations into a number of pieces?

The assumption behind partial configurations is that your environment isn’t managed by a single
team (or single person, in smaller environments). You might have a team that manages the
operating system on your servers, but other teams manage the applications, such as SQL Server,
Exchange, or SharePoint. Alternatively, developers creating a new application may split the
management of the configuration. In either case, a single configuration can’t be created to
manage the target server due to permissions, skillset, or even office politics!

Partial configurations enable each team to create the configuration to manage their part of the
environment. The server team creates a configuration to manage the operating system, and then
other teams create configurations to manage the applications such as SQL Server, Exchange or
your inhouse developed application. This also has the advantage of reducing the size of the
individual configuration scripts.

The partial configurations can be pushed to the target machine, or the target can obtain the partial
configurations from a pull server. If required, you can even use a mixture of push and pull modes
to deliver the partial configurations.

Partial configurations could also be useful even if you have a team responsible for configuration
work. You could use them to split up a large configuration and make it more manageable.

Issues with partial configurations

On the surface, partial configurations seem like an ideal solution to managing an environment
with diverse responsibilities. But a number of potential pitfalls lie in wait. For example, does the
server team’s standard settings for the server match the requirements of the application that’ll run
on the server? You may find that both teams try to configure the same things in different ways
and end up with errors.

There is a way to overcome these issues—it’s called communication. If you’re going to use
partial configurations, you’re going to have to get the various people involved talking to each
other. And you need someone with overall ownership of the whole configuration who can define

(748)

the allowed configuration fragments.

Let’s see how partial configurations work, starting with push mode.

18.6.2. Pushing partial configurations

Using partial configurations in push mode is broadly similar to using standard configurations in
push mode: you create the configurations and push them to the target. There are a few
differences:

You need to configure the LCM to accept the partial configurations.
The partial configurations are pushed to the target using Publish-DSCConfiguration.
The configuration is run using Start-DSCConfiguration.

This will be easier with an example. To keep it simple, we’ll only use built-in resources. Let’s
use a configuration that has two tasks:

Create an environmental variable and set its value
Create a registry key

Here’s the configuration for creating an environmental variable.

Listing 18.11. Configuration to create environmental variable

Configuration EnvVarConfig {

 param (

 [string]$ComputerName

)

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 Node $ComputerName {

 Environment EnvironmentPC {

 Ensure = 'Present'

 Name = 'PCtestvar'

 Value = 'PIA 3e'

 }

 }

}

EnvVarConfig -ComputerName W16CN01 -OutputPath .\MOF\Env\

The Environment resource is used to create an environmental variable called PCtestvar, which is
given a value of 'PIA 3e'.

The important point is the output path that’s used when the configuration is run. You need to
separate the MOFs for the partial configurations—otherwise they’ll overwrite each other because
they have the same name. In practice, because the fragments are being created by different
owners there will be no overlap if they’re created on different machines. This is only a problem
when doing an example like this.

Note

If you ever find that one owner is authoring two fragments in production, you shouldn’t be using
partial configurations.

(749)

In this case, we’ll create a subfolder in the MOF folder for the environmental variable
configuration.

The next job is to generate the configuration that’ll create the registry key, as shown in the
following listing.

Listing 18.12. Configuration to create the registry key

Configuration RegConfig {

 param (

 [string]$ComputerName

)

 Import-DscResource -ModuleName PSDesiredStateConfiguration

 Node $ComputerName {

 Registry RegistryPC {

 Ensure = 'Present'

 Key = 'HKEY_LOCAL_MACHINE\SOFTWARE\RegTestKey'

 Valuename = 'PCTestVar'

 ValueData = 'PIA 3e'

 ValueType = 'String'

 }

 }

}

RegConfig -ComputerName W16CN01 -OutputPath .\MOF\Reg\

String is the default registry type, but you should specify the data type for completeness and for
debug purposes—and so that you’ll understand what you were trying to achieve when you look
at the configuration in the future. A subfolder called Reg is used for the MOF file to ensure we
don’t accidentally overwrite a partial configuration.

The last piece of the configuration is the control portion that defines the allowed partial
configurations listing.

Listing 18.13. Control configuration

[DSCLocalConfigurationmanager()]

Configuration PCTest1 {

 param (

 [string]$ComputerName

)

 Node $ComputerName {

 PartialConfiguration EnvVarConfig {

 Description = 'Sets the environmental variable'

 RefreshMode = 'Push'

 }

 PartialConfiguration RegConfig {

 Description = 'Sets the registry key'

 RefreshMode = 'Push'

 }

 }

}

PCTest1 -ComputerName W16CN01 -OutputPath .\MOF

This will configure the LCM on the target machine, so it needs the
[DSCLocalConfigurationmanager()] decorator. Each partial configuration needs to be listed in the
control configuration using a block like this:

(750)

 PartialConfiguration EnvVarConfig {

 Description = 'Sets the environmental variable'

 RefreshMode = 'Push'

 }

The PartialConfiguration resource is used. The name that’s applied must match the configuration
names used in the partial configuration scripts. A description helps explain what is happening.

You can apply the control configuration:

PS> Set-DscLocalConfigurationManager -Path .\MOF\ -ComputerName W16CN01

If you examine the LCM settings on the target machine

PS> $cs = New-CimSession -ComputerName W16CN01

PS> Get-DscLocalConfigurationManager -CimSession $cs

this line is of interest:

PartialConfigurations : {[PartialConfiguration]EnvVarConfig,

[PartialConfiguration]RegConfig}

It shows the two partial configurations we want to apply. Let’s look at the PartialConfigurations
setting in more detail:

PS> Get-DscLocalConfigurationManager -CimSession $cs |

select -ExpandProperty PartialConfigurations

ResourceId : [PartialConfiguration]EnvVarConfig

SourceInfo : C:\Scripts\Listing18.13.ps1::8::6::PartialConfiguration

ConfigurationSource :

DependsOn :

Description : Sets the environmental variable

ExclusiveResources :

RefreshMode : Push

ResourceModuleSource :

PSComputerName : W16CN01

ResourceId : [PartialConfiguration]RegConfig

SourceInfo : C:\Scripts\Listing18.13.ps1::13::6::PartialConfiguration

ConfigurationSource :

DependsOn :

Description : Sets the registry key

ExclusiveResources :

RefreshMode : Push

ResourceModuleSource :

PSComputerName : W16CN01

You can see the SourceInfo is set to the script containing the control configuration. The
description and name of each partial configuration are also stored.

The next step is to publish the MOF files to the target machine:

PS> Publish-DscConfiguration -Path .\MOF\Env\ `

-ComputerName W16CN01 -Verbose

VERBOSE: Perform operation 'Invoke CimMethod' with following parameters,

 ''methodName' = SendConfiguration,'className' =

MSFT_DSCLocalConfigurationManager,'namespaceName' = root/Microsoft/Windows/

 DesiredStateConfiguration'.

VERBOSE: An LCM method call arrived from computer W16DSC01 with user sid S-1-

 5-21-759617655-3516038109-1479587680-1104.

VERBOSE: [W16CN01]: LCM: [Start Set]

VERBOSE: [W16CN01]: LCM: [End Set] Saved configuration

 document into the partial configuration store.

VERBOSE: [W16CN01]: LCM: [End Set]

VERBOSE: Operation 'Invoke CimMethod' complete.

VERBOSE: Publish-DscConfiguration finished in 0.213 seconds.

(751)

PS> Publish-DscConfiguration -Path .\MOF\Reg\ -ComputerName W16CN01 -Verbose

VERBOSE: Perform operation 'Invoke CimMethod' with following parameters,

 ''methodName' = SendConfiguration,'className' =

MSFT_DSCLocalConfigurationManager,'namespaceName' = root/Microsoft/Windows/

 DesiredStateConfiguration'.

VERBOSE: An LCM method call arrived from computer W16DSC01 with user

sid S-1-5-21-759617655-3516038109-1479587680-1104.

VERBOSE: [W16CN01]: LCM: [Start Set]

VERBOSE: [W16CN01]: LCM: [End Set] Saved configuration

 document into the partial configuration store.

VERBOSE: [W16CN01]: LCM: [End Set]

VERBOSE: Operation 'Invoke CimMethod' complete.

VERBOSE: Publish-DscConfiguration finished in 0.11 seconds.

Because the LCM on the target machine is expecting the partial configurations, they don’t
overwrite, as would normally happen if you sent multiple MOF files with the same name to the
target.

Now it’s time to apply the configuration. The -UseExisting parameter on Start-DSCConfiguration
tells the LCM to use the configurations it already has rather than push a new configuration to the
target machine:

PS> Start-DscConfiguration -ComputerName W16CN01 `

-UseExisting -Wait -Verbose

VERBOSE: Perform operation 'Invoke CimMethod' with following parameters,

 ''methodName' = ApplyConfiguration,'className' =

MSFT_DSCLocalConfigurationManager,'namespaceName' = root/Microsoft/Windows/

 DesiredStateConfiguration'.

VERBOSE: An LCM method call arrived from computer W16DSC01 with

user sid S-1-5-21-759617655-3516038109-1479587680-1104.

VERBOSE: [W16CN01]: [] Starting consistency engine.

VERBOSE: [W16CN01]: LCM: [Start Resource] [[Environment]EnvironmentPC]

VERBOSE: [W16CN01]: LCM: [Start Test] [[Environment]EnvironmentPC]

VERBOSE: [W16CN01]: [[Environment]EnvironmentPC]

 (NOT FOUND) Environment variable 'PCtestvar'

VERBOSE: [W16CN01]: LCM: [End Test] [[Environment]EnvironmentPC]

 in 0.3120 seconds.

VERBOSE: [W16CN01]: LCM: [Start Set] [[Environment]EnvironmentPC]

VERBOSE: [W16CN01]: [[Environment]EnvironmentPC]

 (CREATE) Environment variable 'PCtestvar' with value 'PIA 3e

VERBOSE: [W16CN01]: LCM: [End Set] [[Environment]EnvironmentPC]

 in 0.2030 seconds.

VERBOSE: [W16CN01]: LCM: [End Resource] [[Environment]EnvironmentPC]

VERBOSE: [W16CN01]: LCM: [Start Resource] [[Registry]RegistryPC]

VERBOSE: [W16CN01]: LCM: [Start Test] [[Registry]RegistryPC]

VERBOSE: [W16CN01]: [[Registry]RegistryPC] Registry

 key 'HKLM:\SOFTWARE\RegTestKey' does not exist

VERBOSE: [W16CN01]: LCM: [End Test] [[Registry]RegistryPC] in

 0.3750 seconds.

VERBOSE: [W16CN01]: LCM: [Start Set] [[Registry]RegistryPC]

VERBOSE: [W16CN01]: [[Registry]RegistryPC] (SET)

 Create registry key 'HKLM:\SOFTWARE\RegTestKey'

VERBOSE: [W16CN01]: [[Registry]RegistryPC] (SET)

 Set registry key value 'HKLM:\SOFTWARE\RegTestKey\PCTestVar'

 'PIA 3e' of type 'String'

VERBOSE: [W16CN01]: LCM: [End Set] [[Registry]RegistryPC] in

 0.3440 seconds.

VERBOSE: [W16CN01]: LCM: [End Resource] [[Registry]RegistryPC]

VERBOSE: [W16CN01]: [] Consistency check completed.

VERBOSE: Operation 'Invoke CimMethod' complete.

VERBOSE: Time taken for configuration job to complete is 2.841 seconds

Finally, test that the configuration worked:

PS> Test-DscConfiguration -ComputerName W16CN01

True

(752)

Partial configurations in push mode are more complicated than pushing a single, large
configuration, but may be useful if you need to split your configurations to control their size.
Production environments are more likely to be using a pull server, so we’ll see how partial
configurations work with a pull server next.

18.6.3. Pulling partial configurations

A pull server offers scalability for a production environment compared to using push mode, but
partial configurations bring additional complexity.

To configure a target machine using partial configurations in pull mode you need to

Modify the LCM of the target machine to use pull mode and tell it which partial
configurations to use
Create the configurations, rename them, and copy to the pull server
Wait for the target machine refresh cycle to apply the configurations or force an immediate
refresh cycle

The first job is to modify the LCM. Use listing 18.10 to originally configure the target machine
to use a pull server. That listing can be modified, as shown in the following listing, to also
include the definition of the partial configurations to use.

Listing 18.14. Modifying the LCM to use partial configurations in pull mode

[DSCLocalConfigurationManager()]

Configuration LCMpull {

 param (

 [Parameter(Mandatory=$true)]

 [string[]]$ComputerName,

 [Parameter(Mandatory=$true)]

 [string]$guid,

 [Parameter(Mandatory=$true)]

 [string]$ThumbPrint

)

 Node $ComputerName {

 Settings {

 AllowModuleOverwrite = $True

 ConfigurationMode = 'ApplyAndAutoCorrect'

 RefreshMode = 'Pull'

 ConfigurationID = $guid

 }

 ConfigurationRepositoryWeb DSCHTTPS {

 ServerURL = 'https://W16DSC02:8080/PSDSCPullServer.svc'

 CertificateID = $thumbprint

 AllowUnsecureConnection = $false

 }

 ReportServerWeb RepSrv {

 ServerURL = 'http://W16DSC02:9080/PSDSCPullServer.svc'

 CertificateID = 'AllowUnencryptedTraffic'

 AllowUnsecureConnection = $true

 }

 PartialConfiguration EnvVarConfig { 1

 Description = 'Sets the environmental variable'

 ConfigurationSource = '[ConfigurationRepositoryWeb]DSCHTTPS'

 RefreshMode = 'Pull'

 }

 PartialConfiguration RegConfig { 2

(753)

 Description = 'Sets the registry key'

 ConfigurationSource = '[ConfigurationRepositoryWeb]DSCHTTPS'

 RefreshMode = 'Pull'

 }

 }

}

#$guid = New-Guid | select -ExpandProperty Guid

$guid = '5827c542-20bb-487c-89cb-484cbe5f0b1f'

$thumbprint=Invoke-Command -Computername W16DSC02 {

Get-Childitem Cert:\LocalMachine\My |

where Subject -Like 'CN=W16DSC02*' |

Select-Object -ExpandProperty ThumbPrint}

LCMpull -computername W16TGT01 -Guid $guid `

-Thumbprint $thumbprint -OutputPath .\MOF

1 Environmental variable partial configuration
2 Registry key partial configuration

The changes involve adding the partial configuration definitions. The environmental variable
configuration 1 uses the name of the configuration (exactly as we did for partial configurations in
push mode). The configuration information includes a description, a reference to the pull server
to be used, and the refresh mode—in this case, push.

A similar partial configuration definition is used for the registry key 2. Both partial configuration
definitions are based on the name of the configuration. You’ll need those names in a moment.

You need to push the LCM configuration to the target machine:

PS> Set-DscLocalConfigurationManager -Path .\MOF\ `

-ComputerName W16TGT01 -Force

You can view the configuration over the same CIM session:

PS> Get-DscLocalConfigurationManager -CimSession W16TGT01 |

Format-List ConfigurationDownloadManagers, ConfigurationID, ConfigurationMode,

PartialConfigurations, RefreshMode

ConfigurationDownloadManagers : {[ConfigurationRepositoryWeb]DSCHTTPS}

ConfigurationID : 5827c542-20bb-487c-89cb-484cbe5f0b1f

ConfigurationMode : ApplyAndAutoCorrect

PartialConfigurations : {[PartialConfiguration]EnvVarConfig,

 [PartialConfiguration]RegConfig}

RefreshMode : Pull

Notice that the partial configurations are registered, and the refresh mode is set to pull.

Now create the partial configurations. You can use the code from listings 18.11 and 18.12.
You’ll need to change the computer name when creating the MOF files:

PS> EnvVarConfig -ComputerName W16TGT01 -OutputPath .\MOF\Env\

PS> RegConfig -ComputerName W16TGT01 -OutputPath .\MOF\Reg\

If you remember, when we created a pull configuration we needed to rename the MOF file using
the configuration ID of the target server.

Note

(754)

In PowerShell v5, the requirements for configuration ID were relaxed. It can now be any string.
It doesn’t have to be a GUID. Semantically, it’s equivalent to a Role ID now. Originally it was
supposed to be a NodeID, but people kept using it for roles, so the PowerShell team repurposed it
and added a separate property to identify the node.

When you use partial configurations in pull mode, the naming convention is

<configuration name>.<configuration id>.mof

Let’s quickly work through the steps to get your partial configurations to the pull server. First,
you need to get the configuration ID of the target server:

PS> $cid = Get-DscLocalConfigurationManager -CimSession $cs |

select -ExpandProperty ConfigurationID

then use the GUID to rename the MOF files:

PS> Rename-Item -Path C:\Scripts\MOF\Env\W16TGT01.mof `

-NewName "EnvVarConfig.$cid.mof"

PS> Rename-Item -Path C:\Scripts\MOF\Reg\W16TGT01.mof `

-NewName "RegConfig.$cid.mof"

Each MOF file needs to have a checksum file generated:

PS> New-DscChecksum -Path .\MOF\Env\EnvVarConfig.5827c542-20bb-487c-89cb-

 484cbe5f0b1f.mof -Force

PS> New-DscChecksum -Path .\MOF\Reg\RegConfig.5827c542-20bb-487c-89cb-

 484cbe5f0b1f.mof -Force

Then you can copy the MOF files and the checksum files to the pull server:

PS> Get-ChildItem -Path .\MOF\Env -Filter "*$cid*" | Copy-Item -Destination

 'C:\Program Files\WindowsPowerShell\DscService\Configuration\'

-ToSession $s -Force

PS> Get-ChildItem -Path .\MOF\Reg -Filter "*$cid*" | Copy-Item -Destination

 'C:\Program Files\WindowsPowerShell\DscService\Configuration\'

-ToSession $s -Force

The new configurations will be applied at the next refresh—or if you’re impatient (or in testing
mode), you can force a refresh of the configuration:

PS> Update-DscConfiguration -ComputerName W16TGT01 -Wait -Verbose

Partial configurations introduce a level of complexity and extra management that you may not
need. The only valid scenario for partial configurations is when the fragments of configuration
are being supplied by separate area owners. If you have complex configurations, you could break
them down into a set of composite resources and use a master configuration that references the
composite resources rather than trying to use partial configuration. We recommend that you only
use partial configurations if you have to.

(755)

18.7. Summary

You can use DSC to manage the configuration of your server estate.
DSC is declarative and idempotent.
DSC is standards-based.
A DSC configuration uses DSC resources to define the configuration parameters.
DSC can work in push and pull modes.
A DSC configuration can be parameterized to manage one machine or many machines.
Configuration data can be separated from the topology of the environment.
When using pull mode, the MOF file generated by the configuration must be renamed
using the target machine’s configuration ID.
You must also generate a checksum of the MOF file, for a configuration to be used in pull
mode, and copy both files to the pull server.
Partial configurations enable you to split your configuration, and they can be created by
different teams.

The one part of DSC we haven’t shown you yet is how to create your own DSC resources. We’ll
cover that in chapter 19, where we discuss another new feature in PowerShell v5: PowerShell
classes.

(756)

Chapter 19. Classes in PowerShell
This chapter covers

The basic ideas underlying classes in PowerShell
PowerShell class and enumeration creation
Detailed discussion of properties and methods in PowerShell classes
Method overloading and inheritance
Class initialization and construction
DSC resources based on PowerShell classes

Oh brave new world that has such people in it!

Miranda in William Shakespeare’s The Tempest

PowerShell has always been a .NET language in that it worked with and consumed the types in
the .NET framework, but it was always a kind of second-class citizen compared to other .NET
languages because you couldn’t create new types directly in PowerShell. This has been fixed in
PowerShell v5, which now supports the ability to define new classes as well as extend existing
.NET classes.

Note

The class keyword was reserved in the earliest versions of PowerShell with the intent that the
team would eventually add this capability to PowerShell. It only took a little under 10 years to do
it because the PowerShell team didn’t want to rush into something as important as this.

In this chapter, we’re going to look at what defining classes allows you to do as a PowerShell
scripter/programmer. Also, one of the primary drivers for introducing classes in v5 was to make
it easier to define DSC management resources. In the latter part of the chapter, we’ll look at how
this is done.

(757)

19.1. Writing classes in PowerShell

The ability to write classes in PowerShell was introduced in PowerShell v5. In this section, we’ll
show you how to create and use methods and properties in PowerShell classes.

Note

If you’ve done any programming in C#, while reading this chapter you should notice that
PowerShell class syntax is a close subset of the C# syntax. The things that are missing from the
subset include interface definition, property getters/setters, and the const, private, protected, and
internal member attributes. Also, the new and overload attributes are not supported because all
class members in PowerShell are virtual. This subset was specifically chosen to balance language
complexity against expressive power, aligning PowerShell to the feature set available in other
popular dynamic languages such as Python and Ruby. On the flip side, if you don’t program in
C#, then learning PowerShell classes will also help you to learn C#.

The addition of classes to PowerShell is something of a game changer; it means that you can now
program in PowerShell with all the capabilities present in mainstream dynamic programming
languages. Classes also add a new level of reliability to programming in PowerShell. Many of
the new features allow PowerShell to check your code for errors statically—while you’re writing
the code instead of waiting until runtime. To maximize your experience using classes in
PowerShell, it’s recommended that you use a PowerShell-aware editor like the PowerShell
Integrated Scripting Environment (PowerShell ISE) or Microsoft Visual Studio Code (a free
open source editor from Microsoft.) These tools can show you code errors while you’re editing
your programs.

Now let’s dive in and see what PowerShell classes have to offer. We’ll start our exploration by
looking at simple classes that contain only data members—properties.

19.1.1. Using properties in a PowerShell class

All the way through this book you’ve been using properties on objects. Properties are data
members on objects and are fundamental to how PowerShell performs selecting, sorting, and
formatting work. In this section, you’ll see how to define properties in your own classes in
PowerShell. Let’s start with the simplest possible example:

PS> class Point

{

 $x

 $y

}

In this example, you use the class keyword, followed by the name of the class and a list of
variable names that are to be the properties of the class. You could also write it this way on a
single line:

PS> class Point { $x; $y }

(758)

This example shows how, with a small amount of text, you can define your first class. This is
about as simple as it can get. To create an instance of this class, use either New -Object (a
mechanism introduced way back in v1)

PS> New-Object Point

x y

- -

or, preferably, the new() method introduced in v5:

PS> [Point]::new()

x y

- -

Note

For code written for version 5 or above, when explicitly creating an object instance, you’re much
better off using the PowerShell v5 [type]::new() method. It’s significantly faster than using New-
Object and it’s easier to get array arguments correct. (Try passing a single argument that’s an
array to New -Object, and you’ll quickly figure out how hard that is to do.)

Now use Get-Member on the instance of the Point class to make sure everything is as expected:

PS> $p = [Point]::new()

PS> $p | Get-Member

 TypeName: Point

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string ToString()

x Property System.Object x {get;set;}

y Property System.Object y {get;set;}

You’ll see all the characteristics you’d expect from a regular .NET type. Along with the
members you defined (x and y), you also see the default .NET members GetType(), ToString(),
and so on. This happens because Point is a regular .NET type. PowerShell classes are full .NET
classes, which allows them to participate fully in the .NET ecosystem.

Note

For C# users, even though PowerShell 5+ doesn’t support the getter/setter syntax from C#, data
members in PowerShell classes are properties, not fields. At some point in the future, the
getter/setter syntax will likely be added.

Okay, let’s move along and see what else you can do with class properties. In the output from the
previous examples, the values of the x and y members were empty (null). That’s because they’re
untyped members. Let’s update the class to add type constraints to the members. It doesn’t take a

(759)

lot more work to do this:

PS> class Point

 {

 [int] $x

 [int] $y

 }

PS> [Point]::New()

x y

- -

0 0

Now that you’ve added a type constraint [int] to each of the members, when you print out the
instance, the values are 0 (the default value for integers) rather than null as they were in the
earlier example.

But what if you want to have a specific initial value? The following example shows how to do
this:

PS> class Point {

 [int] $x = 1

 [int] $y = 2

}

It’s as simple as assigning an initial value to the member. (At this point, this may seem familiar
—it’s the same syntax used to initialize function parameters.)

Now let’s look at a way to create and initialize an instance all in one step by using cast
initialization. To do this, you take a hashtable and cast it into the desired type:

PS> $p = [Point] @{ x=1; y=2 }

PS> $p

x y

- -

1 2

When you print out the value of $p, you can see that 1 has been assigned to x and 2 has been
assigned to y. This is a powerful technique because you can take unschematized data in the form
of hashtables or PSObjects and convert it into strongly typed objects. Let’s create a second class,
Square, to see how this works. The Square class looks like this:

PS> class Square {

 [Point] $c1

 [Point] $c2

}

It’s another simple class, but this time the members are typed as being of the Point class you
defined earlier. Let’s use the cast constructor to create an instance of this out of nested
hashtables:

PS> $sq = [square] @{c1 = @{x=1; y=2}; c2 = @{x=3; y="4"}}

PS> $sq.c1.x

1

PS> $sq.c2.y

4

In this example, the top-level hashtable had two members, c1 and c2, each of which was defined
in terms of x and y. In the cast construction, the constructor walked through the nested hashtable
converting each element to the desired type, including converting the string “4” to the number 4.
The same thing can be done with, for example, JSON documents. The following string is

(760)

equivalent to the hashtable from the previous example:

PS> $jstr = '{"c1": {"x": 1, "y": 2}, "c2": { "x": 3, "y": "4"}}'

Now let’s convert it first into PSObjects using ConvertFrom-JSON and then cast the result into a
[Square]:

PS> $sq = [square] ($jstr | ConvertFrom-Json)

PS> $sq.c1.x

1

PS> $sq.c2.y

4

And again, the cast initialization works all the way down, converting each piece to the required
type. What happens if something is wrong in one of the source elements? Let’s find out. You’ll
change the c2 element in the data to have x and z instead of x and y. Here’s what happens:

PS> $jstr = '{"c1": {"x": 1, "y": 2}, "c2": { "x": 3, "z": "4"}}'

PS> [square] ($jstr | ConvertFrom-Json)

Cannot convert value "@{c1=; c2=}" to type "Square".

Error: "Cannot convert value "@{x=3; z=4}" to type "Point".

Error: "Cannot convert the "@{x=3; z=4}" value of type "System.Management.Automation.

 PSCustomObject" to type "Point".""

At line:1 char:1

+ [square] ($jstr | ConvertFrom-Json)

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : InvalidArgument: (:) [], RuntimeException

 + FullyQualifiedErrorId : InvalidCastConstructorException

The cast fails, and you get a somewhat informative message indicating what went wrong in the
conversion process. With PowerShell v5, if you need to validate a JSON document, you have to
create a set of classes that represents the schema of the JSON document.

19.1.2. Class member attributes

Members in PowerShell classes can optionally have the keyword attributes: hidden and static.
Let’s learn a bit about them.

The hidden attribute

The hidden attribute makes a member, well, hidden. This means you won’t ever see the member
by default; Get-Member won’t show it. You can force it to be shown by using -Force. Why would
you want to hide a member? Hidden is intended to be used on class members that are used
internally by the class but aren’t part of the end-user (public) signature of the class. In essence,
these members are private to the class.

Note

Why not make them private like they are in C#? Because in the compiled language world, the
debugger is a separate program from the compiler that has special access to everything. In
contrast, the debugger in PowerShell is PowerShell—a reentrant session of the interpreter that
lets you inspect the system. Because it’s only PowerShell, anything that makes members
inaccessible to PowerShell makes them inaccessible to the debugger (because it’s PowerShell).
In effect, the hidden attribute is a compromise between completely public members and private
members. You don’t see them unless you explicitly ask for them.

(761)

The static attribute

The static attribute allows you to define static members in a PowerShell class. You saw static
members previously when we discussed method invocation. Now you’ll see how to create these
members. Here’s an example showing a class with a static member:

PS> class myclass {

 static $foo = 123

}

In this example, you can see that all you need to do to create a static member is to prefix the
member with the keyword static. Now you can access this member as follows:

PS> [myclass]::foo

123

Because the property is static, there’s no need to create an instance of the object in order to
access the member. You can have hidden static members too. That looks like the following:

PS> class myclass2 {

 static $foo = 123

 hidden static $bar = 3.14

}

As mentioned in the previous section, you can still access the member

PS> [myclass2]::bar

3.14

but when you use Get-Member to look at the static members on the class

PS> [myclass2] | Get-Member -Static -Type Properties

 TypeName: myclass2

Name MemberType Definition

---- ---------- ----------

foo Property static System.Object foo {get;set;}

you don’t see the bar property. If you want to see it, you use the -Force parameter on Get-Member,
which looks like this:

PS> [myclass2] | Get-Member -Static -Type Properties -Force

 TypeName: myclass2

Name MemberType Definition

---- ---------- ----------

bar Property static System.Object bar {get;set;}

foo Property static System.Object foo {get;set;}

Member validation attributes

Along with the keyword attributes (hidden and static), you can use the data transformation and
data translation attributes you’re familiar with from advanced function parameters (see section
7.2.6) on class members. Let’s see an example of a class using these attributes. The following
example uses the [ValidateRange()] and [ValidateSet()] attributes to constrain the allowed values
on the class members:

(762)

PS> class ApartmentPets

{

 [int]

 [ValidateRange(1,88)]

 $UnitNumber

 [string]

 [ValidateSet("cat", "dog", "bird")]

 $Type

 [int]

 [ValidateRange(0,3)]

 $Count

}

This class could be used to keep track of the type and number of pets in each apartment of a
building. But this goes beyond merely keeping track; the attributes on the class members prevent
an entry from containing more than three (or fewer than zero) pets as well as restricting the type
of pet and ensuring that the apartment number is valid. You can create a valid instance of this
class by casting a hashtable into an instance of [ApartmentPets]:

PS> [ApartmentPets] @{ UnitNumber = 22; Type = "cat"; Count = 2 }

UnitNumber Type Count

---------- ---- -----

 22 cat 2

Running this code creates an instance for apartment unit 22, which has two cats. But let’s try
increasing the count a bit:

PS> [ApartmentPets] @{ UnitNumber = 22; Type = "cat"; Count = 10 }

Cannot create object of type "ApartmentPets". The 10 argument is greater than

 the maximum allowed range of 3. Supply an argument that is less than or

 equal to 3 and then try the command again.

At line:1 char:1

+ [ApartmentPets] @{ UnitNumber = 22; Type = "cat"; Count = 10 }

+ ~~

 + CategoryInfo : InvalidArgument: (:) [], RuntimeException

 + FullyQualifiedErrorId : ObjectCreationError

Trying to create an entry with 10 cats, results in an exception being thrown instead of creating an
invalid instance. This ability to constrain the allowed values for members in a class provides a
powerful way to ensure that all the objects you’re dealing with have valid data.

That’s enough about data members for now. Let’s take a short detour to look at how enumeration
types are defined in PowerShell.

19.1.3. PowerShell enumerations

The .NET framework provides a user-definable data type related to classes called an
enumeration (usually shortened to enum) that defines a closed set of named constant values. For
example, there’s a predefined enum type in the .NET framework for the days of the week, which
you can access using a number or a name:

PS> [System.DayOfWeek]0

Sunday

PS> [System.DayOfWeek] "Saturday"

Saturday

In either case, the string containing the name of the day of the week is returned. In practice, the
underlying type for enums is Int32, allowing them to be cast to integers:

(763)

PS> [int] [System.DayOfWeek] "Saturday"

6

Note

C# supports both long and int for the underlying type for enums. PowerShell currently supports
only int.

Finally, you can view the list of values in an enumeration:

PS> [enum]::GetNames([System.DayOfWeek]) -join ', '

Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday

Let’s look at how you can create your own enums in PowerShell. Use the enum keyword to define
the start of the enum. Supply a name and the list of values, and it’s done:

PS> enum foo { one; two; three }

As before, you can access the enum using numerical values, a static member reference, or a cast:

PS> [foo] 0

one

PS> [foo] "one"

one

PS> [foo]::one

one

Note that we didn’t specify any values when we defined the enum. If no explicit values are
provided, the compiler assigns integer values in order, starting at 0. Specifying explicit values
looks like this:

PS> enum foo { one = 1; two = 2; three = 3 }

Note that the values must be constant, which means you can’t, for example, use variables as the
value for an enum member. The constant values, however, can be in any order, don’t need to be
consecutive, and don’t even need to be unique:

PS> enum foo { one = 3; two = 20; three = 3 }

If you try to use a value that isn’t part of the enum, you’ll get an error:

PS> [foo]5

Cannot convert value "5" to type "foo" due to enumeration values that are not

 valid. Specify one of the following enumeration values and try again. The

 possible enumeration values are "three,one,two".

At line:1 char:1

+ [foo]5

+ ~~~~~~

 + CategoryInfo : InvalidArgument: (:) [], RuntimeException

 + FullyQualifiedErrorId : UndefinedIntegerToEnum

Notice that you helpfully get a list of legal values. If you use a name that isn’t in the list of
values, you’ll be ignored:

PS> [foo]::five

PS>

(764)

Flags enumerations

Another way to use enumerations is as a bit field or set of flags, where each element of the
enumeration represents a unique bit or flag. This is done by adding the [flags()] attribute to the
enum definition, like so:

PS> [flags()] enum mybitfield {one = 0x1; two = 0x2; three = 0x4; all = 0x7}

This example defines three individual bits using hex values for each element, one per bit, and a
fourth element, all, that’s the bitwise AND of all three bits. You can use this with casts as
follows:

PS> [int] [mybitfield] "one,three"

5

PS> [int] [mybitfield] "one,two,three"

7

PS> [int] [mybitfield] "all"

7

Using enums

Now that you know all about enums, you may be wondering where to use them. They’re
typically used in functions and parameters, method parameters, and class properties. For
example, the following function uses the [DayOfWeek] enum we looked at earlier:

PS> function foo {

 param([dayofweek] $bf)

 "$bf is day $([int] $bf) in the week"

 }

This function takes a single parameter constrained to be the [DayOfWeek]. Let’s run it:

PS> foo tuesday

Tuesday is day 2 in the week

Running the function automatically converts the string “Tuesday” into the enumerated type.
Casing the enum value, you get the corresponding number of the day in the week. You also get
type checking for invalid values. If you pass in a month instead of a string, it errors out:

PS> foo september

foo : Cannot process argument transformation on parameter 'bf'. Cannot

 convert value "september" to type "System.DayOfWeek". Error: "Unable to

 match the identifier name september to a valid enumerator name. Specify

 one

of the following enumerator names and try again:

Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday"

At line:1 char:5

+ foo september

+ ~~~~~~~~~

 + CategoryInfo : InvalidData: (:) [foo],

ParameterBindingArgumentTransformationException

 + FullyQualifiedErrorId : ParameterArgumentTransformationError,foo

Notice that the error message contains a complete list of the valid values. Also, with IntelliSense
in the PowerShell ISE or Visual Studio Code, you’ll see the values in a drop-down menu when
entering your code.

We’re finished with enumerations so we can finally move on to methods. Let’s begin.

(765)

19.2. Methods in PowerShell classes

At long last, we’re going to look at how to add methods (behaviors) to your classes. You’ll learn
many new things, but all the material in the previous sections in this chapter still applies. For
example, static and hidden apply to methods as well as properties. Before we get started, there’s
some basic information you need to learn. It’s summarized in the next section.

19.2.1. Method basics

Although methods in PowerShell classes are, in many ways, similar to PowerShell advanced
functions, you must be aware of a number of important differences. When the PowerShell team
was designing the class’ features, it wanted to facilitate building larger programs with
PowerShell. To that end, they made the following changes to the way things work:

If a method is to have a return value, the type of that value must be specified as part of the
method signature—for example, [int]. If no value is to be returned, then the return type of
the method must be [void].
When returning a value, you must use the return statement. You can’t allow a value to be
written to the pipeline. Any values that are emitted directly to the pipeline are discarded.
Although this might occasionally feel inconvenient, enforcing formal returns eliminates a
common source of errors where objects are unintentionally leaked into the output stream,
contaminating the output.
Within a method, a variable must explicitly be assigned a value before it can be used in the
method body. Using an unassigned variable will result in a compile-time error.
Methods use lexical scoping, which means that the only variables you can use in the
method body are ones that are defined in the method body. If you want to use global or
script scope variables, you must use scope-qualified names; for example, $global:myvar or
$script:myvar.
Class member variables must be referenced as $this.myVariable. Likewise, if a method
wants to reference other methods in the class, then it must also prefix the name with $this,
as in $this.mymethod(2, 3).
Static members of the class, both properties and methods, are referenced using the class
name and the :: operator, as in [myclass]::MyStaticProperty or [myclass]::MyMethod(2, 3).

Reading through that list is a bit dry, so in the next few sections we’ll look at practical examples
that illustrate these principles, starting with static methods.

19.2.2. Static methods

We’ll start with static methods because these are the simplest method type. You’ll see that they
resemble PowerShell functions in many ways.

Like static properties, static methods don’t require an instance of the class to be able to use them.
Here is an example PowerShell class containing a static method.

Listing 19.1. A static method in a PowerShell class

class utils {

(766)

 static [int] Sum([int[]] $na){

 $result = 0

 if ($na -eq $null -or $na.Length -eq 0) {

 return $result

 }

 foreach ($n in $na) {

 $result += $n

 }

 return $result

 }

}

In this class, the Sum() method takes an integer array as its argument and returns the result of
adding all of the values in the array together. Following the requirements spelled out in the
previous section means that the syntax of a method declaration is a bit more complex than that of
a function. Let’s break the signature into pieces, as shown in figure 19.1.

Figure 19.1. Signature of a PowerShell class method

Looking at the code in listing 19.1, you can see that the method is still similar to a function, but
there are a couple of fundamental differences:

The code defining the method is a scriptblock that has only an end block. You can’t use
Begin, Process, and End blocks in methods.
You must use the return keyword to return the results and exit the method. You can’t only
emit the results to the pipeline the way you can with a PowerShell function.

Because Sum is a method, it’s invoked like other static methods you’ve seen throughout the book
using static method invocation syntax:

PS> [utils]::Sum(1..10)

55

As a comparison, the code in listing 19.1 can be converted to the more or less equivalent function
as follows:

PS> function Sum {

 param ([int[]] $na)

 $result = 0

 if ($na -eq $null -or $na.Length -eq 0) {

 $result

 }

 foreach ($n in $na) {

 $result += $n

 }

 $result

}

(767)

and you use the function version as normal:

PS> sum -na (1..10)

55

You now have two ways to create reusable pieces of code: static methods and functions. Both
have their advantages: Functions provide the most natural command-line experience, whereas
static methods are more programmer friendly and make it possible to write large PowerShell
programs more reliably.

Note

There’s one other interesting advantage to static methods (at least at the time this book was
written): Static method dispatch is orders of magnitude faster than function dispatch. Normally
this doesn’t make much difference, but if you’re writing a tight, performance-sensitive loop that
calls other code, you may consider writing that code as a static method rather than as a function.
(In fact, method dispatch is fast for all methods, but static methods can most easily be used in
place of functions, providing broader opportunities for performance enhancement in regular
scripts.)

Now let’s look at instance methods, which require that you create an instance of the class before
you can use them. That’s the topic of the next section.

19.2.3. Instance methods

Let’s start by modifying listing 19.1. First, you’ll rename the static Sum() method from listing
19.1 to ISum(), indicating that it specifically sums integers. Then you’ll add a new method to
perform the summation of an array of doubles.

Listing 19.2. Static and instance methods

class utils {

 static [int] ISum([int[]] $na){

 $result = 0

 if ($na -eq $null -or $na.Length -eq 0) {

 return $result

 }

 foreach ($n in $na) {

 $result += $n

 }

 return $result

 }

 [double] DSum([double[]] $da){

 $result = 0

 if ($da -eq $null -or $da.Length -eq 0) {

 return $result

 }

 foreach ($n in $da) {

 $result += $n

 }

 return $result

 }

}

(768)

The only change to the Sum() method was the name change. The big difference from listing 19.1
is that you’ve added a second method, Dsum(), which sums an array of doubles. DSum() doesn’t
have the static keyword and so is an instance method. The return type and the argument type are
set to [double] and [double[]], respectively, and the variable $na is changed to $da—otherwise the
code is the same as ISum().

Having created your class, you can use the static ISum() method as before:

PS> [utils]::ISum(1..10)

55

If you want to create an instance of the class, you can use the ::new() static method:

PS> $ui = [utils]::new()

Note

The new() method is a sort of extension method. It doesn’t exist on the object but is understood
by the PowerShell language to mean that you want to create a new object. One consequence of
this is that the new() method isn’t shown in the output of Get-Member.

Use the Get-Member cmdlet to view the class methods and properties for your new instance:

PS> $ui | Get-Member

 TypeName: utils

Name MemberType Definition

---- ---------- ----------

DSum Method double DSum(double[] da)

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string ToString()

Notice that the DSum() method is visible, but not the static ISum() method. If you want to see the
static members of an object, you need to use the -Static parameter on Get-Member:

PS> $ui | Get-Member -Static

 TypeName: utils

Name MemberType Definition

---- ---------- ----------

Equals Method static bool Equals(System.Object...

ISum Method static int ISum(int[] na)

ReferenceEquals Method static bool ReferenceEquals(Syst...

Having created the class instance, you can now use the method to sum a list of floating-point
numbers:

PS> $ad = 1.1,2.2,3.3,4.4,5.5

PS> $ui.DSum($ad)

16.5

Our class has separate named methods defined for summing integers and doubles. Now let’s add
properties to the class that will be used by the methods you’ve defined. You’ll add two new
properties to the list: a static $ISumTotal property for the ISum() method and an instance property

(769)

called $DSumTotal for the DSum() method. These properties will hold the running total of all of the
summations.

Listing 19.3. Static and Instance methods with properties

class utils {

 static [int] $ISumTotal = 0 1

 static [int] ISum([int[]] $na){

 $result = 0

 if ($na -eq $null -or $na.Length -eq 0) {

 return $result

 }

 foreach ($n in $na) {

 $result += $n

 }

 [utils]::ISumTotal += $result

 return $result

 }

 [double] $DSumTotal = 0.0 2

 [double] DSum([double[]] $da){

 $result = 0

 if ($da -eq $null -or $da.Length -eq 0) {

 return $result

 }

 foreach ($n in $da) {

 $result += $n

 }

 $this.DSumTotal += $result

 return $result

 }

}

1 Static sum variable used by ISum()
2 nstance variable used by DSum()

In a static method, you reference the property 1 by using the name of the type, as in

[utils]::ISumTotal += $result

This isn’t new; it’s the same way you’ve always accessed static properties in a class. But the
instance member introduces something new:

$this.DSumTotal += $result

Here you see a new variable, $this, being used to reference the specific instance 2 of the object
in the method. You saw this before in section 10.2.2, with script methods. Script methods also
have an automatic $this pointer to refer to the instance of the object that the method is accessing.

You’ve looked at static and simple instance methods. Now let’s look at the most sophisticated
variation on instance methods. The PowerShell language allows for typed method parameters,
which means that you can distinguish same-named methods by their list of parameters. This
mechanism is called method overloading, which we’ll look at next.

Note

Obviously, PowerShell also allows type constraints on function parameters, but still you can’t

(770)

have more than one function with the same name. For functions, the effective equivalent of
overloads is parameter sets. There are advantages to both approaches. Overloading is expected
and traditional for class methods. Parameter sets give you the expected and traditional
commandline experience. The problem spaces are related but differ in significant ways, and so
you have two different solutions.

19.2.4. Method overloads

A method overload occurs when a method has two or more versions, which differ only by their
input definitions. The combination of name plus input definitions is called the method signature.
The next listing shows the utils class rewritten to utilize method overloads. Instead of having
separate ISum() and DSum() methods, you can have two methods called Sum that have different
signatures.

Listing 19.4. Using method overloads

class utils {

 [int] Sum([int[]] $na){

 $result = 0

 if ($na -eq $null -or $na.Length -eq 0) {

 return $result

 }

 foreach ($n in $na) {

 $result += $n

 }

 return $result

 }

 [double] Sum([double[]] $na){

 $result = 0

 if ($na -eq $null -or $na.Length -eq 0) {

 return $result

 }

 foreach ($n in $na) {

 $result += $n

 }

 return $result

 }

}

Instead of having the ISum() and DSum() methods as in listing 19.3, this time you have two copies
of the Sum() method, both of which are instance methods. They could have as easily been defined
as two static methods, but you can’t have one be static and the other be instance. As we’ve
discussed, the only difference between the two lies in the method signatures:

[int] Sum([int[]] $na)

[double] Sum([double[]] $na)

The first version has integer input and output. The second version works with doubles. Create an
instance of the class so you can look at it:

 PS> $ui = [utils]::new()

Using Get-Member, you see two signatures for the Sum method:

PS> $ui | Get-Member

 TypeName: utils

(771)

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

Sum Method int Sum(int[] na), double Sum(double[] na)

ToString Method string ToString()

You can also get the overloads for a method by using the method name without the parentheses:

PS> $ui.Sum

OverloadDefinitions

int Sum(int[] na)

double Sum(double[] na)

From the perspective of the person using them, both methods are invoked with identical syntax
but different parameter types. You start with summing an integer array, which looks like this:

PS> $ui.Sum(1..10)

55

Then you define and sum an array of doubles:

PS> $ad = 1.1,2.2,3.3,4.4,5.5

PS> $ui.Sum($ad)

16.5

The PowerShell runtime looks at the name of the method to get the available overloads and then
compares the signature of each overload against the parameters to decide which one to invoke.
When distinguishing overloads, the runtime does a best-match comparison. It’s entirely possible
to have two overloads that would work (in fact, the [double] variant would be perfectly happy
with integers and convert them to doubles). When looking at an overload, the runtime picks the
one with the closest match. If you pass in integers, the integer signature method is the closet
match, even though the double signature method would work.

The methods you’ve seen so far have been visible to Get-Member and the user. As was the case
with properties, at times you may want to hide internal methods from your users.

19.2.5. Hidden methods

As discussed in section 19.1.2, all PowerShell class members (both methods and properties) are
public; private members are not supported. As was the case for properties, you can use the hidden
keyword to create methods that are hidden from the default Get-Member results and PowerShell
IntelliSense, even though the method’s still a public member of the class. Typically, hidden is
used to hide implementation details of the class, as shown in the following listing.

Listing 19.5. Using hidden methods

class HasLogging

{

 [int] Add($x, $y)

 {

 $this.Log("add $x $y")

 return $x + $y

 }

 [int] Subtract($x, $y)

 {

 $this.Log("subtract $x $y") 1

(772)

 return $x + $y

 }

 hidden [void] log($msg) 2

 {

 # logging code goes here

 }

}

1 Call to hidden logging method
2 Hidden method used for logging

In this example class, a common method, log(), 1 is used by the two other methods in the class.
This is an internal logging method used by that class and is not intended to be called directly. As
a consequence, it’s marked hidden 2 so as not to clutter up the user’s experience with the class.
Let’s construct an instance of the class and see what Get-Member returns:

PS> [haslogging]::new() | Get-Member

 TypeName: HasLogging

Name MemberType Definition

---- ---------- ----------

Add Method int Add(System.Object x, System.Object y)

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

Subtract Method int Subtract(System.Object x, System.Object y)

ToString Method string ToString()

As expected, the log() method isn’t shown in the output.

Speaking of constructors, this is something we haven’t discussed yet. The next section covers
object construction in detail.

19.2.6. Constructors in PowerShell classes

A constructor is code used by the runtime to initialize an instance of a class. The constructor can
populate some or all of the properties of a class. If you don’t specify a constructor, a class
automatically gets a default constructor that creates an instance with all properties set to their
default values, as you saw in the earlier examples.

Let’s return to our apartment pets example class:

PS> class ApartmentPets

{

 [int]

 [ValidateRange(1,100)]

 $UnitNumber

 [string]

 $Type

 [int]

 [ValidateRange(0,3)]

 $Count

}

This class has only the default constructor it gets automatically. This means that you have to
create an instance explicitly and then assign it to each member:

PS> $petEntry = [ApartmentPets]::new()

PS> $petEntry.Count = 2

(773)

PS> $petEntry.Type = "cat"

PS> $petEntry.UnitNumber = 7

The alternative is to use the cast constructor:

PS> [ApartmentPets] @{ UnitNumber = 22; Type = "cat"; Count = 2 }

This works great in many cases but doesn’t address all circumstances—like, say, you can have
up to 3 cats but only 2 dogs or up to 10 fish. That logic can’t be captured using attributes on the
members. Instead, you’ll have to write a constructor. You can add one or more constructors to
your class, again overloaded by having different signatures. A constructor has the same name as
the class, as shown next.

Listing 19.6. Using a non-default constructor

class ApartmentPets

{

 [int]

 $UnitNumber

 [string]

 $Type

 [int]

 $Count

 ApartmentPets(){}

 ApartmentPets([int] $UnitNumber, [string] $Type, [int] $Count) 1

 {

 if ($UnitNumber -lt 1 -or $UnitNumber -gt 100)

 {

 throw [InvalidOperationException]::new(

 "Unit number $UnitNumber is invalid. Must be in range 1-100")

 }

 $maxPets = switch ($Type)

 {

 cat { 3; break }

 dog { 2; break }

 fish { 10; break }

 default {

 throw [InvalidOperationException]::new(

 "The allowed pets are dogs, cats & fish. A $type is not

 allowed")

 }

 }

 if ($count -gt $maxPets)

 {

 throw [InvalidOperationException]::new(

 "You are only allowed to have up to $maxPets pets of type $Type")

 }

 $this.Count = $Count

 $this.Type = $Type

 $this.UnitNumber = $UnitNumber

 }

}

1 Constructor to populate object properties

The list of properties in the class is identical to listing 19.5. A constructor has the same name as
the class and can take zero or more arguments in the parentheses 1. Arguments are separated by
commas. The code to populate the properties is found between the braces, {}.

(774)

Note

As soon as you add an explicit constructor to the class, the class no longer has a default
constructor. If you still want a default constructor, you’ll have to add it yourself; you no longer
get it for free. That said, if you write a constructor like the one in listing 19.6, you don’t want a
default constructor because that would allow the class user to bypass the very checks you’re
trying to enforce in the explicit constructor.

You have to use $this to refer to the property name within the constructor:

$this.Type = $Type

$this indicates you’re dealing with the current object. To create a new object you still use the
new() pseudo-static method:

PS> [ApartmentPets]::new(22, 'cat', 2)

UnitNumber Type Count

---------- ---- -----

 22 cat 2

Error handling during object construction is managed by the constructor:

PS> [ApartmentPets]::new(22, 'cat', 4)

You are only allowed to have up to 3 pets of type cat

At line:27 char:13

+ throw [InvalidOperationException]::new(

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : OperationStopped: (:) [], InvalidOperationException

 + FullyQualifiedErrorId : You are only allowed to have up to 3 pets of type cat

or

PS> [ApartmentPets]::new(22, 'parrot', 4)

The allowed pets are dogs, cats & fish. A parrot is not allowed

At line:21 char:17

+ throw [InvalidOperationException]::new(

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : OperationStopped: (:) [], InvalidOperationException

 + FullyQualifiedErrorId : The allowed pets are dogs, cats & fish. A parrot is not allowed

Using new() with .NET classes

You can also use the new() option directly with .NET classes. For instance:

PS> [datetime]::new(2017,12,25)

25 December 2017 00:00:00

In this case you’re using the first constructor listed at http://mng.bz/uV9G. The integers supplied
to the constructor represent year, month, and day, respectively.

This is equivalent to using the -ArgumentList parameter on New-Object:

PS> New-Object -TypeName datetime -ArgumentList 2017, 12, 25

25 December 2017 00:00:00

You’ve seen how to create and use properties, methods, and constructors on a new class, but

(775)

http://mng.bz/uV9G

what about the case where you want to modify an existing class?

(776)

19.3. Extending existing classes

The act of creating a class that extends any existing class is called inheritance. The original class
is known as the base class. The new class, known as the derived class, inherits all of the methods
and properties of the base class.

Note

This section is included to complete the coverage of PowerShell classes. Class inheritance is a
programmer topic and not something we’d expect many IT pros to use.

This topic is something that’s definitely best explained through examples. We’ll show you how
to create a new class based on an inherited class, how to override the methods of the base class,
and how to access the methods and constructor of the base class.

The first item is to create a derived class.

19.3.1. Creating a derived class

Before you can create a derived class, you need a base class. The following listing shows the
base class we’ll use for these examples.

Listing 19.7. The base class

class utils {

 [int] Sum([int[]] $na){

 $result = 0

 if ($na -eq $null -or $na.Length -eq 0) {

 return $result

 }

 foreach ($n in $na) {

 $result += $n

 }

 return $result

 }

}

You’ve seen this code several times already. The class has one method, Sum(), that sums an array
of integers. Assume that you also want a method that will sum doubles. You could add a method
overload as you did in section 19.2.3, but in this case, we’ve decided that you need a new class.

Here’s how to derive a new class from your base class.

Listing 19.8. The derived class

class utils { 1

 [int] Sum([int[]] $na){

 $result = 0

 if ($na -eq $null -or $na.Length -eq 0) {

 return $result

(777)

 }

 foreach ($n in $na) {

 $result += $n

 }

 return $result

 }

} 1

class newutils : utils { 2

 [double] Sum([double[]] $na){ 3

 $result = 0

 if ($na -eq $null -or $na.Length -eq 0) {

 return $result

 }

 foreach ($n in $na) {

 $result += $n

 }

 return $result

 }

}

1 The base class
2 Derived class start
3 Method signature for derived class

The base class 1 is as shown in listing 19.8 and earlier examples in the chapter. The new class’s
relationship 2 to the base class is shown by the first line of the class definition:

class newutils : utils

The derived class name follows the class keyword. A colon followed by the base class name
shows the class from which the new class is inheriting members. The version of the Sum() method
that sums doubles 3 is part of the new class.

An instance of the new class is created in the same way as for any PowerShell class:

PS> $ui = [newutils]::new()

If you examine $ui with Get-Member

PS> $ui | Get-Member

 TypeName: newutils

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

Sum Method double Sum(double[] na), int Sum(int[] na)

ToString Method string ToString()

you’ll see both method overloads. In this case, both method overloads are available to the new
class:

PS> $ad = 1.1, 2.2, 3.3, 4.4, 5.5

PS> $ui.Sum($ad)

16.5

PS> $ui.Sum(1..10)

55

In this example, you’ve extended the base class by providing an extra method overload. What

(778)

about the situation where you want to override the method in the base class?

19.3.2. Overriding members on the base class

In this example you’ll override the Sum() method of the base class. You override the method by
creating a method in the derived class that has the same signature: name, return (output) type,
and arguments as a method in the base class.

Listing 19.9. Overriding the base class

class utils { 1

 [int] Sum([int[]] $na){

 $result = 0

 if ($na -eq $null -or $na.Length -eq 0) {

 return $result

 }

 foreach ($n in $na) {

 $result += $n

 }

 return $result

 }

}

class newutils : utils { 2

 [int] Sum([int[]] $na){

 $result = 0

 if ($na -eq $null -or $na.Length -eq 0) {

 return $result

 }

 $result = 1

 foreach ($n in $na) {

 $result *= $n 3

 }

 return $result

 }

}

1 Base class
2 Derived class
3 Change to method

The base class 1 is as in the previous section. The derived class 2 has a method with the same
signature as the base class. This means it will override, or replace, the method from the base
class. The method in the derived class is different in that it calculates the product of the input
array 3 rather than the sum. Notice that $result is set to 1 before the calculations start.
Multiplying by zero gives zero!

Creating an instance of the derived class hasn’t changed, but when you examine the instance of
the class, you’ll see that the Sum() method has only a single overload:

PS> $ui = [newutils]::new()

PS> $ui | Get-Member

 TypeName: newutils

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

Sum Method int Sum(int[] na)

(779)

ToString Method string ToString()

When you create an instance of the class and call the Sum() method, you now get the product of
the numbers in the array rather than the sum:

PS> $ui = [newutils]::new()

PS> $ui.Sum(1..10)

3628800

You can still access the Sum() method in the base class if required.

Accessing the base class

You saw how to override a method in the base class in listing 19.9. If you need to use the method
in the base class, you can do so. When you create your derived class, add a call to the base
class’s method:

PS> class newutils2 : utils {

 [int] Sum([int[]] $na){

 return ([utils]$this).Sum([int[]] $na)

 }

}

You’re casting to the base class so that you can access the method. When you create an instance
and use it, you get the sum of the array:

PS> $ui = [newutils2]::new()

PS> $ui.Sum(1..10)

55

19.3.3. Extending .NET classes

Because PowerShell classes are full .NET classes, it’s possible for PowerShell classes to extend
existing, compiled .NET classes.

Note

There are limitations on this. Because PowerShell classes don’t currently support the protected
member keyword, it’s not possible to extend classes that require overriding protected members.

Here’s an example where you overload one of the classes in the PowerShell code base.

Listing 19.10. Inheriting from a .NET class

using namespace System.Management.Automation

class FixCase : ArgumentTransformationAttribute 1

{

 [object] Transform(2

 [EngineIntrinsics] $engineIntrinsics,

 [object] $inputData)

 {

 [string] $data = $inputData -as [string]

(780)

 if (-not $data) {

 throw [PSArgumentNullException]::new("inputData")

 }

 return $data.SubString(0,1).ToUpper() +

 $data.Substring(1).ToLower()

 }

}

function AutocapPet

{

 param (

 [FixCase()] 3

 [string]

 $petType

)

 return $petType

}

1 Class that derives from an existing .NET class
2 Overload the abstract Transform() method on that class
3 Apply the attribute to a function parameter

The class that you’re overloading is ArgumentTransformationAttribute 1, which is the base class
for the argument transformation attributes that can be applied to function parameters. Inheriting
from this class requires us to introduce another new concept called an abstract method. Abstract
methods are part of a class’s signature that implies that the class can’t be used directly. A class
with an abstract method is called an abstract class. You can have abstract classes without any
abstract methods, but there isn’t much point to that. Abstract methods must be overloaded in the
derived class to provide a concrete implementation.

That’s what you’re doing here with the 2 Transform method. The concrete Transform method
overloads the abstract method in the base class. Listing 19.10 also defined the function
AutocapPet 3 that uses the [FixCase()] attribute. Call this function with an all-lowercase argument:

PS> AutocapPet gEorGE

George

The result is returned correctly cased, which is rather handy.

(781)

19.4. Classes, modules, using, and namespaces

Now you know a lot about classes, but you still need to see how they’re organized for use and
reuse. The fundamental element of reuse is, as always, the PowerShell module. You’ll organize
your classes into modules and then use those modules in your scripts. The difference comes in
how you use those modules. This is where another significant difference with classes shows up.

Whereas most things in PowerShell are resolved at runtime, PowerShell classes are processed at
compile time. When you want to get all the type-checking benefits that classes provide,
particularly IntelliSense support, it’s necessary for PowerShell to know about classes ahead of
runtime. Unfortunately, the usual way modules are referenced is the Import-Module cmdlet, which
is a runtime thing. The environment knows nothing about the contents of a module until the
Import-Module cmdlet is run, loading the module (and executing any code the module contains).
This doesn’t work for classes. Instead, PowerShell v5 introduced a new keyword, using, that does
a superset of the things that Import-Module does.

Note

The implication here is that in PowerShell v5 scripts, you should generally prefer using over
Import-Module because it provides better semantics for importation. There are still cases where
you’ll need to use Import-Module, like deciding which module to load at runtime, but those are
fairly rare. For the most part, you should use using in scripts and modules targeting PowerShell
v5.

The using assembly pattern

The using keyword has three basic forms. The first form allows you to reference an assembly in
your script. This form looks like this:

using assembly <assemblyName>

So, for example, to use the Windows.Forms assembly in your script, you would specify

using assembly System.Windows.Forms

at the top of the file. This will cause the Windows.Forms assembly to be loaded when you run your
script. Now, because using is processed at compile time instead of runtime, the PowerShell ISE
can show you mistakes as you’re typing rather than waiting until runtime. If you type an
incorrect name in the ISE, you’ll see the error indicated by a red squiggle under the invalid name,
as shown in figure 19.2.

Figure 19.2. The PowerShell ISE shows using assembly name errors while editing.

Like many of the features associated with classes, this will help you catch errors while you’re

(782)

writing your code rather than waiting until you run it.

The using namespace pattern

The second variant for using is like this:

using namespace <namespace>

This variant will allow you to specify namespace prefixes that are used when PowerShell tries to
resolve a type name. This can greatly simplify things when you have a long namespace, like
System.Windows.Forms. Figure 19.3 builds on the previous example, adding a namespace
declaration for System.Windows.Forms, and then builds a small form example.

Figure 19.3. An example showing the use of using namespace to simplify using forms controls

In figure 19.3, because you add the namespace directive, the code can be written to reference the
type [Form] directly instead of as [System.Windows.Forms.Form]. Likewise, buttons can be referred
to as [Button]. This certainly makes the code tidier.

The using module pattern

The final variant of the using directive is:

using module <moduleName>

This is the one you’ve been waiting for. It allows you to include a module in your script. Again,
as with using assembly, the PowerShell ISE (or VSCode) will show an error (red squiggle) if the
module name you specified to using module can’t be found.

The using keyword should always be used to load modules containing classes. That’s because
classes are processed at compile time. All references to a class are resolved when the text
referencing that class is scanned by the PowerShell parser. A class is visible only within the
block of text defining it or in a block of text using a module with a defined class.

This block of text is called a compile unit. Let’s look at an example. You’ll take our friend the
pets example from listing 19.6 and move it into a module called apartmentpets.psm1. Now you
can use using to reference this module in another script. You’ll create a new script called
usingpets.ps1. This script will extend the class defined in apartmentpets to create a new class
called apartmentpets2 and add a new member, Notes, to the class. This new class is shown in this
listing.

Listing 19.11. apartmentpets2 class Inheriting from the apartmentpets class

using module apartmentpets 1

(783)

class apartmentpets2 : apartmentpets 2

{

 [string]

 $Notes

}

$apEntry = [apartmentpets2] @{ 3

 Type = "dog"

 Count = 1

 UnitNumber = 66

 Notes = "very friendly"

 }

$apEntry | Format-List 4

1 Using apartmentpets brings the base class into the compile unit scope
2 The new class extends the existing one
3 Create an instance of the new type
4 Display that instance as a list

In this listing, you can see the using statement 1 that brings the base class, defined in the module
apartmentpets, into the current compile unit. Then you create a new class 2 that extends the base
class with a new member, $Notes. Once you have the new class defined, you can create an
instance out of it using a cast initialization. You display it as a list 4. The output of this script
looks like this:

PS> .\usingpets.ps1

Notes : very friendly

UnitNumber : 66

Type : dog

Count : 1

That’s exactly what you’d expect. But what happens if the using statement isn’t there and you put
in an Import-Module instead? You’ll get the following error:

PS> .\usingpets.ps1

At C:\Users\bgpay\documents\usingpets.ps1:5 char:24

+ class apartmentpets2 : apartmentpets

+ ~~~~~~~~~~~~~

Unable to find type [apartmentpets].

 + CategoryInfo : ParserError: (:) [], ParseException

 + FullyQualifiedErrorId : TypeNotFound

This error occurs because you need to know the base type at compile time, and Import-Module
doesn’t get called until runtime, when it’s too late. If you’re using the ISE, you’ll see an error as
you’re typing, as shown in figure 19.4.

Figure 19.4. The error message when the base class module is not imported with the using module statement

(784)

This should make it clear that you should always import modules containing classes with the
using module statement.

Using modules and namespaces

The last thing we need to talk about with using is how modules and namespaces interact. You
were able to simplify the use of the Windows Forms classes with a using namespace statement.
Why didn’t you need to do this with the module? Because when you use a module, the using
module <mymodule> statement also has an implicit using namespace <mymodule> to simplify using the
module. In practice, you could have written the new class as

using module apartmentpets

class apartmentpets2 : apartmentpets.apartmentpets

{

 [string]

 $Notes

}

but the implicit using namespace saves you the trouble and makes the most common scenario
easier. To summarize: Every class defined in a module, lives in a namespace whose name
corresponds to the module’s name. But because there is an implicit using namespace in the using
module, you don’t have to worry about the namespace. The only time this will become a problem
is when you import two different modules, m1 and m2, each of which contains a class with the
same name, foo. In that case, you’d have to refer to the individual types using namespace-
qualified names, as in [m1.foo] and [m2.foo].

At long last, we’ve finished our discussion of modules. But there’s one more point for the classes
discussion. Chapter 18 promised to show you how much easier it was to write a DSC resource
using classes rather than MOF and scripts. The last section of this chapter covers that topic.

(785)

19.5. Writing class-based DSC resources

We said in chapter 18 that the easiest way to create your own DSC resource is to write it as a
PowerShell class-based resource. Now that you know how to use PowerShell classes, it’s time
we showed you how to write a DSC resource.

The process for creating class-based resources is:

1. Create a script module containing one or more class-based resources. This involves writing
a class and annotating it with a specific set of attributes.

2. Copy the module to a directory in your module path, typically something like C:\Program
Files\WindowsPowerShell\Modules\. Double-check to make sure that the module is in the
right place. If it isn’t, you’ll get errors when trying to use it in a configuration. Again,
smart editors like the ISE or VSCode will help you with this, calling out errors while
you’re writing the configuration that uses the resource. It isn’t recommended that you put
DSC modules in your personal module directory because that’s not available to the local
configuration manager—the LCM runs as Local System.

3. Create a module manifest that loads the script module and exports the resources defined in
the script module using the DscResourcesToExport module manifest member.

4. Import the module into your configuration script and use it like any other resource.

We’ll work through these steps in an example where you’ll create a DSC resource to control the
Windows firewall; you’ll set it on or off for individual profiles.

The first step is to create the module with the class-based resource, as shown in the following
listing. The class has a number of properties, corresponding to the resource properties, and three
methods: Get(), Set(), and Test().

Listing 19.12. Class-based DSC resource

enum FWprofile { 1

 Domain

 Private

 Public

}

enum Ensure {

 Absent

 Present

}

[DscResource()]

class FireWallStatus { 2

 [DscProperty(Key)]

 [FWprofile]$profileName

 [DscProperty(Mandatory)]

 [Ensure]$ensure

 [DscProperty(NotConfigurable)]

 [bool]$enabled

 [FirewallStatus]Get() { 3

 $fwp = Get-NetFirewallProfile -Name $this.profileName

 $test = [Hashtable]::new()

 $test.Add('ProfileName',$fwp.Name)

 $test.Add('Ensure', $this.Ensure)

(786)

 if ($fwp.Enabled) {$test.Add('Enabled', $true)}

 else {$test.Add('Enabled',$false)}

 return $test

 }

 [void]Set() { 4

 $fwp = Get-NetFirewallProfile -Name $this.profileName

 if ($this.ensure -eq [Ensure]::Present) {

 if (-not $fwp.Enabled) {

 Set-NetFirewallProfile -Name $this.profileName -Enabled True

 }

 }

 else {

 if ($fwp.Enabled) {

 Set-NetFirewallProfile -Name $this.profileName -Enabled False

 }

 }

 }

 [bool]Test() { 5

 $fwp = Get-NetFirewallProfile -Name $this.profileName

 if ($this.ensure -eq [Ensure]::Present) {

 if ($fwp.Enabled) {

 return $true

 }

 else {

 return $false

 }

 }

 else {

 if ($fwp.Enabled) {

 return $true

 }

 else {

 return $false

 }

 }

 }

}

1 Enum definition
2 Start of class definition
3 Start of Get() method
4 Start of Set() method
5 Start of Test() method

The enums at the top of the listing 1 define the firewall profile names and the list of acceptable
values for the Ensure option in the configuration (remember from chapter 18 that Ensure is set to
Present to apply the configuration and Absent to remove the configuration).

The class definition 2 has a [DscResource()] decorator. This marks the class as a DSC resource.
Your class must have this decorator if you want it to work as a DSC resource. The class
properties have the [DscProperty()] decorator, so they’re also recognized by DSC. You’ll notice
that DscProperty is modified for each property. The values have the following meanings:

Key—This property is used to identify the instance to which the configuration will be
applied. You must define a key property in a PowerShell class-based resource. In this case,
it’s the firewall profile name.
Mandatory—This property must have a value. In this case, Ensure controls whether the
configuration is applied.
NotConfigurable—This property isn’t configurable by the DSC resource. It’s populated in
the Get() method to return additional information on the resource.

(787)

A PowerShell class-based resource must have three methods: Get(), Set(), and Test(). The class
can have other helper methods if needed. The Get() 3 method returns an object showing the
current state of the configuration. A hashtable is populated to be the return object. Notice that the
Enabled nonconfigurable property is used to return the current state of the firewall profile. This
method is called when Get-DscConfiguration is used.

The Set() method 4 is used by Start-DscConfiguration to apply the configuration. The method
tests the current state of the configuration and enables or disables the firewall profile based on
the combination of the values of Ensure and the current Enabled value.

Test() is the final method 5. This method returns a Boolean value to indicate whether the
configuration of the firewall profile matches the desired configuration. Test-DscConfiguration
uses this method.

Once written, the module is placed in C:\Program Files\WindowsPowerShell\Modules\ and a
module manifest is created:

PS> New-ModuleManifest -Path 'C:\Program Files\WindowsPowerShell\Modules\

 FirewallStatus\firewallstatus.psd1' `

-RootModule firewallstatus.psm1 -Guid ([GUID]::NewGuid()) `

-ModuleVersion 1.0 -Author 'Bruce & Richard' `

-Description 'Class based resource to toggle Windows firewall' `

-DscResourcesToExport 'FirewallStatus'

The -DscResourcesToExport parameter is used to create the list of resources available through the
module. You must explicitly export the DSC resources from your module.

Note

The DscResourcesToExport module manifest member was added to improve the speed of resource
discovery in a large set of modules. With this member, the resource discovery routines only need
to scan the module manifest. Without it, the routines would have to scan all the .psm1 files,
making the discovery process prohibitively slow. The down side is that if you forget to add it,
your resource won’t be discovered, which can be hard to debug.

Your new DSC resource is now ready to use, so it’s time to create a configuration.

Listing 19.13. Configuration using a class-based resource

Configuration fwstatus {

 param (

 [Parameter(Mandatory=$true)]

 [string[]]$computername,

 [Parameter(Mandatory=$true)]

 [string]$profilename,

 [Parameter(Mandatory=$true)]

 [bool]$enabled

)

 Import-DscResource -ModuleName firewallstatus

 if ($enabled) {$ens = 'Present'}

 else {$ens = 'Absent'}

(788)

 Node $computername {

 FirewallStatus fwstoggle {

 ProfileName = $profilename

 Ensure = $ens

 }

 }

}

fwstatus -computername W16TGT01 -profilename Domain `

-enabled $true -OutputPath C:\Scripts\MOF

The script defines the configuration. The DSC resource is imported as usual. The value of Ensure
is set based on the Boolean value of the configuration’s enabled parameter. You only need the
profile name and Ensure to define the configuration for the node. The script runs the
configuration to generate the MOF file.

Create a CIM session to the target computer and test the current setting of the firewall profile:

PS> $cs = New-CimSession -ComputerName W16TGT01

PS> Get-NetFirewallProfile -CimSession $cs | select Name, Enabled

Name Enabled

---- -------

Domain False

Private True

Public True

You’ve cheated and switched off the domain firewall profile. Use Start-DscConfiguration to
apply your new configuration; the Set() method of your class performs the action of configuring
the firewall.

PS> Start-DscConfiguration -CimSession $cs -Path .\MOF -Wait

You can determine the setting again:

PS> Get-NetFirewallProfile -CimSession $cs | select Name, Enabled

Name Enabled

---- -------

Domain True

Private True

Public True

The standard DSC cmdlets can be used to test the configuration (call the Test() method)

PS> Test-DscConfiguration -CimSession $cs

True

and get the current configuration (use the Get() method):

PS > Get-DscConfiguration -CimSession $cs

ConfigurationName : fwstatus

DependsOn :

ModuleName : FirewallStatus

ModuleVersion : 1.0

PsDscRunAsCredential :

ResourceId : [FireWallStatus]fwstoggle

SourceInfo :

enabled : True

ensure : Present

profileName : Domain

PSComputerName : W16TP5TGT01

CimClassName : FireWallStatus

Using PowerShell classes greatly simplifies the creation of DSC resources. This concludes our

(789)

coverage of PowerShell classes.

(790)

19.6. Summary

Classes can be written in PowerShell starting in version 5.0.
Along with classes, PowerShell v5 or greater allows you to define your own enumerations
(enums).
Properties and methods in PowerShell classes can be static- or instance-based.
All members of a PowerShell class are public, but members can be hidden from general
users. Get-Member -Force will make hidden members visible.
A method must use return rather than placing objects on the pipeline and must declare its
return type. If it returns nothing, then its return type must be [void].
Methods can be overloaded based on the types of their arguments—on their method
signatures.
Objects, both PowerShell and .NET classes, can be instantiated using New-Object or the
::new() pseudo-static method. For scripts targeting PowerShell v5 or higher, the use of
::new() is strongly recommended for performance and reliability reasons.
PowerShell classes have a default constructor, but you can create additional constructors.
PowerShell classes can inherit from .NET classes or other PowerShell classes.
DSC resources can be created using PowerShell classes. These classes must be stored in
modules and imported with the Import-DSCResource keyword like MOF-based resources.
A class-based DSC resource must have proper annotations and implement Get(), Set(), and
Test() methods.

So far, we’ve shown you how to use the features of the PowerShell language. In the next—and
last—chapter, we’ll show you how to extend the way you use PowerShell through the use of the
PowerShell APIs.

(791)

Chapter 20. The PowerShell and runspace APIs
This chapter covers

The PowerShell Application Programming Interface (API)
How to perform isolated and concurrent operations
Runspaces and runspace pools
Out-of-process and remote runspaces
Basic runspace management techniques

Here’s a rule I recommend: never practice two vices at once.

Tallulah Bankhead

So far, we’ve been dealing with PowerShell as a shell and scripting environment. In this chapter,
we’re going to look at it as an Application Programming Interface (API). An API is a set of
functions, data structures, and classes that let you build applications on top of the software
exposing that API. For example, the PowerShell ISE is an application that uses the PowerShell
API. Normally, the PowerShell API is used by other programs for accessing PowerShell
functionality, but it also turns out to be useful from within PowerShell itself. In effect,
PowerShell scripts can act as host applications for other PowerShell engine instances, allowing
you to perform advanced operations like dynamic pipeline construction, isolated execution, and
concurrent operations.

(792)

20.1. PowerShell API basics

In this section, we’ll look at the basic use patterns and structure of the PowerShell API. We’ll
look at how to construct instances of the core API objects and how to compose those objects into
executable pipelines.

The PowerShell API is accessed using the class System.Management.Automation.Power-Shell. That’s
a bit long to type, so a type accelerator [PowerShell] is provided to simplify access to the class.
This class provides a factory method Create() that creates instances of the [PowerShell] object.

Note

In object-oriented design, the factory method pattern is a way of constructing objects using a
method instead of directly calling a specific type’s constructor. This abstracts the details of
exactly which object is constructed and also allows the factory method to perform operations
such as bookkeeping or object tracking before and after an object is created.

Once you have the [PowerShell] object instance, you can add commands to it using the
AddCommand() method and finally invoke it using the Invoke() method. Let’s look at the simplest
example using the API. You’re going to create an instance of the [PowerShell] object, add one
command, Get-Date, to the object’s command collection, and then invoke it. This looks like the
following:

PS> [PowerShell]::Create().AddCommand("Get-Date").Invoke()

19 May 2017 11:23:20

Take a look at this command and compare the English description to what you typed at the
command line. Ignoring punctuation, they’re identical. The PowerShell API is an example of
what’s known as a fluent API. A fluent API is one where the human-language representation and
the code representation map one-to-one, item by item. This semantic mapping makes it easier for
users to turn their intentions into executable code.

In the first example, the command you added, Get-Date, required no parameters, so you could add
it and then invoke the command. Now let’s see how to handle a command that does take
parameters. You’ll use the command Get-CimInstance with the argument Win32_BIOS. In pure
PowerShell, the command would be entered as

PS> Get-CimInstance -ClassName Win32_BIOS

Using the PowerShell API, it looks like this:

PS> [PowerShell]::Create().AddCommand("Get-CimInstance"). `

AddParameter("ClassName", "Win32_BIOS").Invoke()

SMBIOSBIOSVersion : 90.1380.768

Manufacturer : Microsoft Corporation

Name : 90.1380.768

SerialNumber : 004393254157

Version : MSFT - 0

(793)

Again, following the fluent API pattern, the method to add a parameter is AddParameter(). Now,
suppose you only wanted to add a positional argument instead of the parameter name/value pair.
As you can probably guess, the method to add an argument is AddArgument(). Here’s the same
example but adding an argument instead of a parameter:

PS> [PowerShell]::Create().AddCommand("Get-CimInstance"). `

AddArgument("Win32_BIOS").Invoke()

SMBIOSBIOSVersion : 90.1380.768

Manufacturer : Microsoft Corporation

Name : 90.1380.768

SerialNumber : 004393254157

Version : MSFT - 0

In this example, the parameter-binding logic figures out what parameter to bind the value
Win32_BIOS to, as it does in a PowerShell script.

Now that you have a basic understanding of the PowerShell API, commands, arguments, and
parameters, let’s work on some more advanced examples.

20.1.1. Multi-command pipelines

So far, you’ve been working with only simple commands, but one of PowerShell’s greatest
strengths is the ability to build pipelines of commands. In this section, we’re going to look at
how to do that with the PowerShell API.

To create a pipeline with more than one command, all you need to do is to make a subsequent
call to AddCommand() for each additional command you want to add to the pipeline. Each command
you add becomes the next stage in the pipeline. Let’s see how this works with another example.
In this example, you’re going to convert this pipeline

PS> Get-Process -Name Power* | sort HandleCount -Descending

in PowerShell syntax into a [PowerShell] object. You start by creating the pipeline and adding
parameters to it, as you’ve done previously:

[PowerShell]::Create().AddCommand("Get-Process").

AddParameter("Name", "Power*").

Then you add the sort command along with its parameters to the pipeline. This requires a second
call to AddCommand(), followed by calls to AddArgument() and AddParameter():

AddCommand("sort").

AddArgument("HandleCount").

AddParameter("Descending").

Note

Switch parameters can either be added using the AddParameter() overload that takes only a
parameter name or by passing the parameter name along with a Boolean value.

Finally, you call Invoke() to cause the command to be executed. The complete command,
equivalent to the original PowerShell expression, looks like this:

(794)

PS> [PowerShell]::Create().AddCommand("Get-Process"). `

AddParameter("Name", "Power*"). `

AddCommand("sort"). `

AddArgument("HandleCount"). `

AddParameter("Descending"). `

Invoke()

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName

------- ------ ----- ----- ------ -- -- -----------

 579 33 84744 62784 13.89 17484 1 powershell

 481 29 62852 55724 14.33 36460 1 powershell

Again, because you’re using a fluent API, the transformation is pretty direct, with AddCommand()
replacing the | pipe operator. This extends to as many stages in the pipeline as you need. Let’s
look at a more complex example with four stages in the pipeline. This example counts the
number of processes with more than 1000 handles. The PowerShell expression to do this is

PS> Get-Process | where HandleCount -GT 1000 |

Measure-Object | foreach Count

and the [PowerShell] API equivalent is

PS> [PowerShell]::Create(). `

AddCommand("Get-Process"). `

AddCommand("where"). `

AddArgument("HandleCount").AddParameter("GT").AddArgument(1000). `

AddCommand("Measure-Object"). `

AddCommand("foreach").AddArgument("Count"). `

Invoke()

18

The converted expression has four calls to AddCommand()—one for each stage in the pipeline.

Note

One thing to note in this example is that when specifying parameter names, you don’t need to
specify the dash before the parameter name. The fact that you’re calling AddParameter() makes
the intent clear.

20.1.2. Building pipelines incrementally

So far, all the examples have been showing the use of a single statement to create a [PowerShell]
object. The fact that you can do this is one of the benefits of the fluent API design, but it’s not
required. You could choose to build the pipeline incrementally across a series of statements.
Let’s redo the final example in the last section. First, you need to get the [PowerShell] object into
a variable:

PS> $p = [PowerShell]::Create()

Next, you add a command to that object:

PS> $p.AddCommand("Get-Process")

Commands : System.Management.Automation.PSCommand

Streams : System.Management.Automation.PSDataStreams

InstanceId : ffff110b-677a-4d72-9036-6f7d28d6803c

InvocationStateInfo : System.Management.Automation.PSInvocationStateInfo

IsNested : False

(795)

HadErrors : False

Runspace : System.Management.Automation.Runspaces.LocalRunspace

RunspacePool :

IsRunspaceOwner : True

HistoryString :

Wait—you get a whole bunch of output from this command, so clearly an object is being
returned from the AddCommand() method! This is the same object you’ve stored in the variable $p.
You haven’t seen this before because you’ve always been calling Invoke() at the end of your
expressions. You can confirm that it’s the same object by adding another command to the object
and comparing the return value to what’s stored in $p:

PS> $p -eq $p.AddCommand("where")

True

The result of the comparison shows that it always returns the same object. Next, you need to add
the parameters and arguments to the object. Calls to AddParameter() and AddArgument() also return
the same [PowerShell] object:

PS> $p -eq $p.AddArgument("HandleCount")

True

Now add the remaining parameters for the where command:

PS> $p = $p.AddParameter("GT").AddArgument(1000)

This time you’re assigning the result of the method calls back to $p. This is sensible because the
object returned is the same as the object being assigned and it eliminates unnecessary objects in
the output stream.

Note

In PowerShell scripts, expressions in statements return values that are placed in the output
stream. To avoid getting objects you don’t want in the output stream, cast the expressions to
[void] or assign the result to a variable. If you’re a C# programmer, this behavior would be
unexpected because statements in C# discard any results that are explicitly consumed. Because
the [PowerShell] API is used in both PowerShell and C#, it’s important to remember this
difference in behavior when switching languages.

This is how the fluent API works: Each method call returns the original object so it can be used
for the next method call. Now add the remaining commands from the example to the object in $p:

PS> $p=$p.AddCommand("Measure-Object").AddParameter("Sum"). `

AddCommand("foreach").AddArgument("Count")

The complete pipeline object is now available in $p ready to invoke. Let’s invoke it now:

PS > $p.Invoke()

18

Because the expression is still available in $p, you can invoke it again and again:

PS > $p.Invoke()

18

(796)

This way, you build the [PowerShell] object only once, regardless of how many times you need to
invoke it.

The ability to incrementally build up pipelines is useful because you can do other processing or
conditional logic between the steps to decide how to proceed. For example, within a script, you
may want to dynamically add filters to the output of the script. Listing 20.1 shows an enhanced
file list example demonstrating how this can be useful. Feel free to skip forward and take a look,
but for the next section, we’re going to switch to an extremely important topic we’ve glossed
over so far: error handling.

20.1.3. Handling execution errors

So far, everything we’re tried has worked perfectly. But we live in an imperfect world and so
need to look at how to deal with errors. Remember that PowerShell has two types of errors:
terminating, which halt execution, and nonterminating, which are reported. In the simplest case,
a terminating error that occurs when you invoke a [PowerShell] object will result in an exception
being thrown. Let’s see what happens with a command-not-found error:

PS> [PowerShell]::Create().AddCommand("foobar").Invoke()

Exception calling "Invoke" with "0" argument(s): "The term 'foobar' is not

 recognized as the name of a cmdlet, function, script file, or operable

 program. Check the spelling of the name, or if a path was included, verify

 that the path is correct and try again."

At line:1 char:1

+ [PowerShell]::Create().AddCommand("foobar").Invoke()

+ ~~

 + CategoryInfo : NotSpecified: (:) [], MethodInvocationException

 + FullyQualifiedErrorId : CommandNotFoundException

You can trap this exception using the try/catch statement (see section 14.2.1) as follows:

PS> try { [PowerShell]::Create().AddCommand("foobar").Invoke() }

catch { "Caught exception: $_" }

Caught exception: Exception calling "Invoke" with "0" argument(s): "The term

 'foobar' is not recognized as the name of a cmdlet, function, script file,

 or operable program. Check the spelling of the name, or if a path was

 included, verify that the path is correct and try again."

This solution is good for terminating errors, but what about nonterminating errors that are written
to the error stream? Let’s try this by writing an explicit error:

PS> [PowerShell]::Create().AddCommand("Write-Error"). `

AddArgument("An error").Invoke()

And you get . . . nothing? Correct—nothing because the command succeeded in that it wasn’t
terminated, but there was still an error. Let’s see how you can handle this case. The most
important point is to assign the [PowerShell] object to a variable before invoking it. That’s
because the [PowerShell] object has a number of fields that you’ll need to examine after the
invocation completes. Let’s set this up

PS> $p = [PowerShell]::Create().AddCommand("Write-Error"). `

AddArgument("An error")

and invoke the command

PS> $p.Invoke()

As in the earlier example, execution completes successfully with no indication of an error.
Instead, you have to check properties on the [PowerShell] object. First, to see if any errors

(797)

occurred, terminating or otherwise, you’ll check the HadErrors property. If any errors were
generated during execution, terminating or otherwise, this property will be true. Let’s look:

PS> $p.HadErrors

True

Yes, an error did occur. Okay, you want to see what that error was. To do that, you need to look
at the Streams property on the [PowerShell] object. The Streams property has one member for each
of the streams PowerShell supports, as shown here:

PS> $p.Streams | Get-Member -Type Property | foreach Name

Debug

Error

Information

Progress

Verbose

Warning

Check the count on the Error stream, which, per the example, should contain one record:

PS> $p.Streams.Error.Count

1

and it does. Finally, we can dump out the error:

PS> $p.Streams.Error

Write-Error : An error

 + CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException

 + FullyQualifiedErrorId :

Microsoft.PowerShell.Commands.WriteErrorException,Microsoft.PowerShell.

 Commands.WriteErrorCommand

As you might expect, anything written to the other streams during execution will be available in
the respective stream property. Now create a [PowerShell] object that will emit a warning:

PS> $p = [PowerShell]::Create(). `

AddCommand("Write-Warning").AddArgument("A warning")

PS> $p.Invoke()

PS> $p.Streams.Warning

A warning

and, to check, examine the HadErrors property:

PS> $p.HadErrors

False

This confirms that no errors occurred during execution.

At this point, we’ve now looked at adding commands and parameters to [PowerShell] objects and
how to handle errors with the PowerShell API. This completes our discussion of the basic use of
the PowerShell API. In the next section, we’ll look at additional capabilities the API provides.

20.1.4. Adding scripts and statements

In the previous section we covered only the use of simple commands with the [PowerShell]
object. In this section, we’ll look at two additional types of content you can add to the object:
scripts and statements. Let’s start with scripts.

Adding scripts to the pipeline

(798)

We’ve looked at adding single commands, with or without parameters, and arguments to build
pipelines using the PowerShell API. Now we’re going to look at another way of adding
executable content to the [PowerShell] instance. As well as commands, the PowerShell API
allows you to add scripts to an instance. As you might expect by now, this is done through the
AddScript() method.

Note

Using the word script in this context is a bit confusing because scripts are technically commands.
If you want to invoke a script named myscript.ps1, then you should call
AddCommand("myscript.ps1") because myscript.ps1 is a simple command—it’s implemented as a
script. The AddScript() method is about adding expressions to the pipeline, not commands. A
much better name for the AddScript() method would have been AddExpression(), so in the same
way that AddCommand() parallels Invoke-Command, AddExpression() would have paralleled Invoke-
Expression. Unfortunately, no one thought of that at the time!

As always, we’ll start by looking at a basic example. You’re going to pass in a simple
expression, 2+2, to be evaluated:

PS> [PowerShell]::Create().AddScript{2+2}.Invoke()

4

This example executes the expression 2+2. In many ways, AddScript() is the easiest method to use
—just pass in the PowerShell code and execute it.

Note

This example showed passing a scriptblock to AddScript(). You can pass a string and get the
same result. The advantage of using a scriptblock is that you get syntax checking on the code
passed to the API when the object is created instead of deferring it to runtime.

Moving on, let’s try something more complex with a script that contains three statements that
emit the numbers 1, 2, and 3:

PS> $p = [PowerShell]::Create().AddScript{1;2;3}

PS> $p.Invoke()

1

2

3

This gives you the expected response. Now let’s use a foreach loop to square these values:

PS> $p = [PowerShell]::Create(). `

AddScript{ foreach ($i in 1,2,3) { $i * $i }}

PS> $p.Invoke()

1

4

9

This illustrates that you can use any PowerShell construct with AddScript(). Anything that can go

(799)

in a scriptblock can be used with AddScript(). This implies that you can also deal with input in
the script you’re adding to the [PowerShell] object. In a function or scriptblock, you can process
input in two ways: by using $input in the end block or by creating a process block in the script.
Both approaches work with AddScript(). By default, the script that’s passed to the AddScript()
method is run as if it was the end block in the script. This means you can use $input to get the
input from the pipeline:

PS> $p = [PowerShell]::Create(). `

AddCommand("Get-Process"). `

AddScript{ $input |

 where { $_.name -like "csr*" } |

 foreach name

 }

PS > $p.Invoke()

csrss

csrss

This example takes the output of Get-Process, filters for processes matching "csr*", and then
returns the name of the process. Note that, because this is running in the end block, there’s no
streaming. The prior command is run to completion before the added script is run. You can fix
this by using a process block in the script. Create a new example that looks for process names in
the process block:

PS> $p = [PowerShell]::Create(). `

AddCommand("Get-Process"). `

AddScript{process {

 if ($_.name -like "csr*")

 {

 $_.name

 }

 }

 }

PS> $p.Invoke()

csrss

csrss

This example uses $_ to get the current pipeline object so it doesn’t have to do any stream
processing. Thus, a simple if statement is all that’s needed. Now try a script that both returns
values and writes errors:

PS> $p = [PowerShell]::Create(). `

AddScript{ 1; Write-Error "@ is an error"; 3 }

PS> $p.Invoke()

1

3

Invoking the example returns the output of the first and third statements. You need to check the
[PowerShell] object for the error. First, verify that the error occurred:

PS > $p.HadErrors

True

and then dump out the error itself:

PS > $p.Streams.Error

 1; Write-Error "@ is an error"; 3 : @ is an error

 + CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException

 + FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErrorException

Note

(800)

This last example illustrates that just because the call to Invoke() returned a value doesn’t mean
that there wasn’t an error. When using the [PowerShell] API, you should always check HadErrors
and the streams to see if there were any errors.

We’ve now covered pretty much everything about scripts, so let’s look at the last type of content
you can add to a [PowerShell] object.

Adding statements to the pipeline

The last element type that can be added to a [PowerShell] object is a “statement.” This term is in
quotes because it doesn’t mean statement quite the same way as we do in PowerShell script;
we’re not talking about if statements or while loops. What the AddStatement() does is add a
second pipeline to the [PowerShell] object, resulting in a collection of pipelines that are executed
one after the other. The output of all the pipelines/statements is aggregated and returned from the
Invoke() method. This is easiest to understand with an example. You’re going to create a
[PowerShell] object that has three statements, each of which is a script that returns the number
corresponding to the statement. First, create the [PowerShell] object and store it in the variable $p:

PS> $p = [PowerShell]::Create()

Next, add the first script, which returns the value 1.

PS> $p = $p.AddScript{1}

Now call the AddStatement() method to indicate that you’re starting a new statement:

PS> $p = $p.AddStatement()

Now add the second script returning 2 as the content of the second statement:

PS> $p = $p.AddScript{2}

Finally, add the third statement and script in one step:

PS> $p = $p.AddStatement().AddScript(3)

You now have a complete object containing three statements that execute one after the other.
Let’s call Invoke() and see the result:

PS> $p.Invoke()

1

2

3

As expected, you get the three numbers corresponding to each of the statements.

Adding statements vs. adding scripts

Using the AddStatement() method may seem like an awkward way to execute multiple pipelines,
particularly when you could call AddScript(). The primary scenario for AddStatement() is sending
a series of commands to a remote runspace in NoLanguage mode, as described in section 11.6.4.
Runspaces in NoLanguage mode won’t accept script elements in the pipeline, so the only way to
perform multiple actions in a single batch in this scenario is to use AddStatement().

(801)

So far, we’ve talked about runspaces in a fairly peripheral manner. In the next section, we’re
going to look at them directly.

(802)

20.2. Runspaces and the PowerShell API

In this section, we’ll look at how runspaces, which are PowerShell engine instances, interact with
the PowerShell API. A runspace is a container that holds everything needed to execute
PowerShell code. This container holds all variables, drives, commands, and the like that are used
during the execution of a [PowerShell] object invocation. A runspace is always required when
you want to execute PowerShell code, regardless of the mechanism used to execute that code,
either API or script. A script user, however, typically isn’t aware that there is a runspace because
it was created by the host (for example, the PowerShell console host or the PowerShell ISE)
application at startup. And so far, we as API users, haven’t dealt with runspaces directly because
the way we’ve been using the API allows the runtime to take care of the runspace requirement by
creating a new one every time we call the API. This simplifies the API user’s experience but
comes with constraints and significant execution overhead.

The major constraint coming from a new runspace on each execution is that you can’t
incrementally build up state over a series of API calls. Conversely, a new runspace each time
means that there is no cross-contamination between calls. This isolated execution is useful in its
own right—for example, in creating uncontaminated test environments—and is something we’ll
cover in more detail in the next section before moving on to the more general cases.

20.2.1. Existing runspaces and isolated execution

In order for the Invoke() method on the [PowerShell] object to work, it needs an instance of the
PowerShell runtime, namely a runspace. In all earlier examples, we didn’t worry about this
because the runtime took care of it for us by creating a new runspace for every call to Invoke().
By creating a new runspace each time, we get isolated execution where side effects of one call
can’t affect the operation of subsequent calls—at least as long as those side effects are restricted
to runspace state. From an interactive user’s perspective, this includes isolation from the
interactive PowerShell session.

Let’s walk through some examples to illustrate this behavior. You’ll do this by creating and
assigning variables in the different environments. First, create a variable $x in the interactive
session:

PS> $x = 123

then use the API to try to retrieve that value:

PS> [PowerShell]::Create().AddScript{$x}.Invoke()

Nothing is returned because the variable $x exists only in the interactive session, not in the new
runspace created by the API. Now use the API to set the variable:

PS> [PowerShell]::Create().AddScript{$x=456}.Invoke()

and again, try to retrieve it:

PS> [PowerShell]::Create().AddScript{$x}.Invoke()

Nothing is returned because the assignment was made only in the transient runspace created by
the API. Finally, you can verify that the original value of $x in the interactive session hasn’t

(803)

changed:

PS> $x

123

Reusing the current runspace

Creating a runspace each time has some obvious limitations—sometimes you do want to
preserve side effects across commands. Consider trying to preconfigure an isolated test
environment. You’d execute a series of API calls to configure the environment before executing
the test code with a separate API call. This scenario can’t work if you get a new environment
every time you call the API.

The PowerShell API provides two mechanisms to accomplish durable state changes. The first
allows you to say that the command should be run using the current runspace. The second
involves your creating a durable environment in which to execute your commands (see section
20.2.2)

Let’s start with using the current runspace. If you’re in an interactive session, this would be the
session’s runspace. This is done by passing an argument of type
System.Management.Automation.RunspaceMode to the Create() method. This enum provides two
values: CurrentRunspace and NewRunspace (the default). Let’s see an example using CurrentRunspace
to change the value of $x you set up earlier:

PS> $x

123

PS> [PowerShell]::Create("CurrentRunspace").AddScript{$x=456}.Invoke()

PS> $x

456

This time, invoking the [PowerShell] object changes the value of $x in the session runspace. This
is effectively equivalent to assigning the variable directly in the script. Given this, it’s not
obvious why you’d want to use this version of the API—it certainly doesn’t provide any
isolation. Where this can be useful is when you want to build up a pipeline dynamically and then
execute it in the current runspace. Listing 20.1 shows the implementation of a fancy file list, or
fls, command built on top of Get-ChildItem. It allows you to sort files by newest first, selecting
the first N files to list and setting the output to return only the full name of the item.

Listing 20.1. A fancy file list command

function fls

{

 param (

 [Parameter()]

 [switch]

 $New,

 [Parameter()]

 [int]

 $First = -1,

 [Parameter()]

 [switch]

 $NameOnly

)

 $p = [PowerShell]::Create("CurrentRunspace"). 1

 AddCommand("Get-ChildItem")

 if ($New)

 {

 [void] $p.AddCommand("Sort-Object"). 2

(804)

 AddParameter("Descending").

 AddParameter("Property", "LastWriteTime")

 }

 if ($First -gt 0)

 {

 [void] $p.AddCommand("Select-Object"). 3

 AddParameter("First", $First)

 }

 if ($NameOnly)

 {

 [void] $p.AddCommand("ForEach-Object"). 4

 AddParameter("MemberName", "Fullname")

 }

 $p.Invoke()

 if ($p.HadErrors) 5

 {

 $p.Streams.Errors

 }

}

1 Create the base [PowerShell] object
2 If -New specified add sort command
3 Restrict output to $First N items
4 Change output and return only filename
5 Check to see if there were errors

This listing shows how commands can be built up incrementally and then be executed in the
current runspace. Execution in the current runspace is necessary for the command to have access
to the runspace’s current directory.

So far, we’ve been either dealing with runspaces that already exist or are automatically created
on demand. Both of these cases limit what you can do with the runspace. In the next section,
we’re going to look at how to explicitly create your own runspaces.

20.2.2. Creating runspaces

Executing in your current session is useful, but a more interesting scenario would be to create a
durable environment in which to execute your commands. This is core to the isolated test
environment scenario we discussed earlier. Creating a durable execution environment is
accomplished by explicitly creating a runspace and then using that runspace with the
[PowerShell] API. Runspace creation is done using the
System.Management.Automation.Runspaces.RunspaceFactory class, which has the type accelerator
[runspacefactory]. This class provides methods that allow you to create a variety of runspace
types. Let’s start with the simplest case.

Getting a usable runspace requires a couple of steps. First you create the runspace and then you
open it:

PS> $rs = [runspacefactory]::CreateRunspace()

PS> $rs.Open()

Once the runspace is ready, you can create a [PowerShell] object and set the Runspace property on
that object:

PS> $p = [PowerShell]::Create()

PS> $p.Runspace = $rs

By setting the runspace on the [PowerShell] object, you let the runtime know to use that runspace
for execution rather than create a new one. With the runspace assigned, add a script to the

(805)

[PowerShell] object in $p and invoke it:

PS> $p.AddScript{$x = 123}.Invoke()

The script that’s passed assigns a value to the variable $x in the associated runspace and so
returns no value. Now you’re going to execute another command in that runspace. You could
create a new [PowerShell] object and associate the runspace, but let’s look at an alternative way
of doing this. Rather than creating a new [PowerShell] object each time, you can reuse the
existing object by clearing the Commands property on the object. This removes all the previously
added commands so you can start from scratch adding new commands:

PS> $p.Commands.Clear()

Now add a new script to return the value assigned to $x in the runspace you created. This will
verify that its value is what you set it to in the first command:

PS> $p.AddScript{$x}.Invoke()

123

The output of the call to Invoke() confirms that the variable was set as intended.

By explicitly creating a separate runspace you now have two isolated execution environments for
[PowerShell] commands. This is great for preventing cross-contamination, but another
implication of two runspaces is that you should be able to do two things at once. You’ll see how
this works in the next section.

20.2.3. Using runspaces for concurrency

Concurrent execution is important for real-world tasks where more than one thing happens at a
time. PowerShell provides limited concurrent operations with Invoke -Expression fan-out (see
section 11.2.2) and background jobs (see section 13.1.2). In this section, we’re going to look at
how to perform concurrent operations using runspaces and the PowerShell API. The primary
difference is in how you invoke the [PowerShell] object. In all earlier examples, you’ve been
calling the Invoke() method. This is a synchronous method that starts execution and then waits
for it to complete, returning the result of the execution. This prevents the caller’s runspace thread
(the foreground thread) from doing anything until the second runspace (the background thread of
execution) has completed. In order to execute operations concurrently, you need a way to begin
an asynchronous thread of execution. With the [PowerShell] object, this is done using the
BeginInvoke() method.

Whereas the Invoke() method blocks until the execution completes and returns the result of that
execution, the BeginInvoke() method immediately returns an object of type IASyncResult. This
IASyncResult object provides a way for you to interoperate with the asynchronous operation you
started. The most basic signature for BeginInvoke() is System.IAsyncResult BeginInvoke(). Let’s
look at an example to see what the IASyncResult object tells us about the background execution.
Create a [PowerShell] object with a single command and call BeginInvoke():

PS> $ia = [PowerShell]::Create().AddCommand("Get-Date").BeginInvoke()

Note

In this example, you’re being a bit lazy and letting the runtime create the background runspace

(806)

for you. Though simple, this doesn’t allow for runspace reuse and so is not generally
recommended as a best practice.

In the example, you’re capturing the IASyncResult from the execution into the variable $ia so you
can work with it later on. Let’s display the object formatted as a list:

PS> $ia | Format-List

CompletedSynchronously : False

IsCompleted : True

AsyncState :

AsyncWaitHandle : System.Threading.ManualResetEvent

The most important property for your immediate purposes is the IsCompleted property. This lets
you know that the background execution has completed. In this simple example, the IsCompleted
property is true immediately because the background execution was short. Now try running a
command that takes longer. The Start-Sleep command is a good choice because you can specify
fairly precisely how long you want the command to run:

PS> $ia = [PowerShell]::Create().AddCommand("Start-Sleep"). `

AddParameter("Seconds",5).BeginInvoke()

PS> $ia.IsCompleted

False

This time when you examine IsCompleted, you can see that the execution has not completed.
Checking again in a few seconds, you’ll see that it has completed:

PS> Start-Sleep -Seconds 5 ; $ia.IsCompleted

True

With commands other than Start-Sleep, the amount of time the command will take to complete is
harder to predict. Clearly there has to be a better solution to waiting for completion than
continuously checking (polling) the IsCompleted property. This is where the EndInvoke() method
on the [PowerShell] object comes in. You pass the IASyncResult object returned from
BeginInvoke() to EndInvoke(), and the foreground thread of execution will block until the
background execution has completed. To do this, you need to store the [PowerShell] object in a
variable in order to call EndInvoke() on that object. This looks like the following:

PS> $p = [PowerShell]::Create().AddCommand("Start-Sleep"). `

AddParameter("Seconds",5)

PS> $ia = $p.BeginInvoke(); $p.EndInvoke($ia)

PS> $ia.IsCompleted

True

If you check the value of IsCompleted after calling EndInvoke(), it will always be true. In effect,
the BeginInvoke()/EndInvoke() pair are equivalent to the synchronous Invoke() except both threads
run in parallel until EndInvoke() is called. Let’s look at an example (listing 20.2) where you can
see that both the foreground and background execution threads are running concurrently.

Note

This example calls the Windows [console] API to print messages on the screen so you can see
that they’re both operating. The implication is that if you run it in the ISE, it won’t work as
expected.

(807)

Listing 20.2. Concurrent execution example

$r = [runspacefactory]::CreateRunspace() 1

$r.Open()

$p = [PowerShell]::Create().AddScript{ 2

 foreach ($i in 1..4) {

 [console]::WriteLine(">>> BACKGROUND $i")

 Start-Sleep 1

 }

 [console]::WriteLine("Background is done")

}

$p.Runspace = $r

$a = $p.BeginInvoke() 3

foreach ($i in 1..3) {

 [console]::WriteLine("foreground $i <<<")

 Start-Sleep 1

}

[console]::WriteLine("Foreground is done")

$p.EndInvoke($a) 4

"Called EndInvoke."

1 Create a background runspace
2 Define the background task
3 Start the background task
4 Wait for the background task

Running this script from the PowerShell console host produces the following output:

foreground 1 <<<

>>> BACKGROUND 1

foreground 2 <<<

>>> BACKGROUND 2

foreground 3 <<<

>>> BACKGROUND 3

Foreground is done

>>> BACKGROUND 4

Background is done

Called EndInvoke.

The messages from the foreground and background runspaces are interleaved. Because the
background task does four iterations and the foreground task does only three, the foreground task
completes first and then waits for the background task by calling EndInvoke().

This is a trivial example. A more realistic example would be to perform several related, long-
running operations concurrently, such as large file copies, formatting a disk, or creating virtual
machines. In these scenarios, there may be a fairly large number of operations that could be
performed in parallel. Manually creating and managing a large number of runspaces for these
scenarios could be quite complex. It would be nice if PowerShell took care of all this
bookkeeping is some way. That’s exactly what runspace pools are all about. We’ll look at those
objects in detail in the next section.

(808)

20.3. Runspace pools

In all examples so far, you’ve been creating individual runspaces for each of the tasks you’re
performing. This results in numerous runspaces being created. Explicit reuse will reduce the
number of runspaces that are created but there may still be a lot of work tracking all of them.

PowerShell provides a mechanism called runspace pools to take care of this bookkeeping
automatically. A single runspace pool is made up of a number of individual runspaces. The
runspace pool API allows you to set a number of constraints on the pool, allowing for automatic
management of the amount of resources consumed. This is called throttling. For example, a
runspace pool will allow you to limit (or throttle) the number of concurrent operations without
having to explicitly code what’s going on. You can start as many tasks as you need without
worrying about running out of resources on the host machine. The runspace pool does this by
limiting the pool of runspaces from a minimum to a maximum number of runspaces. Here’s an
example showing the creation of a runspace pool with a minimum of one and a maximum of
three runspaces:

PS> $pool = [runspacefactory]::CreateRunspacePool(1, 3)

PS> $pool.Open()

PS> $pool.GetAvailableRunspaces()

3

When the pool is opened, it will have one runspace open and available. Now let’s start a
command running and see how the runspace count changes:

PS> $p1 = [PowerShell]::Create().AddCommand("Start-Sleep").AddArgument(30)

PS> $p1.RunspacePool = $pool

PS> $ia1 = $p1.BeginInvoke()

PS> $pool.GetAvailableRunspaces()

2

Add two more tasks:

PS> $p2 = [PowerShell]::Create().AddCommand("Start-Sleep").AddArgument(30)

PS> $p2.RunspacePool = $pool

PS> $ia2 = $p2.BeginInvoke()

PS> $p3 = [PowerShell]::Create().AddCommand("Start-Sleep").AddArgument(30)

PS> $p3.RunspacePool = $pool

PS> $ia3 = $p3.BeginInvoke()

PS> $pool.GetAvailableRunspaces()

0

The number of available runspaces drops to zero. But you can still add tasks to the pool even
though there are zero available runspaces at that time:

PS> $p4 = [PowerShell]::Create().AddCommand("Start-Sleep").AddArgument(30)

PS> $p4.RunspacePool = $pool

PS> $ia4 = $p4.BeginInvoke()

PS> $pool.GetAvailableRunspaces()

0

When there are no available runspaces in the pool, new tasks are placed in a queue of tasks
waiting to be executed. When a running task completes and its runspace becomes available, the
next task in the queue is removed and invoked on the newly available runspace. The pool will
continue to execute the maximum concurrent tasks allowed until the task queue is empty.

And now back to reality. Runspace pools are efficient mechanisms for handling concurrent

(809)

operations, but you still need to deal with errors, which means you need to keep track of all the
PowerShell objects you’re creating. This listing shows how to do this.

Listing 20.3. Foreach in parallel

$pool = [runspacefactory]::CreateRunspacePool(1, 3) 1

$pool.Open()

$tasks = foreach ($i in 1 .. 10) 2

{

 $p = [PowerShell]::Create()

 $p.RunspacePool = $pool

 $p = $p.AddScript{ 3

 param ($iteration)

 foreach ($i in 1..5)

 {

 [console]::WriteLine("*" * ($iteration * 2)) 4

 Start-Sleep -Milliseconds 200

 }

 if ($iteration -eq 3) 5

 {

 Write-Error "ITERATION ERROR"

 }

 }.AddArgument($i)

 $ia = $p.BeginInvoke()

 @{p=$p; ia=$ia; iteration=$i} 6

}

foreach ($t in $tasks)

{

 $t.p.EndInvoke($t.ia)

 if ($t.p.HadErrors) 7

 {

 Write-Error "Task iteration $($t.iteration) had errors"

 $t.p.Streams.Errors

 }

 $t.p.Dispose()

}

1 Limit to three concurrent tasks
2 Capture the information for each task
3 Set the code for the task
4 Each task writes iteration*2 stars to the console
5 The third iteration will write an error
6 Capture [PowerShell], await object and iteration number
7 Check each iteration for errors

This example starts 10 tasks. Each task writes a line of stars to the console five times, where the
number of stars written corresponds to the index of the task in the list of tasks being executed.
The number of stars to write is passed as an argument to the task scriptblock, which is the same
for each task.

Note

In parallel processing terminology, this is called single instruction, multiple data (SIMD). Other
variations would be passing both a unique scriptblock and a unique piece of data to each task,
called multiple instruction, multiple data (MIMD), and finally passing multiple scripts but
always using the same piece of data, or multiple instruction, single data (MISD).

(810)

To make sure at least one error is produced, there is special logic so that when the task index is 3,
an error message is written.

To track all this information, as each task is started its [PowerShell] object, IASync-Handle, and
task index are put into a hashtable that is then written to the output stream of the foreach
statement. This output is captured in a variable, $tasks, and once all the tasks have started, a
second foreach loop takes the complete list of tasks, waits for each task to complete, and then
checks to see if any errors occurred during the execution of that task. Running this script will
produce output similar to the following:

PS > .\foreachparallel.ps1

**

**

**

**

**

C:\Users\brucepay\documents\foreachparallel.ps1 : Task iteration 3 had errors

At line:1 char:1

+ .\foreachparallel.ps1

+ ~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException

 + FullyQualifiedErrorId :

Microsoft.PowerShell.Commands.WriteErrorException,foreachparallel.ps1

<output truncated for brevity>

Note that the error message was printed before that last line of stars. The tasks are waited for in
the order in which they were started, and so an individual task will complete before all the tasks
have completed. If you wanted to defer error checking until all the tasks have completed, you
would process the contents of $tasks twice—the first time to make sure all the tasks have
completed, and then a second time to make sure all the errors have been accounted for.

To apply concurrent techniques successfully, you need to be careful about tracking the task
objects and the associated errors. Taking advantage of the natural flow of the PowerShell
pipeline makes this easy. The alternative—explicitly creating a collection and adding each task
to the collection—makes the resulting code significantly more complex. For concurrent
techniques to be successful, you need to take a disciplined approach that minimizes complexity
and, in particular, approaches error handling in a structured way.

All the techniques we’ve looked at so far have used in-memory runspaces. In-memory runspaces
have lower overhead than out-of-process executions like the jobs created with Start-Job, but
there are cases where you want to have that extra layer of isolation. With in-memory runspaces,
if one of the tasks causes the process to terminate, all the other tasks will also be terminated.
With process isolation, a task that crashes the process crashes only its host process. In the next
section, we’ll look at using process isolation with runspaces.

(811)

20.4. Out-of-process runspaces

Let’s revisit the idea of isolation with runspaces. In section 20.2.1, we talked about how a
runspace isolates all the PowerShell-specific data structures. This means that any process-wide
pieces of data are still shared by all the runspaces. It also means that a catastrophic error—one
that will cause the host process to exit—will also terminate all the runspaces in the process.

To provide an even greater layer of isolation, you can create an out-of-process runspace. An out-
of-process runspace is created in a new process that is a child of the calling process and uses the
PowerShell remoting protocol to communicate between the two processes. This is somewhat
similar to the way Start-Job jobs work, but an out-of-process runspace lifecycle is different. With
Start-Job, a new process is created when the job begins. The process exists for the duration of the
job and then terminates when the job has completed. With out-of-process runspaces, the process
is started when the runspace is opened and isn’t terminated until the runspace is closed. This
means you can run many tasks in the same process by reusing the runspace. It also means out-of-
process runspaces are quite a bit more capable than background jobs but aren’t significantly
more complex than in-memory runspaces.

Creating an out-of-process runspace is straightforward: call the CreateOutOfProcessRunspace()
method to create the runspace and then open it like any other runspace:

PS> $ooprs = [runspacefactory]::CreateOutOfProcessRunspace($null)

PS> $ooprs.Open()

Note

The first argument to CreateOutOfProcessRunspace() is a pointer to an optional custom type table
to use when communicating with that runspace. If this argument is null, the default PowerShell
type table is used. PowerShell’s default type files are loaded into the runspace just as if you’d
started an instance of PowerShell. This default is fine in the majority of cases, but sometimes you
may want specific control over how objects are serialized when passed between the processes.
Custom type files allow this custom serialization information to be used by the remoting
protocol. For information on how to create a type table instance, see http://mng.bz/46M0.

Once the runspace is open, you can send commands to it, like any other runspace. As an
example, let’s verify that the runspace is hosted in a separate process. You’ll use the process
identifier (PID), which is unique to each process, to distinguish parent from child. You’ll be
sending a command to the runspace that will return the process’s ID using the $PID variable.
First, create the [PowerShell] object for the command:

PS> $p = [PowerShell]::Create().AddScript{"child PID is $PID"}

Then set the runspace on the [PowerShell] object and invoke the command:

PS> $p.Runspace = $ooprs

PS> $p.Invoke()

child PID is 196

Now that you have the runspace PID, get the interactive host process id:

(812)

http://mng.bz/46M0

PS> "Local pid is $pid"

Local pid is 8368

On examination of the two PIDs, you can verify that the runspace is running in a different
process.

So far, we’ve covered in-process and out-of-process runspaces. The last type of runspace we’re
going to cover is the remote runspace.

(813)

20.5. Remote runspaces

So far, all our runspace work has been done on the local computer. Now we’re going to look at
working with runspaces running on remote computers. But first a quick word about sessions and
runspaces.

20.5.1. Sessions and runspaces

In chapter 11, when talking about remoting, we always talked about remote connections
requiring sessions but never about remote runspaces. In the early design of PowerShell remoting,
there were no PSSession objects, only runspaces. But when the team did usability studies, people
were much more comfortable with the notion of a remote session because the term was already
commonly used. The team introduced the PSSession object to be the script user-facing term, with
the Runspace being relegated to advanced scenarios.

Note

Now that PowerShell is open source, you can see this session-versus-runspace legacy in the
source itself. The file that contains the code for the New-PSSession command is still named
newrunspacecommand.cs.

Fortunately, obtaining the underlying runspace from a session is quite simple because it’s
available as a property on the PSSession object:

PS> $s = New-PSSession localhost

PS> $s.Runspace

 Id Name ComputerName Type State Availability

 -- ---- ------------ ---- ----- ------------

 35 Runspace35 localhost Remote Opened Available

20.5.2. Creating remote runspaces

Creating a remote runspace follows the same pattern you’ve used all along: You call the
[runspacefactory]::CreateRunspace() method to the runspace. The difference between creating a
remote versus a local runspace is that you must supply information about how to connect to the
remote computer. This is done using the
System.Management.Automation.Runspaces.WSManConnectionInfo class. Here’s an example. Create the
WSManConnectionInfo object by calling the constructor on it:

PS> $ci =

[System.Management.Automation.Runspaces.WSManConnectionInfo]::new()

Let’s look at a subset of the information contained in the connection information object:

PS> $ci | Format-List scheme,computerName,port,appname

Scheme : http

ComputerName : localhost

Port : 80

(814)

AppName : /wsman

This shows that you want to connect to the WS-MAN application on computer localhost using
port 80 and HTTP for the base transport. You can now use this object to create a remote runspace
by passing it to the CreateRunspace() method:

PS> $rrs = [runspacefactory]::CreateRunspace($ci)

PS> $rrs.GetType().FullName

System.Management.Automation.RemoteRunspace

Checking the type, you can see that the method has returned a RemoteRunspace instead of a regular
Runspace. As always, before you can use a runspace to execute any code, it needs to be opened:

PS> $rrs.open()

Now create a [PowerShell] object and set its Runspace property to the remote runspace you
created:

PS> $p = [PowerShell]::Create()

PS> $p.Runspace = $rrs

Add a scriptblock to the [PowerShell] object to print out the computer’s hostname and the PID of
the process hosting

PS> $p = $p.AddScript{

 "I am on host $(hostname)"

 "My PID is $pid"

 }

and invoke it:

PS> $p.Invoke()

I am on host brucepaybook

My PID is 17356

The output shows that the remote PID is 17356 whereas the local PID is 1132

PS> "Local PID is $PID"

Local PID is 1132

confirming, as we did in the out-of-process runspace case, that different processes are being used
to host the runspaces.

Note

You may now be wondering how this scenario differs from the out-of-process case. In that case,
the two processes are communicating directly over anonymous pipes. In the remoting case, the
local session is communicating to the WS-MAN application, which creates the remote process
and manages communication between the local and remote processes. Because there is an
intermediary (WS-MAN), remote runspaces can support more features, including disconnected
runspaces. In the out-of-process case, if the parent process terminates, then the child process is
also terminated. In the remote runspace case, the local session can terminate, but the remote can
remain active because the WS-MAN service manages the lifecycle of the remote session.

This concludes our rather brief discussion of remote runspaces. For more detailed information,

(815)

consult the MSDN pages for the APIs, in particular the [WSManConnectionInfo] class. See
http://mng.bz/BCPq. The final section of this chapter looks at some basic hygiene principles with
managing runspaces.

(816)

http://mng.bz/BCPq

20.6. Managing runspaces

One last topic before we go: runspace management. We’ve been proceeding along, opening
runspaces as needed. What we haven’t always been doing is cleaning up the runspaces that
we’ve been creating. Once a runspace is created and opened, it will remain in the current process
until it’s explicitly closed. You can find out how many runspaces you have going with the Get-
Runspace command. Let’s examine this further. Starting from a new session, create and open two
runspaces:

PS> $r1 = [runspacefactory]::CreateRunspace()

PS> $r1.Open()

PS> $r2 = [runspacefactory]::CreateRunspace()

PS> $r2.Open()

Now use Get-Runspace to list all the runspaces in the session:

PS > Get-RunSpace

 Id Name ComputerName Type State Availability

 -- ---- ------------ ---- ----- ------------

 1 Runspace1 localhost Local Opened Busy

 2 Runspace2 localhost Local Opened Available

 3 Runspace3 localhost Local Opened Available

Notice that there are three runspaces in this session. That’s because of the default runspace (Id 1)
that handles the interactive commands passed to the session. Each runspace has a set of
properties associated with it. The State property is fairly obvious; it’s the current state of the
runspace. In the formatted output this shows up as State, but note that state is a computed
property in the format information that’s equivalent to

PS> (Get-Runspace)[0].RunspaceStateInfo.State

Opened

The other property to be aware of is Availability. This property indicates whether there’s a
pipeline currently running in the runspace.

Note

Availability is also an alias used in formatting so things will fit on the screen. The property name
is RunspaceAvailability.

Note that the default runspace will always be busy when you run a command because that
runspace is used to run the command you typed. To close a runspace you need to call the close
method on that runspace. The trick is not to close the default runspace, because that will end your
session. You can do this by filtering on the RunspaceAvailability property as follows:

PS> Get-Runspace |

 where { $_.RunspaceAvailability -eq "Available" } |

 foreach Close

Now when you rerun the Get-Runspace command, all the non-default runspaces are closed:

PS> Get-RunSpace

(817)

 Id Name ComputerName Type State Availability

 -- ---- ------------ ---- ----- ------------

 1 Runspace1 localhost Local Opened Busy

 2 Runspace2 localhost Local Closed None

 3 Runspace3 localhost Local Closed None

Runspace management isn’t a major concern when working interactively, but if you have a long-
running script that continually opens new runspaces without closing old ones, eventually you’ll
consume all the available resources. A much better strategy when using runspaces in a script is to
create the necessary number of runspaces and then reuse them as needed. If you don’t know how
many runspaces you’ll need, then the best solution is runspace pools, as discussed in section
20.3.

(818)

20.7. Summary

The [PowerShell] API is a programmatic mechanism for creating and invoking PowerShell
commands.
This API can be used to build up multistage pipelines, both in fluent expressions and
incrementally.
This API also provides mechanisms for handling errors and exceptions in the pipelines
you’re building.
Scriptblocks and statements can be added to your [PowerShell] expressions.
Runspaces are created using the [runspacefactory] API.
Runspaces can be used to create isolated execution environments and to perform
concurrent operations.
Runspace pools make it easier to deal with concurrent scenarios where there are many
threads of execution.
Out-of-process runspaces provide an additional level of isolation for tasks.
Remote runspaces are used with the [PowerShell] API to execute commands on remote
machines.

(819)

Appendix. PowerShell 6.0 for Windows, Linux, and
macOS
The PowerShell community was stunned (not too dramatic a word) in August 2016 when
Microsoft announced that the core of PowerShell was going to be open source. Not only that, but
PowerShell would now be available on Linux and Apple operating systems as well as Windows.
Jeffrey Snover had been hinting in presentations at the PowerShell Summit
(https://powershell.org/summit/) and other venues for a few years that he’d like to see
PowerShell as an open source project, but it wasn’t expected to happen so soon.

Note

The open source project includes the core PowerShell engine. Many of the non-core modules
will also be ported. Many existing modules should work with PowerShell v6 due to the use of
.NET standard 2.0.

In this appendix, we’ll give you an overview of the open source project, explain the differences
between PowerShell Core and the PowerShell you find on your Windows machine, and
demonstrate the differences between running PowerShell on Linux/macOS compared to the
experience you have on Windows.

(820)

https://powershell.org/summit/

The PowerShell open source project

The open source PowerShell project is hosted on Github at
https://github.com/PowerShell/PowerShell and is open for anyone to join and contribute.
PowerShell 6.0 includes versions for Windows, most major Linux distributions, macOS, and
Docker. The list of supported platforms is evolving. You can see a complete list of supported
platforms at the GitHub site. You can install PowerShell 6.0 side by side on Windows with an
existing instance of PowerShell.

PowerShell 6.0 code status

At the time of writing PowerShell v6 is in development. It should be considered test code until
it’s formally released. Check the project website for the current state of the project before using.

Terminology

PowerShell v6 has introduced new terminology. Table 1 summarizes the terminology and
explains the various editions of PowerShell.

Table 1. PowerShell terminology

Term Meaning

Windows PowerShell

This is the edition of PowerShell that ships with Windows (or in
a WMF download). It’s built in, and requires, the full .NET
CLR. Windows PowerShell is only available on the Windows
platform.
$PSVersionTable.PSEdition is set to Desktop.

PowerShell Core (PSCore)

This edition of PowerShell is built on the .NET Core CLR (see
next section). PowerShell Core will be available on all
supported platforms.
$PSVersionTable.PSEdition is set to Core.

PowerShell on ?
PowerShell Core built for a specific platform, for instance:
PowerShell on Linux or more specifically PowerShell on Centos
7.

PowerShell
A generic term that covers any and all editions. PowerShell can
be used to refer to the language, framework, default cmdlets,
and so on.

We’ve mentioned .NET Core a few times. It’s time to explain what it is and how it’s different
from the .NET you’ve seen and used on Windows.

.NET Core

Throughout this book we’ve said that PowerShell is based on the .NET framework. This remains

(821)

https://github.com/PowerShell/PowerShell

true for all editions of PowerShell. However, not all editions of PowerShell use the full .NET
framework. The use of .NET is as follows:

Windows PowerShell uses the full .NET CLR.
PowerShell Core (PowerShell on Linux and so on) uses .NET Core.

The full .NET framework is described on Microsoft’s MSDN site at http://mng.bz/PTPZ. All the
examples in chapters 1–20 are based on Windows and therefore on the full .NET CLR.

PowerShell Core is based on .NET Core, which is a cross-platform implementation of the
Windows .NET framework.

Note

.NET Core is technically a subset of the full .NET CLR, but the .NET Standard 2.0 release of

.NET Core has dramatically reduced the delta between the full CLR and Core. There will also be
an ability to load full CLR assemblies into Core processes.

.NET Core is available for Windows, Linux, and macOS. This means that scripts written on
Windows accessing the full .NET framework may not run on a non-Windows platform due to
functionality not being present in .NET Core. You can view the .NET Core DLLs supplied with
PowerShell Core and get a good idea of the .NET functionality available:

PS /home/richard> Get-ChildItem -path $pshome/*.dll

References for .NET Core can be found at http://www.dotnetfoundation.org/netcore and
http://www.microsoft.com/net/core/platform.

PowerShell Core doesn’t port all the PowerShell functionality you’re used to, so there will be
some issues (covered when we look at PowerShell on Linux). For an existing PowerShell user,
probably the best place to start is by installing PowerShell Core onto an existing Windows
system.

Installing on Windows

Installation on Windows uses a standard Windows .msi. Download the latest release for your
version of Windows from https://github.com/PowerShell/PowerShell/releases. It’ll be named
something like PowerShell-6.0.0-beta.3-win10-win2016-x64.msi. After unblocking the file,
double-click the .msi and follow the instructions. PowerShell 6.0 installs into C:\Program
Files\PowerShell by default. An entry is also created on the Start menu.

You can run PowerShell 6.0 side by side with Windows PowerShell (v5.1 in this case), as shown
in figure 1. Notice the differences between the two sets of output, especially the value of
PsEdition.

Figure 1. PowerShell 6.0 on the left and PowerShell 5.1 on the right. The background and text colors have been
reversed from the default in the PowerShell 6.0 console for clarity.

(822)

http://mng.bz/PTPZ
http://www.dotnetfoundation.org/netcore
http://www.microsoft.com/net/core/platform
https://github.com/PowerShell/PowerShell/releases

You get a limited number of modules, and therefore cmdlets, available in PowerShell v6 on
Windows:

PS> Get-Module -ListAvailable | select name

Name

CimCmdlets

Microsoft.PowerShell.Archive

Microsoft.PowerShell.Diagnostics

Microsoft.PowerShell.Host

Microsoft.PowerShell.LocalAccounts

Microsoft.PowerShell.Management

Microsoft.PowerShell.Security

Microsoft.PowerShell.Utility

Microsoft.WSMan.Management

PackageManagement

Pester

PowerShellGet

PSDesiredStateConfiguration

PSDiagnostics

PSReadLine

You can create a remote session to a machine running a copy of Windows PowerShell (in this
case, PowerShell 5.1):

PS> $s = New-PSSession -ComputerName W16DSC01

PS> Invoke-Command -Session $s -ScriptBlock {Get-Process l*} |

Format-Table -AutoSize

NPM(K) PM(M) WS(M) CPU(s) Id SI ProcessName PSComputerName

------ ----- ----- ------ -- -- ----------- --------------

 23 10.09 32.87 0.59 740 1 LogonUI W16DSC01

 30 5.77 8.96 1.22 524 0 lsass W16DSC01

Cmdlets that aren’t part of PowerShell Core can be accessed on the remote machine:

PS> Invoke-Command -Session $s `

-ScriptBlock {Get-WmiObject -Class Win32_OperatingSystem}

SystemDirectory : C:\Windows\system32

Organization :

BuildNumber : 14393

RegisteredUser : Windows User

SerialNumber : 00376-30816-46802-AA030

Version : 10.0.14393

PSComputerName : W16DSC01

Within the limitations described earlier, PowerShell on Windows is very similar to the
PowerShell you’ve seen throughout this book. What about PowerShell on Linux and macOS?

(823)

PowerShell on Linux and macOS

The introduction of PowerShell for Linux/macOS is a big step forward for managing
heterogeneous environments. Windows administrators can now manage these systems using the
same tool—PowerShell—they’re used to using on their Windows systems. In this section, we
cover installing PowerShell on Linux and the differences between PowerShell on Windows and
PowerShell on Linux.

PowerShell is built on the assumption that you’ll be administering your systems remotely. We
examine remoting from Windows to Linux and Linux to Windows systems. DSC brings a huge
change in the way you manage the configuration of your servers. You can manage Linux systems
as well as Windows with DSC.

There are some differences, and issues, between Windows PowerShell and PowerShell on
Linux/macOS.

Known issues

As you would expect, there are a number of issues with porting a 10-year-old .NET-based
application—PowerShell—to non-Windows platforms. The PowerShell project team maintains a
list of known issues as part of the project documentation at http://mng.bz/8j3L.

Some of these issues are flagged to be addressed during the development of PowerShell v6.
Other issues are differences that are inherent to the various platforms to which PowerShell is
being ported, and users will need to be aware of the issues and manage them.

Issues that may cause current Windows-based PowerShell users problems on non-Windows
platforms or that may cause issues for non-Windows users learning PowerShell include the
following:

Case sensitivity— PowerShell, like Windows, is case-insensitive. Linux and macOS are
case-sensitive, so the correct case must be used for filenames, paths, and environment
variables. Running scripts, loading modules, and filename tab completion all depend on
the correct case being used. Cmdlet names are case-insensitive!
File path delimiters— Windows can use \ or /, but on non-Windows you must use /.
File extensions— PowerShell uses file extensions—for instance, .ps1 for scripts and
.psm1 for modules. Non-Windows platforms don’t usually use file extensions. You need to
use the correct extension for PowerShell to correctly interpret the file type.
Command aliases— A number of aliases—ls, cp, mv, rm, cat, man, mount, ps—have been
removed from the Linux and macOS implementations, as they hide the platform-native
commands. These aliases are still present in PowerShell for Windows.
JEA— JEA support is not available on Linux or macOS and is not in scope for PowerShell
v6.
Sudo— PowerShell doesn’t support sudo directly. You need to start a new instance of
PowerShell using sudo.
Missing cmdlets— A number of cmdlets don’t work properly or aren’t available on Linux
and macOS, including *-Service, *-Acl, *-AuthenticodeSignatue, Wait-Process, *-
PSSessionConfiguration, *-Event, Set-ExceutionPolicy, New-PSSession, New-PSSessionOption,
New-PSTransportOption, and *-Job. Some of these issues will be resolved in future releases.

(824)

http://mng.bz/8j3L

One other thing to be aware of is that none of the PowerShell Core implementations includes the
PowerShell ISE. If you need an editor for use with PowerShell Core, especially on non-Windows
machines, we recommend using Visual Studio Code (VSC). VSC is a free download from
https://code.visualstudio.com/ with versions available for Windows, various Linux distributions,
and macOS. PowerShell and many other programming languages are supported through plugins
that can be installed from within Visual Studio Code.

Before you can do anything, though, you need to get PowerShell onto your Linux system.

Installation

PowerShell on Linux is available on a large number of Linux distributions, but in this appendix
we’ll just be looking at PowerShell on Centos 7.

Note

We’ll be assuming that you have a working Linux system and have sufficient Linux skills to
follow this discussion.

You can find instructions for installing PowerShell on CentOS 7 at http://mng.bz/7fa8.
Instructions for other Linux types and macOS are also available. Follow the download
instructions and install the PowerShell package.

You may find that you see a message about a yum lock, as shown in figure 2.

Figure 2. Yum error message due to lock held by PackageKit

If you get such a message, follow the instructions to disable packagekit (which manages updates)
that you’ll find at http://mng.bz/5co7. The PowerShell package can then be installed.

(825)

https://code.visualstudio.com/
http://mng.bz/7fa8
http://mng.bz/5co7

The PowerShell project has started releasing the install packages to the appropriate repositories
so that you can use Linux’s built-in package management systems to install and update
PowerShell. First, you need to enter super user mode and register the Microsoft repository:

sudo su

curl https://packages.microsoft.com/config/rhel/7/prod.repo > /etc/yum.repos.d/microsoft.repo

exit

You can then install PowerShell:

sudo yum install -y powershell

Starting PowerShell is a simple call to the application:

powershell

The advantage of this approach is that when new releases of PowerShell 6.0 are made available,
you can easily update your installation:

sudo yum update powershell

Now that you’ve installed PowerShell for Linux, how do you use it?

Using PowerShell v6 on Linux

Using the PowerShell core language is essentially identical to the examples we’ve shown in the
rest of the book. One obvious difference is the modules that are available. You saw the modules
available for PowerShell on Windows earlier. Figure 3 shows the modules available to a new
PowerShell on Linux installation.

Figure 3. A list of default modules for PowerShell on Linux

A number of modules that are available in PowerShell for Windows aren’t available in

(826)

PowerShell for Linux:

CimCmdlets
Microsoft.PowerShell.Diagnostics
Microsoft.PowerShell.LocalAccounts
Microsoft.WSMan.Management
PSDiagnostics

These modules contain functionality that is directly related to the Windows platform and so can’t
be ported to Linux and other platforms. Linux/macOS versions of these modules may become
available in the future. There are some possible issues with other modules. Script modules will
load but may not work properly if they make Windows-centric assumptions about the file system
or access Windows-specific functionality. Binary modules won’t load if they depend on
functionality that isn’t present in .NET Standard 2.0.

A number of the Windows PowerShell providers are also not available on Linux/macOS:

Registry
WSMan
Certificate

PowerShell v6 being available on a number of platforms means you can write scripts that are
portable across platforms. Your script needs to know which platform it’s running on to avoid
errors due to missing functionality. The $PSVersionTable contains detailed operating system
information. On Windows, you’ll see this:

PS> $PSVersionTable

Name Value

---- -----

PSVersion 6.0.0-beta

PSEdition Core

GitCommitId v6.0.0-beta.3

OS Microsoft Windows 10.0.14393

Platform Win32NT

PSCompatibleVersions {1.0, 2.0, 3.0, 4.0...}

PSRemotingProtocolVersion 2.3

SerializationVersion 1.1.0.1

WSManStackVersion 3.0

On Linux you’ll see this:

PS /home/richard> $PSVersionTable

Name Value

---- -----

PSVersion 6.0.0-beta

PSEdition Core

GitCommitId v6.0.0-beta.3

OS Linux 3.10.0-514.6.1.el7.x86_64

 #1 SMP Wed Jan 18 13:06:36 UTC 2017

Platform Unix

PSCompatibleVersions {1.0, 2.0, 3.0, 4.0...}

PSRemotingProtocolVersion 2.3

SerializationVersion 1.1.0.1

WSManStackVersion 3.0

The Platform field or the OS field (if you require more detailed tests) can be used to determine the
operating system the code is running on.

PowerShell v6 includes variables, shown in listing 1, to help with this:

(827)

$IsCoreCLR

$IsLinux

$IsOSX

$IsWindows

Listing 1. Cross-platform scripting

$dt = @{

 '3' = 'Fixed'

 '5' = 'CD-Rom'

}

$hlth = @{

 '0' = 'Healthy'

 '1' = 'Scan Needed'

 '3' = 'Full Repair Needed'

}

if ($IsCoreCLR) {

 if ($IsLinux){

 df -T

 }

 elseif ($IsWindows) {

 Get-CimInstance -Namespace 'ROOT/Microsoft/Windows/Storage' `

 -ClassName MSFT_Volume |

 select DriveLetter, FileSystemLabel, FileSystem,

 @{N='DriveType'; E={$dt["$($_.DriveType)"]}},

 @{N='HealthStatus'; E={$hlth["$($_.HealthStatus)"]}},

 @{N='SizeRemaining(GB)'; E={[math]::Round($_.SizeRemaining / 1GB, 2)}},

 @{N='Size(GB)'; E={[math]::Round($_.Size / 1GB, 2)}}

 }

}

else {

 Get-Volume

}

The script starts by defining two hash tables, $dt and $hlth, that will be used to decode the values
returned from a CIM class. The variable $IsCoreCLR is used to determine whether the script is
running on an instance of PowerShell Core or Windows PowerShell.

If the script is running on PowerShell Core, the next test determines if it’s running on Linux or
Windows. The Linux command df -T is used to return disk information if the script is running on
Linux. Get-CimInstance with a call to the MSFT_Volume class is used for a Windows machine
running PowerShell Core. The hash tables are used to supply readable values for the drive type
and health status. The disk size information is converted to GB with the result converted to two
decimal places.

If the script isn’t running on PowerShell Core, it assumes Windows PowerShell and uses the Get-
Volume cmdlet. Get-Volume also uses the MSFT_Volume CIM class.

Note

The Get-Volume cmdlet and the MSFT_Volume CIM class are only available on Windows 8/2012 and

later. If you're using Windows 7, you can modify the script to use Win32_Volume instead.

The results of running the script are shown in figure 4.

(828)

Figure 4. The results of running listing 1 on PowerShell on Linux (top), PowerShell on Windows (middle), and
Windows PowerShell (bottom).

So far, you’ve seen PowerShell running directly on Linux. What about remoting between
instances of PowerShell running on Windows and Linux?

(829)

PowerShell remoting and Linux

You saw in chapter 11 how PowerShell remoting works using WS-MAN as its transport
mechanism. PowerShell for Linux doesn’t include a WS-MAN provider. Traditionally, Linux
has used SSH (Secure Shell) for remote access. PowerShell for Linux performs remote access
using SSH.

Note

The plan is that eventually there will be a single mechanism for PowerShell remoting regardless
of the client and target. Until that time, you need to use SSH if Linux machines are involved and
WS-MAN if only Windows machines are involved.

If you want to perform PowerShell remoting between Windows machines and Linux machines,
you need to have SSH installed at both ends. PowerShell on Windows uses OpenSSH. You can
run this code to find the links to the latest releases of OpenSSH:

$url = 'https://github.com/PowerShell/Win32-OpenSSH/releases/latest/'

$request = [System.Net.WebRequest]::Create($url)

$request.AllowAutoRedirect=$false

$response=$request.GetResponse()

$([String]$response.GetResponseHeader("Location")).Replace('tag','download')

 + '/OpenSSH-Win64.zip'

$([String]$response.GetResponseHeader("Location")).Replace('tag','download')

 + '/OpenSSH-Win32.zip'

You’ll see results like this:

https://github.com/PowerShell/Win32-OpenSSH/releases/download/v0.0.17.0/

 OpenSSH-Win64.zip

https://github.com/PowerShell/Win32-OpenSSH/releases/download/v0.0.17.0/

 OpenSSH-Win32.zip

Download the appropriate version. Instructions for installing a Windows version of OpenSSH are
available at http://mng.bz/n48S. The instructions don’t explicitly state it, but ensure that all
instances of PowerShell or CMD are started with elevated privileges when installing OpenSSH.
When OpenSSH is installed, perform the additional configuration steps for Windows machines at
http://mng.bz/10iL.

OpenSSH is available for most Linux distributions. Install, or update, both client and server
versions of OpenSSH and configure as described at the SSHRemoting URL given earlier.

You also need to ensure that the Linux and Windows machines can find each other on the
network. Either ensure that your DNS contains entries for all relevant machines or add
appropriate entries to the hosts file on your machines.

PowerShell remoting from Linux to Windows works in a similar manner to Windows to
Windows remoting. An example of a remoting session from a Linux machine to a Windows
machine is shown in figure 5.

(830)

http://mng.bz/n48S
http://mng.bz/10iL

Figure 5. Remoting session from Linux to Windows

Note

PowerShell remoting between Linux and Windows machines works only with PowerShell v6
because it’s the only version that supports the use of SSH.

Create a remoting session from the Linux machine to the Windows machine:

$s = New-PSSession -HostName W16AS01.manticore.org

-UserName Administrator

You’ll be prompted for the password of the user account you specify. Invoke-Command can then be
used, as with the remoting sessions you’ve already seen:

Invoke-Command -Session $s -ScriptBlock {Get-Process}

A PowerShell remoting session from Linux to Windows can also be used interactively. Notice
the prompt change in figure 5. Within the remoting session, you can access the functionality on
the Windows machine that’s not present on the Linux machine, such as the CIM cmdlets.

You can also create a remoting session from Windows to Linux:

PS> $sl = New-PSSession -HostName Lin01.manticore.org -UserName root

root@lin01.manticore.org's password:

You’ll be prompted for the password. Commands can be run over the session:

PS> Invoke-Command -Session $sl -ScriptBlock {Get-Process -Name powershell}

NPM(K) PM(M) WS(M) CPU(s) Id SI ProcessName PSComputerName

------ ----- ----- ------ -- -- ----------- --------------

 0 0.00 0.02 11.21 5863 5809 powershell Lin01.manticore.org

(831)

 0 0.00 0.02 4.07 7898 7898 powershell Lin01.manticore.org

or you can enter the session:

PS> Enter-PSSession -Session $sl

[Lin01.manticore.org]: PS /root> $PSVersionTable

Name Value

---- ----.

Name Value

---- ----.

PSVersion 6.0.0-beta

PSEdition Core

GitCommitId v6.0.0-beta.3

OS Linux 3.10.0-514.6.1.el7.x86_64 #1 SMP Wed Jan 18 13:06:36 UTC

2017

Platform Unix

PSCompatibleVersions {1.0, 2.0, 3.0, 4.0...}

PSRemotingProtocolVersion 2.3

SerializationVersion 1.1.0.1

WSManStackVersion 3.0

[Lin01.manticore.org]: PS /root> Exit-PSSession

You can copy a file from a Windows machine to a Linux machine:

PS> Copy-Item -Path .\test.txt `

-Destination "/home/richard/Scripts/" -ToSession $sl -Force

and vice versa:

PS> Copy-Item -Path "/home/richard/Scripts/*.txt" `

-Destination .\PIA3e\ -FromSession $sl -Force

You can even use a WS-MAN-based session to a Windows machine and a SSH session to a
Linux machine together:

PS> $sw = New-PSSession -ComputerName W16DSC01

PS> Get-PSSession

Id Name ComputerName ComputerType State ConfigurationName

-- ---- ------------ ------------ ----- -----------------

 1 SSH1 Lin01.ma... RemoteMachine Opened DefaultShell

 2 WinRM2 W16DSC01 RemoteMachine Opened Microsoft.PowerShell

PS> Invoke-Command -Session $sl, $sw `

-ScriptBlock {Get-Process -Name PowerShell}

NPM(K) PM(M) WS(M) CPU(s) Id SI ProcessName PSComputerName

------ ----- ----- ------ -- -- ----------- --------------

 27 53.44 62.52 1.22 1740 2 powershell W16DSC01

 0 0.00 0.02 12.18 5863 5809 powershell Lin01.manticore.org

 0 0.00 0.02 7.70 7898 7898 powershell Lin01.manticore.org

PowerShell remoting between Linux and Windows machines enables you to perform your
administration on whichever platform you prefer. Whatever your mix of Linux and Windows
machines, you can administer them using the same PowerShell tools.

Note

PowerShell v6 remoting over SSH is a possible answer to the issue of accessing non-domain
Windows machines remotely. The use of SSH bypasses the Kerberos-related issues that make
non-domain remoting difficult and is an alternative to the use of certificate-based remoting,

(832)

which is the current recommendation.

In chapter 18 we showed you how to use DSC. What we didn’t cover was that DSC is also
available for Linux machines.

(833)

DSC and Linux

The agent side of DSC for Linux has been available since PowerShell v4. You need to install a
number of pre-requisite packages on the Linux target machine to support the DSC for Linux
agent. Also, you’ll need to download the modules from the PowerShell gallery that provide the
resources for configuring Linux.

The client side—Start-DSCConfiguration—isn’t going to be supported in PowerShell v6. You
can compile configurations on Linux but you can’t use any of the DSC cmdlets because they’re
CIM based.

Note

DSC agent for Linux isn’t dependent on PowerShell 6.0, but we’re combining the Linux-based
material into this appendix for ease of reference.

We briefly cover installing DSC for Linux and then show you a DSC for Linux configuration.

Installing DSC for Linux

Installing the DSC agent on Linux is a multi-stage process. First, you install the Open
Management Infrastructure (OMI), which is a CIM server for Linux. Then you ensure that
prerequisite packages are installed, and then you can install the DSC package on the Linux
machine. The final step is to download the DSC resource modules to your Windows authoring
machine.

DSC uses CIM, as we showed in chapter 18. Linux doesn’t have a native CIM provider, so you
need to install OMI.

Install OMI on a Linux machine

OMI is an open source project—https://github.com/Microsoft/omi—to develop a portable and
highly modular CIM Object Manager (CIMOM). It can be built and installed on most UNIX and
Linux systems. It’s also used in network switches, including those from Arista and Cisco.

Before you install OMI, ensure you have OpenSSL—at least version 0.9.8 and preferably 1.0.x
—on the Linux system. Download OMI from https://github.com/Microsoft/omi/releases and
install. You should also download and install the appropriate package for your system from
http://mng.bz/SPAg so that OMI can use the PowerShell Remoting Protocol over WS-MAN.
With this package installed, you can create CIM sessions to the Linux system from a Windows
machine.

You should check that OMI is running by using the following:

sudo /opt/omi/bin/omicli ei root/omi OMI_Identify

(834)

https://github.com/Microsoft/omi
https://github.com/Microsoft/omi/releases
http://mng.bz/SPAg

You’ll see a listing of all instances of the OMI_identify class in the root/omi namespace.

Now it’s time to install DSC for Linux.

Install DSC for Linux on a Linux machine

DSC for Linux is also an open source project at https://github.com/Microsoft/PowerShell-DSC-
for-Linux. The pre-requisites for installing DSC for Linux (descriptive name and package name)
are as follows:

GNU C Library—glibc
CURL http client library—libcurl
Python—python
Python Ctypes library—python-ctypes
Open Management Infrastructure—omi
OpenSSL libraries—openssl

The installation package for DSC for Linux is available from http://mng.bz/7Z39. Download and
install. The last step is to download the DSC resource modules.

Install DSC for Linux module on a Windows machine

If you remember from chapter 18, DSC resources are used to create configurations. The DSC
resources for configuring Linux are available on the PowerShell gallery. Their names start with
the prefix nx:

PS> Find-Module nx* | Format-Table Version, Name, Description

Version Name Description

------- ---- -----------

1.0 nx Module with DSC Resources for Linux

1.1 nxNetworking Module with DSC Networking Resources for Linux

1.1 nxComputerManagement Module with DSC Computer Management Resources

 for Linux

You can install all three modules in one pass:

PS> Find-Module nx* | Install-Module -Force

The DSC resources currently available for configuring Linux include the following:

PS> Get-Module -ListAvailable nx* |

foreach {Get-DscResource -Module $_.Name} |

Format-Wide -Column 4

nxArchive nxEnvironment nxFile nxFileLine

nxGroup nxPackage nxScript nxService

nxSshAuthorizedKeys nxUser nxComputer nxDNSServerAddress

nxFirewall nxIPAddress

Linux administration is performed by configuring the contents of numerous files. If a resource
isn’t available to configure a particular aspect of your Linux machine, you should be able to
complete the task by modifying the contents of the appropriate file.

Before attempting to configure the Linux machine, you should test that you can connect to OMI.

(835)

https://github.com/Microsoft/PowerShell-DSC-for-Linux
http://mng.bz/7Z39

Test CIM on a Linux system

The easiest way to test connectivity to CIM on your target machine is to create a CIM session to
that machine:

PS> $cred = Get-Credential root

PS> $sopt = New-CimSessionOption -UseSsl -SkipCACheck `

-SkipCNCheck -SkipRevocationCheck

PS> $sl = New-CimSession -Credential $cred -Authentication Basic `

-ComputerName Lin01 -SessionOption $sopt

Create a PowerShell credential object for the root account on the Linux system. You then need to
create a set of options for the CIM session. In this case, you’re telling the system to use SSL
(encrypt the connection) but to skip all the tests on the machine’s SSL certificate. You can then
create the session using the credential and options you set earlier and configuring the session to
use Basic (user name/password) authentication.

The resultant CIM session looks identical to a similar session established to a Windows machine:

PS> $sl

Id : 1

Name : CimSession1

InstanceId : 6dd1b519-db6e-4fbf-b26e-91b86bcb79e7

ComputerName : Lin01

Protocol : WSMAN

OMI doesn’t install any useful classes for configuring your Linux machine directly, but you can
display some basic information as a test:

PS> Get-CimInstance -CimSession $sl -ClassName OMI_Identify `

-Namespace root/omi

InstanceID : 2FDB5542-5896-45D5-9BE9-DC04430AAABE

SystemName : Lin01

ProductName : OMI

ProductVendor : Microsoft

ProductVersionMajor : 1

ProductVersionMinor : 1

ProductVersionRevision : 0

ProductVersionString : 1.1.0-0

Platform : LINUX_X86_64_GNU

OperatingSystem : LINUX

Architecture : X86_64

Compiler : GNU

ConfigPrefix : GNU

ConfigLibDir : /opt/omi/lib

ConfigBinDir : /opt/omi/bin

ConfigIncludeDir : /opt/omi/include

ConfigDataDir : /opt/omi/share

ConfigLocalStateDir : /var/opt/omi

ConfigSysConfDir : /etc/opt/omi/conf

ConfigProviderDir : /etc/opt/omi/conf

ConfigLogFile : /var/opt/omi/log/omiserver.log

ConfigPIDFile : /var/opt/omi/run/omiserver.pid

ConfigRegisterDir : /etc/opt/omi/conf/omiregister

ConfigSchemaDir : /opt/omi/share/omischema

ConfigNameSpaces : {root-omi, interop, root-Microsoft-

 DesiredStateConfiguration, root-Microsoft-Windows-

 DesiredStateConfiguration}

PSComputerName : Lin01

This is pretty much the same information you saw when you tested that OMI was running from
the Linux machine.

(836)

Now it’s time to create a configuration.

Using DSC for Linux

Using DSC to configure a Linux machine is the same as configuring a Windows machine:

Create a configuration file
Create a MOF file from the configuration
Apply the MOF file to the target machine

The configuration file is first.

Creating a configuration file

A configuration file for a Linux machine is identical to that for a Windows machine, except that
a different set of resources, defined in the nx*, modules must be used. We’ll repeat our first
configuration from chapter 18—to create a file and set its contents as an example, as shown in
the following listing.

Listing 2. DSC for a Linux configuration file

Configuration LxDSCConfig

{

 param ([string]$node)

 Import-DSCResource -Module nx

 Node $node

 {

 nxFile myTestFile

 {

 Ensure = "Present"

 Type = "File"

 DestinationPath = "/tmp/dsctest"

 Contents="This is our DSC on Linux Test!"

 }

 }

}

LxDSCConfig -node Lin01 -OutputPath .\MOF

The configuration starts with the Configuration keyword and the configuration name. A single
parameter, $node, is accepted by the configuration. The module containing the Linux DSC
resources is imported, and the nxFile resource is used to configure the file and its contents.

A MOF file is created in the location defined by -OutputPath. You can now apply the
configuration.

Applying a Configuration

Pushing a configuration to a Linux machine is identical to pushing to a Windows machine if
you’re pushing the configuration from a Windows machine. Start-DSCConfiguration isn’t
supported on Linux yet and won’t be for the PowerShell v6 release.

Note

(837)

You can compile configurations into MOF files on Linux—you just can’t deploy them from the
Linux machine.

Let’s push the configuration to our Linux machine:

PS> Start-DscConfiguration -CimSession $sl -Path .\MOF\ -Verbose -Wait

VERBOSE: Perform operation 'Invoke CimMethod' with following parameters,

 ''methodName' = SendConfigurationApply,'className' =

MSFT_DSCLocalConfigurationManager,'namespaceName' = root/Microsoft/Windows/

 DesiredStateConfiguration'.

VERBOSE: Operation 'Invoke CimMethod' complete.

VERBOSE: Time taken for configuration job to complete is 0.655 seconds

You’ll need to use a CIM session (the one we created earlier) to push your configuration. You
can test the configuration:

PS> Test-DscConfiguration -CimSession $sl

True

and view the configuration:

PS> Get-DscConfiguration -CimSession $sl

DestinationPath : /tmp/dsctest

SourcePath :

Ensure : present

Type : file

Force : False

Contents : This is our DSC on Linux Test!

Checksum :

Recurse : False

Links : follow

Group : root

Mode : 644

Owner : root

ModifiedDate : 23/02/2017 20:09:34

PSComputerName : Lin01

CimClassName : MSFT_nxFileResource

DSC for Linux performs and operates in the same way as DSC against Windows that you saw in
chapter 18. You can also configure a Linux machine to utilize a pull server and even mix and
match Linux and Windows configurations in the same file.

Note

Hint: use roles to separate the two types of machine.

(838)

Summary

PowerShell core engine is now an open source project.
Powershell v6 will be available for Windows, Linux, and macOS.
PowerShell v6 is built on .NET Core.
PowerShell remoting uses SSH for Windows to Linux or Linux to Windows connections.
Windows to Windows can use WS-MAN or SSH.
PowerShell for Linux is still in its infancy compared to Windows PowerShell but is
already capable of performing basic management tasks on your systems.
The porting of PowerShell and DSC to Linux means you can manage your heterogenous
environments with a single set of tools.
Windows Powershell will continue to be the version that ships OOB with Windows and
will continue to evolve through its ecosystem of modules.

(839)

Index
[SYMBOL][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

SYMBOL

32-bit application

64-bit application

$args.length

$args scalar

$args variable, 2nd, 3rd, 4th, 5th

$a variable

$bar variable

$c2 variable

$ character

$color parameter

$timer.Stop() method

$totalcountaccuracy variable

$total variable

$true variable

$t variable

$typeSpec variable

$_ variable, 2nd, 3rd, 4th

$? variable, 2nd

$var variable

$v variable

$ConfirmPreference preference variable

$x variable, 2nd, 3rd

` (backquote) character, 2nd

[] brackets

: character

\ character

< character

> character

, (comma operator)

-. (decrement operator)

. (dot operator), 2nd

$count parameter

++ (increment operator)

% (modulus operators)

(number sign)

. operator, 2nd

:: operator

. operator, 2nd

* operator

& operator, 2nd, 3rd

% operator

+ operator, 2nd, 3rd

$count variable, 2nd

 using with Get-Count and Reset-Count

 variables and aliases exported

> operator

+= operators

| (pipe) operator, 2nd

./ prefix

.\\ prefix

.. (range operator)

>> (secondary prompt)

; (semicolon) character

’ (single quotes)

:: (static member operator)

-. symbol

@ symbol

#> symbol

<# symbol

$c variable

$ENV: environment provider

$ENV:HOMEPATH environment

$ENV:PATH modules

$ENV:PROCESSOR_ARCHITECTURE variable

$ENV:PSModulePath variable, 2nd, 3rd

$ErrorActionPreference variable

$error.Clear() method

$error variable, 2nd

$event.Entry.Message

$Event.SourceArgs

$EventSubscriber variable

$events variable

$Event variable

$ExecutionContext variable

$exp variable

$false variable, 2nd

$foo variable

$foreach loop enumerator, using in foreach loop

$foreach.MoveNext() method

$foreach variable, 2nd

(840)

$from parameter

$HOME variable

$hostName paramete

$host object

$increment variable, 2nd, 3rd, 4th, 5th

$input.current.$p expression

$input variable, 2nd

$in variable

$inventory string

$IsCoreCLR variable

$IsLinux variable

$IsOSX variable

$ISumTotal property

$IsWindows variable

$jb variable

$LASTEXITCODE variable

$last variable

$LAST variable

$list variable

$matches variable

$MaximumErrorCount variable

$mInfo variable

$MyInvocation.MyCommand.Module

$NestedPromptLevel variable

$null, 2nd

$numbers variable

$numProcesses parameter

$OFS variable, 2nd, 3rd

$pattern parameter

$PID variabl

$PROFILE variable

$PSBoundParameters variable, 2nd

$PSCmdlet.ParameterSetName property

$PSCmdlet.SessionState.Module

$PSCmdlet.ThrowTerminating-Error() method

$PSCmdlet variable, 2nd

$PSDefaultParameterValue variable

$PSHome/modules directory

$PSHome/types.ps1xml

$PSHome variable

$PSHOME variable, 2nd, 3rd

$psitem variable, 2nd

$PSModuleAutoLoading-Preference variable

$PSModuleRoot variable

$PSScriptRoot variable

$PSSessionConfigurationName variable

$PSVersionTable

$PSVersionTable.PSEdition

$result variable

$script counter variable

$Sender.Event

$Sender variable

$ServerFile parameter

$showCmdlet module

$SourceArgs variable

$SourceEventArgs variable

$s variable

$switch loop enumerator, using in switch statement

$switch.movenext() method

$switch variable, 2nd

$testv variable

$this variable, 2nd

$throttleLimit

A

abc function

about_Automatic_Variables help file

about_Language_Keywords help file

about_Reserved_Words file

abstract class

abstract method

access control list.

 See ACL.

access controls, and endpoints

accessing base classes

AccessMode module

accidental code injections

accidental execution

ACL (access control list)

-Action parameter

ActionPreferenceStopException

Action property, on PSBreakpoint object

actions

 asynchronous events and

 running upon module removal

action script block, in breakpoints

activities, vs. cmdlets

activity parameters

adaptation

 of existing member

 extending objects

 synthetic members

(841)

adaptation layer, COM

AddArgument() method, 2nd

add_Click() method, 2nd

AddCommand() method

AddExpression() method

AddFile configuration

addition operator

addition, with hashtables

Add-Member cmdlet

 using to extend objects

 adding AliasProperty members

 adding NoteProperty members

 adding ScriptMethod members

 adding ScriptProperty members, 6th

 adding AliasProperty members

 adding NoteProperty members

 adding ScriptMethod members

 adding ScriptProperty members

Add() method, 2nd

AddParameter() method, 2nd

add/remove software, appwiz.cpl command

AddScript() method

AddStatement() method

Add-Type cmdlet, compiling code with

 defining new enum types at runtime

 defining new .NET class with C# language

 dynamic binary modules

Admin Script PowerShell IDE

After filter

-After parameter

agentless monitoring using remoting

aggregating, events with GROUP

Alias attribute, creating parameter aliases with

aliased members

aliases

 and elastic syntax

 listing definitions

 parameter alias, reasons for using

 predefined

 using in workflows

Aliases section

AliasesToExport element

-Alias parameter

alias property

AliasProperty members, adding to objects

AliasProperty type

-All flag

-AllMatches switch

AllNodes key

-AllowClobber parameter

AllowEmptyCollection attribute

AllowEmptyString attribute

AllowNull attribute

AllSigned

analysis of scripts, static

-and operator

anonymous code

anonymous functions, 2nd, 3rd

Ansible tool

APIs (application programming interfaces)

AppDomain class, 2nd

Application event log

Application log

applications, managing with COM

ApplyAndAutoCorrect

ApplyAndMonitor setting

ApplyOnly setting

appwiz.cpl command

architecture, of workflows

ArgumentList parameter, 2nd

argument processing, by ForEach-Object cmdlet

arguments, 2nd

 passing to scripts

 passing using $args variable

 printing

 specifying to switch parameters

 vs. parameters

ArgumentTransformation-Attribute

arithmetic operators

 addition

 multiplication

 subtraction, division, and modulus

array assignment

Array class

array concatenation

ArrayList class

array literals

array operations

 convert array to string

 determining unique members

 grouping by key property

array operators

 comma

 indexing and slicing

 multidimensional

 range

(842)

arrays

 0 origin

 as reference types

 of characters

 converting to string

 string as

 collecting pipeline output as

 empty arrays

 indexing of

 multiplication of

 of indexes

 polymorphism in

 presentation in tracing

 resizing

 singleton arrays

 subexpressions

array slicing, 2nd

array subexpression operator

ASCII encoding

AsCustomObject() method

AsCustomObject parameter

-AsJob parameter, 2nd, 3rd, 4th

-as operator

-As parameter

assemblies, 2nd

 default

 dynamic loading

assembly manifest

assembly patterns

Assembly property

assignable elements

assignable expressions

assignment expressions

 as value expressions

 syntax

assignment operators, 2nd

 as value expressions

 multiple

asynchronous events

 actions

 eventing cmdlets

 handling with scriptblocks

 in .NET

 binding event action

 creating timer object

 enabling events

 managing event subscriptions

 setting timer event parameters

 writing timer event handler

 registrations

 subscriptions

asynchronous thread

attribute-constrained variables

attributes, of class members

 hidden

 member validation

 static

authentication, connecting user

Author element

automatic type conversion

automatic variables

 in event handler

 overview, 2nd

automation interfaces

AutoReset property, 2nd

Autosize parameter, 2nd

-AutoSize switch

B

background jobs

 commands

 multiple

 running in existing sessions

 starting on remote computers

 types

 working with cmdlets

 removing jobs

 waiting for jobs to complete

background thread

backquote character, 2nd

-band operator

bar function

base classes

 accessing

 overriding members on

Bash shell, 2nd

bash, Windows

Basic type

Before filter

-Before parameter

(843)

begin blocks, functions with

begin clause, 2nd, 3rd

Begin() function

BeginInvoke() method

begin keyword, 2nd

BeginProcessing clause

binary files

binary modules

 creating

 dynamic

 overview

binary operators, 2nd, 3rd

binary tree

binary type

binding

 event actions

 objects, data and methods

 parameters pipelines and

bitmap files, dumping

BitsTransfer module

bitwise operators, 2nd

block of code, trap statement scope

-bnot operator

Boolean parameters

[bool] parameter

-boolParameter

-bor operator

bottom-tested variant, of while loop

bound variables

braces, mandatory in statement lists

branching

break keyword, 2nd

breakpoints

 conditional breakpoints

 setting on commands

 setting on variable assignments

 working with objects

break statement, 2nd, 3rd

browser cache path issues

building objects, in PowerShell

built-in $PSHOME variable

built-in commands

built-in type conversion

Button object, 2nd, 3rd

-bxor operator

by reference

C

calc process

calculated field

calculated module exports

CallExit function

calling functions

calling modules

 accessing

 defining modules vs.

call operator

 executing script block with

 overview, 2nd

 script blocks

candidate conversion

capturing error records, 2nd

capturing session output

 information captured in transcripts

 starting transcripts

carriage return

-case option

case-sensitive operators

-CaseSensitive parameter, 2nd

case-sensitivity

 comparison operators and

 overview

casting

 strings to arrays of characters

 to void

cast initialization, 2nd

cast notation

catch keyword

categories, of COM objects

CategoryInfo property

-ccontains operator

CDXML (Cmdlet Definition XML), 2nd, 3rd

-ceq operator, 2nd

-cge operator

-cgt operator

chained cast

change-tolerant scripts

character classes

(844)

character encodings, 2nd

[char] class

Char objects

checkpoints

 in workflows

 overview

Chef tool

ChildJob property

ChildJobs property

child jobs, with invoke-command

Church, Alonzo

CIM cmdlets

CimCmdlets module, 2nd

CIM (Common Information Model), 2nd

 basics of

 class-based registration

 aggregating events with GROUP

 using Win32_ProcessTrace events

 WITHIN keyword

 connectivity

 finding classes

 instances

 deleting

 modifying

 selecting

 intrinsic classes

 invoking methods

 overview

 query-based registration

 testing on Linux systems

 using sessions

 and WMI

-CIMSession parameter, 2nd, 3rd

cim type

-cin operator

C# language, 2nd, 3rd, 4th

class-based registration

 of CIM events

 aggregating events with GROUP

 CIM intrinsic event classes

 query-based CIM event registrations

 using Win32_ProcessTrace events

 WITHIN keyword

 using WIN32_ProcessTrace events

classes

 base

 accessing

 overriding members on

 constructors in

 derived, creating

 enumerations

 flags

 using

 extending existing

 creating derived classes

 in .NET

 overriding members on base classes

 finding CIM

 methods in

 basics of

 hidden

 instance

 overloads

 static

 and types

 using keyword

 assembly patterns

 module patterns

 modules and namespaces, interacting

 namespace patterns

 writing class-based DSC resources

class keyword, 2nd, 3rd

class members

 attributes of

 hidden

 member validation

 static

 using properties in

 writing

 class member attributes

 enumerations

-Class parameter

cleaning up breakpoints

Clear-EventLog cmdlet

-cle operator

Click() method

-clike operator

clippy function

Clixml format

Clone() method

close method

closures

CLRVersion element, 2nd

-clt operator

-cmatch operator

cmd.exe, 2nd, 3rd

(845)

CmdletBinding attribute

 $PSCmdlet variable

 ConfirmImpact property

 DefaultParameterSetName property

 HelpURI property

 PositionalBinding property

 SupportsPaging property

 SupportsShouldProcess property

Cmdlet Definition XML.

 See CDXML.

cmdlet groups, unsupported

-Cmdlet parameter

cmdlets

 building

 commands and

 eventing

 flow control using

 formatting and output

 invoking as workflow

 in jobs

 removing jobs

 waiting for jobs to complete

 Microsoft WMI

 missing

 variable

 getting and setting options

 indirectly setting

 names vs. values

 using PSVariable objects as references

 vs. activities

 workflow execution options

 workflow sessions

CmdletsToExport element

cmdlet Verb-Noun syntax

-cnotcontains operator

-cnotin operator

-cnotlike operator

-cnotmatch operator

code

 compiling with Add-Type cmdlet

 defining new enum types at runtime

 defining new .NET class with C# language

 dynamic binary modules

 example

 basic expressions and variables

 navigation and basic operations

 PowerShell

code injection attacks

CodeMethod type

CodeProperty type

collection comparisons

collections

 of objects

 using comparison operators with

collection type

colon character, in variable names

Color property

COM (Component Object Model)

 automating Windows with

 Interop assembly

 issues with

 managing applications with

 Microsoft Windows Task Scheduler

 objects

command aliases, 2nd

command discovery

command history

CommandInfo object, 2nd, 3rd, 4th, 5th

command information

command interpreter, vs. shell

command lines

 debugging

 limitations of

 setting breakpoints on commands

 setting breakpoints on variable assignments

 working with breakpoint objects

 overview, 2nd

command mode

command not found exception

command output, parsing using regular expressions

-Command parameter

commands

 anatomy of

 break-down of

 built-in

 categories of

 functions

 native commands

 scripts

 and cmdlets

 determining if errors in

 first element of

 in jobs

 invoking

 no concurrent in session

 offset in pipeline

(846)

 prefixing

 proxy, creating with steppable pipelines

 running in traditional shells

 running remotely

 executables

 files and scripts

 local variables

 processor architecture

 profiles and remoting

 reading and writing to console

 remote output vs. local output

 remote session startup directory

 setting breakpoints on

 with built-in remoting

Commands property

command switches, using switch parameters to define

command type

comma operator, 2nd, 3rd

comments

 comment-based help

 tags used in

 .COMPONENT help

 .EXTERNALHELP help

 .FORWARDHELP-CATEGORY help

 .FORWARDHELPTARGETNAME help

 .LINK help

 .PARAMETER help

 .REMOTEHELPRUNSPACE help

comment syntax

Common Information Model.

 See CIM.

common models

common parameters

-ComObject parameter

CompanyName element

-Compare parameter

comparison operators

 and case-sensitivity

 case sensitivity factor

 design rational

 left-hand rule

 scalar

 basic comparison rules

 type conversions and comparisons

 using with collections

compiled script

compile time

compile unit

compiling code, with Add-Type cmdlet

 defining new enum types at runtime

 defining new .NET class with C# language

 dynamic binary modules

complete statement

complied programs

components

.COMPONENT tag

composite management applications, mash-ups

composite resources

compound assignment operators

computed parameters

computerItrust

ComputerName parameter, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th

computer names, parameterizing

concatenated statements

concatenation, of arguments

concurrency

 adding to remoting examples

 using runspaces for

concurrent operation

 fan-in remoting

 using remoting

 with jobs

conditional breakpoints

conditional matches

conditional statement, 2nd

condition test

configuration

 for single node in DSC

 applying

 creating

 removing

 testing applications

 viewing current

 of DSC

 of LCM

 settings

 using pull servers with

 partial

 disadvantages of

 in pull mode

 in push mode

 when indicated

ConfigurationData parameter

configuration files, creating in DSC for Linux

ConfigurationID

ConfigurationJob

ConfigurationModeFrequencyMins

-ConfigurationName parameter

(847)

ConfigurationPath setting

configurations

 custom

 registering endpoint configuration

 session configuration

 setting security descriptors on

-Confirm flag

ConfirmImpact property

-Confirm parameter

connection patterns, remote services

 fan-in

 fan-out

connections, persistent

[ConsoleColor] parameter

console, reading and writing to

Console.ReadLine API

Console.WriteLine API

constant variables

constrained application environment, in remoting

constrained endpoint

ConstrainedLanguage option

constraining sessions

construction elements, module manifests

 loader elements

 module component load order

constructors, in classes

Constructors type

containment operators

-contains operator

content elements, module manifests

-Context parameter

context-sensitive keywords

Continue identifier

continue keyword

continue statement, 2nd

contract parameter

Controls member

control structures

convenience aliases

conversion and precision

conversions, of types

 .NET-based custom

 overview

 in parameter binding

converters, .NET-based

ConvertToDateTime method

ConvertTo-Xml cmdlet, 2nd

copying elements

copying files, across session

Copy-Item cmdlet, -LiteralPath parameter

Copy-Item command

Copyright element

Core cmdlet noun

core cmdlets

CorePowerShell

counter module

countervariable

counting loop

Count property, 2nd

countUp function

Create() method, 2nd

CreateOutOfProcessRunspace() method

CreateRunspace() method

credential information

CredSSP (Credential Security Service Provider), 2nd

-creplace operator

critical operations

Critical type

CSV file

CultureInvariant option

CurrentDomain property

Current property

CustomClass keywords

custom objects, 2nd, 3rd, 4th

custom services

 access controls and endpoints

 building

 constrained execution environments

 constraining sessions

 remote service connection patterns

custom type conversions

D

data abstraction

data, processing

 problem-solving pattern

 selecting properties from objects

 sorting objects

 with ForEach-Object cmdlet

data structure, example of

DateTime objects, 2nd

(848)

DayOfWeek property, 2nd

DCOM (Distributed Component Object Model)

debugging

 capturing session output

 information captured in transcripts

 starting transcripts

 command lines

 limitations of

 setting breakpoints on commands

 setting breakpoints on variable assignments

 working with breakpoint objects

 jobs

 problems in function output

 remote scripts

 runspaces

 script instrumentation

 catching errors with strict mode

 static analysis of scripts

 Write* cmdlets

 writing events to event log

 scripts

 nested prompts

 Set-PSDebug cmdlet

 Suspend operation

 v2 debugger

debug statements

declarative programming

declaring parameters

decrement operator

default assemblies

default clause

Default option

DefaultParameterSetName property, 2nd

default presentation, overriding

default prompts, in remote sessions

default session configuration, creating

Default type

default values

 creating

 for parameters

 initializing function parameters with

 modifying

 using scriptblocks to determine

Definition property

definitions, managing in session

delegates, synchronous events and

delegation, synchronous events and

deleting functions

dempotent operation

depth, default serialization

-Depth parameter

derived classes, creating

Description property, 2nd, 3rd, 4th

.DESCRIPTION tag

deserialized objects

design decision, contentious issues

Desired State Configuration.

 See DSC.

desk.cpl command

Desktop Management Task Force

diagnosing problems, using Eventlog

diagnostics, tracing and logging

Digest type

dir command

 overview, 2nd

 using pipelines

DirectoryInfo object, 2nd

Disable-PSBreakPoint cmdlet

Disable-PSSessionConfiguration cmdlet

discarding error messages

discarding output

Disconnected state

DisplayHint command

DisplayName event

display settings, desk.cpl command

display, width of

Distributed Component Object Model.

 See DCOM.

Distributed Management Task Force.

 See DMTF.

division by zero error

division operator

DLL (dynamic link library)

DMTF (Distributed Management Task Force)

DNSClient module

doc comments

documentation comments

documenting

 analyzing word use in

 help

 automatically generated fields

 comment-based

 creating manual content

 tags used in comments

 .COMPONENT help

 .EXTERNALHELP help

 .FORWARDHELP-CATEGORY help

 .FORWARDHELPTARGETNAME help

(849)

 .LINK help

 .PARAMETER help

 .REMOTEHELPRUNSPACE help tag

documents folder

dollar sign

domain, extracting

Domain-Specific Language.

 See DSL.

domain-specific languages

DotNetFrameworkVersion element, 2nd

dot operator, 2nd, 3rd

dot script

dot-sourcing, scripts and functions

dotting

double-colon operator, 2nd

double-hop problem, resolving

double-quoted strings

double quotes, 2nd, 3rd

do-while loop

-dp1 parameter

drives

DSC (Desired State Configuration), 2nd, 3rd, 4th

 architecture

 configuration of

 for Linux

 applying configuration

 creating configuration files

 installing

 installing on Linux machines

 using

 installing Linux module

 models

 breakdown of

 declarative programming

 idempotent operation

 need for configuration management

 partial configurations

 disadvantages of

 when indicated

 push mode to multiple nodes

 disadvantages of push mode

 roles

 resources, 2nd

DscResourcesToExport module

DSCServiceFeature

DSL (Domain-Specific Language)

DSum() method

dynamically generating scriptblocks

dynamically typed languages

dynamic assembly loading

dynamic binary modules

dynamic code generation

dynamic keyword

dynamic languages

 debugging

 overview, 2nd

dynamic link library.

 See DLL.

dynamic modules, 2nd

 binary

 closures

 creating custom objects from

 script

dynamicParam block, 2nd

dynamic parameters, and dynamicParam keyword

 steps for adding

 when to use

dynamic scoping

 defined

 implementation of

dynamic typing

E

-ea parameter

EjectPC() method , 3rd

 aliases and

 definition

elements, adding to XML objects

elevated privileges, and remoting

elseif clauses

elseif keyword

emits objects

empty arrays

Empty option

enabled parameter

Enabled timer property

Enable-PSBreakPoint cmdlet

Enable-PSRemoting command

Enable-PSSessionConfiguration cmdlet

Enable-PSTrace

enabling events

encapsulating data and code

-Encoding parameter, 2nd, 3rd

(850)

encoding, used in strings

encryption, in remoting

end blocks, functions with

end clause, 2nd

End() function

EndInvoke() method

end-of-parameters parameter

endpoints

 access controls and

 registering configurations

 remoting configuration

 unregistering

 verifying existence

EndProcessing clause

engine events

Ensure parameter

Enter-PSSession command, 2nd, 3rd

EntryType filter

EntryWritten event

enumerating hash tables

enumerations

 flags

 using

enum types, defining new at runtime

en-US subdirectory

environment configuration

environment variables, 2nd

env namespace

-eq operator, 2nd

Equals() method

-ErrorAction parameter

error action policy, 2nd

error action preference, 2nd

-ErrorActionpreference parameter

error buffer

 circular bounded buffer

 controlling size

 operations

error codes

 $LASTEXITCODE variable

 use in PowerShell

ErrorDetails Property

error-handling code

ERRORLEVEL variable

error messages

error objects

error processing subsystem

error records

 as formatted text

 as strings

 displaying all properties

errors

 capturing error objects

 catching with strict mode

 catching attempts to read nonexistent properties

 catching uninitialized variable use in string expansions

 checking for functions called like methods

 event log

 EventLog cmdlets

 Get-WinEvent

 viewing

 getting detailed information about

 handling

 $error variable and -ErrorVariable parameter

 controlling actions taken on errors

 determining if commands had errors

 error records and error stream

 object references

 redirecting

 runtime behavior

 that terminate execution

 throw statement

 trap statement

 try/catch/finally statement

 types of, 2nd

-ErrorVariable parameter, 2nd, 3rd

escape character

evaluation order, in foreach loop

event-based script

event classes, CIM intrinsic

EventHandler variables

event handling, foundations of

EventIdentifier

eventing, infrastructure of

event log

 accessing from PowerShell

 EventLog cmdlets

 Get-WinEvent

 remote events

 tasks

 viewing

 writing events to

EventLog cmdlets, 2nd

(851)

events

 aggregating with GROUP

 asynchronous

 actions

 eventing cmdlets

 handling with script-blocks

 in .NET

 registrations

 subscriptions

 automatic variables in handler

 binding actions

 enabling

 engine

 forwarding

 handling remote eventlog events

 serialization issues with remote events

 generating in functions

 generating in scripts

 handler state

 managing subscriptions

 queued

 remote

 synchronous

 delegation

 in GUIs

 non-GUI

 Win32_ProcessTrace

 writing to event logs

Events member

EventSubscriber cmdlet

Event viewer, and Show-Event cmdlet

EventWatcher1

exact matches

example code

 basic expressions and variables

 flow control statements

 navigation and basic operations

 processing data

 problem-solving pattern

 selecting properties from objects

 sorting objects

 with ForEach-Object cmdlet

 remoting and Universal Execution Model

 scripts and functions

ExampleModuleScript

.EXAMPLE tag

Exception property

exceptions

 accessing in trap block

 C# and VB.Net

 catching all exceptions

 rethrowing

 terminating error

executables

executing code, at runtime

execution

 errors that terminate

 throw statement, 2nd

 trap statement

 try/catch/finally statement

 options in workflows

 statements

 stepping through

 tracing

execution environments, constrained

execution errors

execution policy

 and implicit remoting

 overview

execution stopped error

executive job

Exit() API

exit code

exit command, in remoting

Exit-PSSession command, 2nd, 3rd

exit statement, exiting scripts and, 2nd

exit with code 0

expandable strings

ExpandString() method

expansions.

 See string expansions.

ExplicitCapture option

Explicit Cast Operator type

Explore() method

explore objects

Export-Clixml cmdlet, 2nd

ExportedCommand property

ExportedCommands

ExportedFunctions property, 2nd

Exported member term

exporting variables

Export-ModuleMember cmdlet, 2nd

 controlling module member visibility with

 calculated module exports

 controlling export

 overview

exports

 accessing using PSModule Info object

(852)

 calculated module

 elements

 of functions, controlling

 of variables and aliases, controlling

expression member, with Select-Object

expression-mode parsing

expression-oriented language

expression oriented syntax, with try/catch statements

expressions

 basic

 using try/catch/finally statement in

extended type system

extending

 existing classes

 creating derived classes

 in .NET

 overriding members on base classes

 objects

 PowerShell language

 adding CustomClass keywords

 little languages

 type extension

 runtime

Extensible Application Markup Language.

 See XAML.

Extensible Markup Language.

 See XML.

external commands

 error handling

 in sessions

.EXTERNALHELP tag

F

factory method pattern

FailFast() method

Failure Audit type

fallback members

fallback operator

fan-in/fan-out remoting

fidelity

fields, 2nd

file extensions

FileInfo object

FileList manifest element

file names, matching

file not found error

-file option

-File parameter

file path delimiters

-FilePath parameter

file paths

File property, 2nd

File resource, 2nd

files

 concatenating multiple files

 copying across session

 displaying contents of

 formatting and output subsystem

 length of

 processing with switch statement

 reading

 reading/writing with variables

 searching hierarchy of

 searching with Select-String cmdlet

 getting all matches in line

 trees of files

 writing to

 XML, loading and saving

file system provider

 overview

 working with

FileSystemWatcher object

Filtering output, using Get-Member cmdlet

filter keyword

filters

 filtering EventLog entries

 overview

finally keyword

Find-Command

Find-DscResource command

Find-Module command

Find-RoleCapability command

Find-Script command

findstr command

Find-Type cmdlet

First parameter, 2nd

flags

flags enumerations

flattened results

fl command

floating point

(853)

flow control, 2nd

 adding new

 conditional statement

 labeled loops and break and continue statements

 looping statements

 do-while loop

 foreach loop

 for loop

 while loop

 performance

 statements as values

 switch statement

 processing files with

 using $switch loop enumerator in

 using regular expressions with

 using wildcard patterns with

 using cmdlets

 ForEach-Object

 Where-Object

flow-control statements

fluent API, 2nd

folder structure, of modules

foo function, 2nd, 3rd

foo imports

-f operator, 2nd, 3rd

-Force flag

Force option

-Force parameter, 2nd, 3rd, 4th, 5th

 overwriting existing definition

 removing jobs

foreach block

foreach cmdlet

foreach keyword, 2nd, 3rd

foreach loop, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th

 and $null value

 defined

 displaying hash tables

 evaluation order in

 using $foreach loop enumerator in

 using range operator

.foreach() method

ForEach() method

Foreach-Object cmdlet

 overview, 2nd, 3rd

 using alias

ForEach-Object cmdlet, 2nd, 3rd, 4th, 5th

 argument processing by

 comparing order of execution with foreach loop

 comparing with foreach statement

 definition and example

 processing with

 using return statement with

Foreach -parallel syntax

foreach scriptblock

foreach statement, 2nd, 3rd, 4th, 5th, 6th, 7th

ForegroundApplicationBoost property

foreground thread

for loop, 2nd

formal arguments

formal parameters, declaring for functions

 adding type constraints to

 initializing with default values

 mixing named and positional

 switch parameters

Format-* commands

Format-Custom formatter

Format-Hex command

Format-List cmdlet, 2nd, 3rd, 4th, 5th

 using to display registry

 using to see error record

 using to see log

format operator

Format-SecureBootUEFI cmdlet

format specifiers

FormatsToProcess element, 2nd

Format-table

Format-Table command, 2nd

formatting output

 in interactive remoting

 overview, 2nd

formatting strings

Format-Wide cmdlet

Format-XmlDocument function

.FORWARDHELPCATEGORY help tag

.FORWARDHELPCATEGORY tag

.FORWARDHELPTARGETNAME help tag

.FORWARDHELPTARGETNAME tag

forwarding, events

 handling remote eventlog events

 serialization issues with remote events

-Forward parameter

fragments, of script code

frameworks, for WPF

-FromSession parameter

(854)

FromW16DSC01 session

fscope function

FullLanguage option

FullName property

FullyQualifiedErrorId property

.FUNCTIONALITY tag

function body

function calls, tracing

function definitions

 changing

 overview, 2nd

function drive, 2nd

FunctionInfo object

function keyword, 2nd, 3rd, 4th, 5th, 6th

-Function parameter

functions, 2nd

 as commands

 body of

 called like methods, checking for

 calling

 debugging problems in output

 declaring formal parameters for

 adding type constraints to

 handling mandatory

 mixing named and positional

 switch parameters

 defining at runtime

 definition

 dot-sourcing scripts and

 export rules for

 fundamentals of

 $args variable

 ql and qs functions

 generating events in

 initializing with default values

 managing definitions in session

 parameterizing

 returning values from

 using in pipeline

 variable scoping in

 declaring variables

 modifiers

 with begin, process, and end blocks

function-scoped variable

FunctionsToExport element

G

generating elements

generating script

generic types, 2nd

genre attribute

-ge operator

GetAssemblies() method, 2nd

Get-Bios command, 2nd

Get-Character function

Get-ChildItem command, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th

Get-CimAssociatedInstance

Get-CimClass

Get-CimInstance command, 2nd

Get-Command, 2nd, 3rd, 4th, 5th

Get-CommandString function

Get-Content cmdlet, 2nd, 3rd, 4th

 -ReadCount parameter, and Where-Object cmdlet

 sending data to pipeline

 sending data to variables

 using with binary files

Get-Count function, 2nd, 3rd, 4th, 5th, 6th, 7th

Get-Date cmdlet, 2nd, 3rd, 4th, 5th

Get-DscConfiguration

Get-DscLocalConfigurationManager

GetEnumerator() method

Get-Event cmdlet

Get-EventLog cmdlet

 filtering entries

 -InstanceID parameter

 -Message parameter

 -Source parameter

Get-EventSubscriber cmdlet, 2nd

GetExportedTypes() method

Get-HealthModel cmdlet

Get-Help about_Automatic_Variables command

Get-Help command, 2nd

Get-Help Online about_execution_policies

Get-HexDump

Get-HotFix cmdlet

Get-Item command

 overview, 2nd, 3rd

 retrieving RootSDDL

Get-ItemProperty cmdlet

Get-Job cmdlet, 2nd, 3rd, 4th

(855)

Get-Member cmdlet, 2nd, 3rd, 4th, 5th, 6th, 7th

Get() method

Get-Module cmdlet, 2nd

 description of

 finding modules

 getting information about loaded module, 2nd

GetNewClosure() method

Get-PageFaultRate function

Get-Process command, 2nd

Get-PSBreakPoint cmdlet

Get-PSCallStack cmdlet

Get-PSDrive command

Get-PSSession cmdlet

Get-PSSessionConfiguration cmdlet

Get-Runspace command

Get-Service cmdlet

Get-Something command

Get-Spelling.ps1 script

getter method

GetType() method, 2nd

GetTypes() method, 2nd

Get/Update/Set pattern

Get-Variable function

Get-Volume cmdlet

Get-WinEvent cmdlet

gigabytes

global assembly cache

global context

global environment, importing nested modules into

-Global flag, importing nested modules into global environment with

global level

global modifier

global module table

-Global parameter

global scope

grammar

graphic user interfaces.

 See GUIs.

grep command

GROUP, aggregating events with

Group Policy, enable remoting using

-gt operator

GUI debugger

GUID (globally unique identifier)

 overview, 2nd

 used as Job Instance ID

GUIs (graphical user interfaces)

 creating winforms modules

 overview

 synchronous events in

 WinForms

 WPF

 advantages of using

 file search tool

 frameworks for

 preconditions

H

HadErrors property

handles, 2nd

hashtable argument

hashtable elements

hashtable key

hashtable operators

hashtables

 as reference types

 enumerating

 extending

 modifying

 sorting

 use with Select-Object

Hello argument

Hello world program

help

 automatically generated fields

 comment-based

 creating manual content

help files, operating on

HelpInfoURI

HelpMessage property

help subsystem, PowerShell

HelpURI property

here-strings, 2nd, 3rd

hexadecimals, 2nd

hidden attributes

hidden files

hidden keyword

hidden methods

hi function

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

host application interfaces, 2nd

(856)

hosting fan-in remoting, IIS

HTTPS (Hypertext Transfer Protocol Secure)

hygienic dynamic scoping

hyphens

I

IASyncHandle

IComparable interface

-icontains operator

IContentCmdletProvider interface

IconURI tag

IEnumerable interface

-ieq operator

if statements, 2nd, 3rd, 4th

-ige operator

IgnoreCase option

Ignore identifier

IgnorePatternWhitespace option

-igt operator

-iin operator

IIS (Internet Information Services)

-ile operator

-ilike operator

IList type

-ilt operator

-imatch operator

immutable strings

imperative programming

implementation decision, concatenation hashtables

implicit behavior, overriding

Implicit Cast Operator type

implicit metadata

implicit remoting, 2nd

 and execution policy

 generating temporary modules

 local proxy functions

Import-Clixml cmdlet

Import-CSV

Imported member term

Import-Module cmdlet, 2nd, 3rd, 4th, 5th

 description of

 loading modules

 module loading another

 and nested modules

 using -ArgumentList parameter

 using -Global flag

Import-Module function, 2nd, 3rd

Import-PSSession cmdlet, 2nd, 3rd

imports

IncludeTotalCount parameter

increment operator, 2nd

indexing

 of arrays

 with variables

index operation

indirect method invocation

InDisconnectedSession parameter

Information type

inheritance hierarchy

initializer expressions

initializing multiple variables

inline documentation

InlineScript block

in-memory buffering

InnerException property

inner loops

-in operator

-inotcontains operator

-inotin operator

-inotlike operator

-inotmatch operator

input encoding

-InputObject parameter, 2nd, 3rd

input, processing

input redirection

.INPUTS tag

Inquire identifier

installation directory path

installing

 DSC for Linux

 modules on Windows machines

 OMI on Linux machines

 on Linux machines

 testing CIM on Linux system

 OMI on Linux machines

 PowerShell 6.0

_InstanceCreationEvent class

InstanceDeletionEvent class

InstanceID filter

-InstanceID parameter, on Get-Eventlog

InstanceID property

instance members, 2nd

instance methods

InstanceModificationEvent class

(857)

InstanceOperationEvent class

instances

 extending, 2nd

 setting properties of

 of types, creating

instantiating objects

instrumentation.

 See script instrumentation.

integer division

integers

interactive environment

interactive mode

interactive sessions, 2nd

intercepting expressions

Internet Information Services.

 See IIS.

Interop assemblies, COM and

Interop library

interpreter interactively

Interval property

Interval timer property

intervening characters

InvocationInfo property

invocation intrinsics

Invoke-CimMethod

invoke-command, child jobs with

Invoke-Command cmdlet, 2nd, 3rd

InvokeCommand member

Invoke-Expression cmdlet, 2nd, 3rd, 4th, 5th

Invoke() method, 2nd, 3rd, 4th, 5th, 6th, 7th

Invoke-MyCmdlet command

InvokeScript() method

invoking

 cmdlets as workflow

 commands, indirectly

I/O redirection, 2nd, 3rd

ipconfig

-ireplace operator

IsChecked property

IsCompleted property

ISE (Integrated Scripting Environment), 2nd

ISEsteroids module

-isnot operator

ISO/IEC recommendations

isolated execution

-is operator, 2nd, 3rd

IsTrue() method

ISum() method

ItemNotFoundException

iterating value

iteration

J

jagged arrays, 2nd

JavaScript

JEA (Just Enough Administration), 2nd

job objects, 2nd

jobs

 background

 child, with invoke-command

 cmdlets and

 removing jobs

 waiting for jobs to complete

 commands

 debugging

 multiple

 nesting

 running in existing sessions

 scheduled

 creating

 managing

 modifying

 starting on remote computers

 child jobs

 nesting jobs

 types of

 workflows as

 checkpoints

 reboots and

 suspending workflows

joining strings

Join() method, 2nd

-join operator, 2nd

Join-Path cmdlet

K

(858)

Kerberos

Key property

keys, in registry

keys property

key-value pairs

keywords, in workflows

 Foreach -parallel

 InlineScript

 parallel

 sequence

kilobytes

Kleene, Stephen Cole

Korn shell

L

labeled loops, and break and continue statements

lambda calculus

lambda expressions

lambda keyword

language restrictions, in module manifests

language standard conversions

LCM (Local Configuration Manager)

 configuring

 settings

 changing

 default

least astonishment principle

left aligned

left-hand rule operators

left operand

Leibniz, Gottfried Wilhelm

length of file object

length property, 2nd, 3rd

-le operator

levels of indirection

lexical, ambiguity with type literals

lexical analyzer

lexical element

lexical scoping

lfunc function

libraries

LicenseURI tag

lightweight data record

-like operator, 2nd, 3rd

Limit-EventLog cmdlet

line feed

lines, getting all matches in

.LINK tag

Linux OS

 DSC for

 applying configuration

 creating configuration files

 installing

 using

 installing OMI on machines running

 PowerShell 6.0 on

 installing

 known issues with

 using

 remoting in

 testing CIM on

-ListAvailable parameter

list of functions, function drive

-LiteralPath parameter

literals

 accessing static members with

 generic types

 script block

 type aliases

literal strings

little languages

loader manifest elements, module manifests

 ModuleToProcess manifest element

 NestedModules manifest element

 RequiredAssemblies manifest element

 ScriptsToProcess manifest element

 TypesToProcess and Formats-ToProcess manifest elements

loading

 by module name

 removing loaded modules

 tracing with -Verbose flag

load order, of module components

LoadWithPartialname() method

Local Configuration Manager.

 See LCM.

local output, remote output vs.

local proxy functions

local variables, in remote sessions

logical complement

logical operators

logical type containment

loop counter

looping construct, adding new

(859)

looping statements

 do-while loop

 foreach loop

 and $null value

 evaluation order in

 using $foreach loop enumerator in

 for loop

 while loop

loop keyword

loop processing

loop statements, 2nd

-lt operator

M

MachineName property

macOS, PowerShell 6.0 on

 installing

 known issues with

MAML (Microsoft Assistance Markup Language) format

managed object format files.

 See MOF files.

management objects

managing error records

mandatory arguments

Mandatory attribute

mandatory parameters, handling

Mandatory property, 2nd

manifests

manifest type

manual documentation, in help files

.map() operator

Margin property

mash-ups, composite management applications

Match class, System.Text.Success property

matched value

matches, getting all in line

Matches property

MatchEvaluator class

match group

MatchInfo class

matching process

matching quote

Match() method

Match object, Value property

-match operator, 2nd, 3rd

 matching using named captures

 parsing command output using regular expressions

math operations, advanced

MaximumErrorCount

maximum integer value

Measure-Command cmdlet

megabytes

member collection

members, overriding on base classes

member types

member validation attributes

memory consumption

merging streams

-MessageData parameter, 2nd

MessageData property

Message filter

-Message parameter

metadata attributes, 2nd

metaprogramming

 building script code at runtime

 $ExecutionContext variable

 creating elements in function drive

 ExpandString() method

 Invoke-Expression cmdlet

 InvokeScript() method

 scriptblocks

 compiling code with Add-Type cmdlet

 defining new enum types at runtime

 defining new .NET class with C# language

 dynamic binary modules

 dynamic modules

 closures

 creating custom objects from

 script

 extending PowerShell language

 adding CustomClass keywords

 little languages

 type extension

 objects

 adding note properties with New-Object cmdlet

 public members

 synthetic members

 using Add-Member cmdlet to extend

 script blocks

 defining functions at runtime

 invoking commands

 literals

 Select-Object cmdlet

 steppable pipelines

 type system

(860)

 adding properties to

 shadowing existing properties

method call arguments

method invocations, 2nd

method operators

 dot

 indirect method invocation

 static methods and double-colon operator

method overloading

methods

 basics of

 checking for functions called like

 hidden

 instance

 invoking

 overloads

 static

 static, calling

method signature

Methods type

Microsoft Assistance Markup Language format.

 See MAML.

Microsoft Management Console.

 See MMC.

Microsoft.PowerShell32 endpoint

Microsoft.PowerShell.Activities

Microsoft.PowerShell.Diagnostics module

Microsoft.PowerShell endpoint

Microsoft.PowerShell.LocalAccounts module

Microsoft WMI

 cmdlets, Set-WmiInstance

 documentation

 overview

Microsoft Word, spell checking using

Microsoft.WSMan.Management module

MIMD (multiple instruction, multiple data)

-MinimumVersion parameter

minute property

MISD (multiple instruction, single data)

missing cmdlets

mkdir function

MMC (Microsoft Management Console)

Model-View-Controller pattern.

 See MVC.

modernized languages

modifiers, 2nd

modifying hashtables

module identity

ModuleList element

module manifests

 construction elements

 loader manifest elements

 module component load order

 content elements

 controlling when modules can be unloaded

 defining module vs. calling module

 accessing calling module

 accessing defining module

 language restrictions in

 module folder structure

 production elements

 module identity

 runtime dependencies

 PSModuleInfo object

 accessing module exports using

 invocation in module context

 methods

 running an action when module is removed

 setting module properties from inside script module

 structure of

Module manifest term

ModuleName property

ModulePath setting

module patterns

Module property, 2nd

ModuleQualified value

modules

 accessing

 accessing exports using PSModule Info object

 autoloading

 basics of

 binary

 creating

 nesting in script modules

 component load order

 controlling unloading of

 dynamic

 closures

 creating custom objects from

 script

 dynamic binary

 finding on system, 2nd

 folders

 identity

 Import-Module cmdlet

 installing

 interacting with namspaces

 invocation of PSModuleInfo object in context of

 loading by name

(861)

 manual install

 publishing to PowerShell gallery

 overview

 tags

 updates

 removing loaded

 role of

 running actions when removed

 seach algorithm

 setting properties from inside script module

 testing from repository

 tracing with Verbose flag

 winforms

 writing script

 controlling member visibility with Export-ModuleMember cmdlet

 nested modules

 review of scripts

 scopes in script modules

 turning into module

module scope

ModuleToProcess element

ModuleType property

Module type term

ModuleVersion element

modulus (%) operators

MOF (managed object format) files, 2nd

 contents of

 publishing

Monad project

monitoring script, parameterized

monotonic agent

Move-Item command

MoveNext() method, 2nd, 3rd

MoveToFirstAttribute() method

MoveToNextAttribute() method

MSDN (Microsoft Developers Network), 2nd, 3rd

MSFT_Volume class

multi-command pipelines

multidimensional arrays, 2nd

multiline comments

MultiLine option

multimachine monitoring

multiple assignment

multiple instruction, multiple data.

 See MIMD.

multiple instruction, single data.

 See MISD.

multiple jobs, performance considerations

multiple nodes, push mode to

 configuration data

 disadvantages of

 parameterizing computer names

 roles

 using configuration data

multiplication operator

multiplier suffixes, for numeric types

multiplying numbers

multivalued arguments

MVC (Model-View-Controller) pattern

MyModule.Module

N

nadd function

named captures, matching using

named parameters

name member, with Select-Object

Name property, 2nd, 3rd, 4th, 5th

Name section

names, of variables

 syntax for

 vs. variable values

-Namespace parameter

namespace patterns

namespace qualifiers

namespaces, 2nd

 interacting with modules

 notation variables

 using in PowerShell v5

name-value pair

native commands

 in Windows

 overview, 2nd

native members

navigation

negative indexing

Negotiate type

-ne operator

nested data structures

nested function

nested interactive session

nested loops

nested modules

(862)

 binary in script

 defined

 importing into global environment with -Global flag

NestedModules element, 2nd

nested pipelines

nested prompts, suspending scripts while in step mode

nested shell operation sequence

nested statement

nested workflows

nesting jobs

nest prompt characters

NetAdapter

.NET-based custom type conversion

.NET class, defining new with C# language

.NET/COM Interop library

.NET exceptions

net.exe utility

.NET framework

 assemblies

 asynchronous events

 binding event action

 creating timer object

 enabling events

 managing event subscriptions

 setting timer event parameters

 writing timer event handler

 creating instances of types

 default assemblies

 dynamic assembly loading

 extending classes

 GUIs and

 WinForms

 WPF

 New-Object -Property parameter

 versioning

 working with generic types

.NET IEnumerable interface

.NET interop wrapper

NetTCPIP

NewBoundScriptBlock() method, 2nd, 3rd

NewBoundScriptBlockScriptblock() method

New-CimInstance

New-CimSession cmdlet

New-Control function

New-Event cmdlet

New-EventLog cmdlet

New-Item cmdlet

newline character

new() method, 2nd, 3rd

New-Module cmdlet, 2nd

New-ModuleManifest cmdlet, 2nd, 3rd, 4th

-NewName parameter

New-Object command, 2nd, 3rd, 4th

 adding note properties to objects with

 caution when using

New-Object -Property parameter

New-PSSession command, 2nd, 3rd, 4th, 5th

New-PSSessionConfigurationFile cmdlet

New-PSWorkflowExecutionOption cmdlet, 2nd

New-PSWorkflowSession

NewScriptBlock() method

NewTotalCount method

NextMatch() method

Node keyword

NoLanguage mode

NoLanguage option

nonexistent properties, catching attempts to read

non-GUI, synchronous events in

noninteractive remoting

non-numeric string

non-PowerShell applications

nonprintable characters

nonstructured exit

non-terminating errors, 2nd, 3rd, 4th

non-zero-length strings

non-zero value

-NoProfile option

normal flow of control

-NotAparameter parameter

NotConfigurable property

-notcontains operator

note properties

 adding to objects with New-Object cmdlet

 setting

NoteProperty members, adding to objects

NoteProperty object

.NOTES tag

-notin operator

-notlike operator, 2nd

-notmatch operator

-not operator

-NoTypeInformation parameter

nouns

NuGet API key

Nuget package

number sign

numeric calculations

numeric comparison

(863)

numeric conversion rules

numeric types

nxFile resource

O

object normalization

ObjectNotFound category

object-oriented languages

objects

 adding note properties with New-Object cmdlet

 breakpoint, working with

 creating custom from modules

 managing Windows through

 public members

 rendering as XML

 returned from workflows

 selecting properties from

 sorting

 synthetic members

 using Add-Member cmdlet to extend

 adding AliasProperty members

 adding NoteProperty members

 adding ScriptMethod members

 adding ScriptProperty members

 XML, adding elements to

object streaming model

Object tab

OMI (Open Management Infrastructure)

one-dimensional arrays, 2nd

Online option

Online parameter

online repository, testing modules from

OnRemove property, 2nd

op_Addition () method

op_ class

OpenSSH

operating environment, object-based

operating on binary data

operations, basic

Operations Manager, examining OpsMgr event log entries

operators, 2nd

 arithmetic

 addition operator

 multiplication operator

 subtraction, division, and modulus operators

 array

 comma operator

 indexing and slicing

 multidimensional

 range operator

 assignment

 as value expressions

 multiple

 case-sensitive

 comma

 comparison

 and case-sensitivity

 scalar

 using with collections

 format

 for working with types

 grouping

 logical and bitwise

 pattern matching and text manipulation

 -join operator

 -match operator, 2nd

 regular expressions

 -replace operator

 -split operator

 wildcard patterns and -like operator

 polymorphic

 property and method

 dot operator

 indirect method invocation

 static methods and double-colon operator

 redirection

 subexpressions

 unary

op_<operation> methods

Option Explicit, in Visual Basic

OrderedDictionary type

ordered hashtables

original tables

origin-zero arrays

-or operator

OS information

Out-Default command, 2nd, 3rd

outer loops

Out-File cmdlet, 2nd, 3rd

Out-GridView command

Out-Host cmdlet, 2nd

Out-Null outputter

out-of-process runspaces

Out-Printer cmdlet

(864)

output.

 See session output.

output encoding

Output Field Separator ($OFS) variable, 2nd

output messages

output objects, 2nd

output redirection

.OUTPUTS tag

output stream

outputter cmdlets

OutputType attribute

output type, testing

Out-String cmdlet

overloads, 2nd

overriding members on base classes

overriding method

P

PackageManagement module, 2nd

PadLeft() method

parallel block, 2nd, 3rd, 4th, 5th, 6th

parallel keyword

parallel parameter, 2nd

param() block, 2nd, 3rd

parameter aliases

Parameter attributes, specifying

 HelpMessage property

 Mandatory property

 ParameterSetName property

 Position property

 ValueFromPipelineByPropertyName property

 ValueFromPipeline property

 ValueFromRemainingArguments property

parameter binding

 pipelines and

 type conversion in

parameter default values

 creating

 modifying

 using scriptblocks to determine

ParameterizedProperty type

parameterizing, computer names

parameterizing functions

parameters

 computed

 creating aliases with Alias attribute

 declaring

 for scriptblock

 processing

 validation attributes of

 AllowEmptyCollection

 AllowEmptyString

 AllowNull

 ValidateCount

 ValidateLength

 ValidateNotNull

 ValidateNotNullOrEmpty

 ValidatePattern

 ValidateRange

 ValidateScript

 ValidateSet

 vs. arguments

 of workflows

ParameterSetName property

Parameters section

.PARAMETER tag

param keyword, 2nd

param statement, 2nd, 3rd, 4th

parentheses, 2nd

parent job

Parse() method

parsing

 command output using regular expressions

 comment syntax

 expression-mode and command-mode

 quoting

 statement termination

parsing modes, 2nd

PartialConfiguration resource

partial configurations, 2nd

 disadvantages of

 in pull mode

 in push mode

 when indicated

-PassThru parameter, 2nd, 3rd

path-based pattern language

-Path parameter, 2nd, 3rd, 4th, 5th

Path property, 2nd, 3rd

paths, processing

 hidden files

(865)

 LiteralPath parameter

 providers and core cmdlets

 PSDrives

 Registry provider

 suppressing wildcard processing

 wildcards

pattern matching

 operations

 and text manipulation

 -join operator

 -match operator

 regular expressions

 -replace operator

 -split operator

 wildcard patterns and -like operator

PCtestvar variable

performance

 flow control

 in remoting

PERL scripting language

persistent connections, remoting sessions and

 additional session attributes

 copying files

 interactive sessions

 managing sessions

 New-PSSession cmdlet

-Persist parameter

petabytes

physical type containment

Pi constant

PID (process identifier)

pipeline object flows

pipeline output, as array

pipelines

 building incrementally

 commands in

 multi-command

 and parameter binding

 processing documents in

 steppable

 and streaming behavior

 using functions in

pipe operator, 2nd

pipe symbol

platyPS module

plus-equals operator

plus operator

Point class, 2nd

polymorphic behavior

polymorphic methods

polymorphic operators

polymorphism, in arrays

PositionalBinding property, 2nd

positional parameters, 2nd

Position attribute

PositionMessage property

Position property

POSIX

PowerShell

 aligning with C# syntax

 as management tool

 categories of commands

 creation of

 Desired State Configuration

 exact vs. partial match

 example code for

 exit code, setting

 expressions in

 extending language

 adding CustomClass keywords

 little languages

 type extension

 fallback members

 grammar

 help subsystem

 installation directory

 language standard conversions

 lookup algorithm, 2nd

 native members

 .NET-based custom converters

 and overloading

 parses

 pipelines

 polymorphic operators

 -Property parameter

 provider infrastructure

 registry keys

 remoting host process, wsmprovhost.exe

 scripts in

 secondary prompt in

 terminating sessions

 terminology similar to other shells

 type-conversion algorithm

 type management

 using interactively

 using namespaces in

 using wildcard characters with help

 versions and synthetic members

(866)

PowerShell 6.0

 DSC for Linux

 installing

 using

 installing on Windows OS

 .NET Core

 on Linux

 installing

 known issues with

 remoting

 using

 on macOS

 installing

 known issues with

 open source project

 terminology

PowerShell API

 addings scripts

 to pipeline

 vs. adding statements

 adding statements

 to pipeline

 vs. adding scripts

 building pipelines incrementally

 handling execution errors

 multi-command pipelines

PowerShell Development Environments

powershell.exe console host

PowerShell.exe, -sta parameter

PowerShell foundations

 aliases and elastic syntax

 core concepts

 parsing

 comment syntax

 expression-mode and command-mode

 quoting

 statement termination

 pipelines

 and parameter binding

 and streaming behavior

PowerShell gallery

 public and private

 publishing modules to

 overview

 tags

 updates

PowerShellGet module, 2nd, 3rd

PowerShellHostName element, 2nd

PowerShellHostVersion element, 2nd

PowerShell installation directory, $PSHOME variable

PowerShell interpreter, function of

PowerShell Job type, infrastructure extension point

PowerShellVersion element, 2nd

precision and conversion

predefined engine events

predicate expressions

preference setting

prefix operators

prescriptive error messages

PresentationCore, WPF required assemblies

PresentationFramework, WPF required assemblies

PrimalForms PowerShell IDE

printf debugging

PrivateData element, 2nd, 3rd, 4th

PrivateData field

private PowerShell gallery

probing

problem-solving pattern

procedural programming

process blocks, functions with

process clause, 2nd, 3rd

process identifier.

 See PID.

Process Id, using $PID variable

processing, data

 problem-solving pattern

 selecting properties from objects

 sorting objects

 with ForEach-Object cmdlet

process keyword, 2nd

Process-Message command

ProcessName property

ProcessorArchitecture element

ProcessRecord clause

process streaming

production elements, module manifests

 module identity

 runtime dependencies

production line

profiles, and remoting

ProgIDs

programming constructs

programming languages

ProjectURI tag

prompts

 nested

 while stepping

(867)

properties

 adding to type system

 nonexistent

 in registry

 selecting from objects

 shadowing existing

 using in classes

Properties member

Properties type

property bags

property checks

property dereference operator

property names, viewing

property notation

property operators

 dot

 indirect method invocation

 static methods and double-colon operator

property order

-Property parameter, 2nd

PropertySet type

Property type

protocols, remoting

prototypes

provider infrastructure

Provider paths, PSPath

providers, and core cmdlets

proxy

proxy commands, creating with steppable pipelines

.ps1 extension

.ps1xml extension

PSActionRetryIntervalSec

PSBase member

PSBreakpoint object

-PSComputerName parameter, 2nd, 3rd, 4th, 5th, 6th

PSConfigurationname parameter

PSCustomObject

PSDiagnostics module, 2nd, 3rd

PSDrives (PowerShell drives)

PSEdition

PSEventSubscriber objects, 2nd

PSIsContainer property

PSModuleInfo objects

 accessing module exports using, 2nd

 invocation in module context, 2nd

 methods

 Invoke()

 NewboundScriptblock()

PSModuleObject

PSObject class

 PSBase member

 synthetic object root

PSObject wrapper

PSParser class

PSPath, provider paths

PSPersist

PSPort

PS* properties

PSProperty object

PSRequiredModules

.pssc extension

PSScriptAnalyzer

PSScriptProperty

PSSessionConfiguration cmdlet

PSSessions type

PSTypeConverter type

PSTypeNames property

PSVariable objects, using as references

PSVariableProperty object

PSVariableProperty type

PSWorkflow module

public fields

public key cryptography

public methods

public PowerShell gallery

public properties

Publish-DSCConfiguration

publishing MOF files

pull mode, in DSC

 creating pull servers

 partial configurations in

 publishing MOF files

 pull server architecture

pull servers

 architecture of

 configuring LCM to use

 creating

Puppet tool

push mode

 disadvantages of

 partial configurations in

 to multiple nodes in DSC

 configuration data

 parameterizing computer names

 roles

 using configuration data

(868)

 to single node in DSC

 applying configuration

 creating configuration

 MOF file contents

 removing configuration

 testing configuration application

 viewing current configuration

Python

 comparison to Visual Basic

 lambdas

Q

ql (quote list) function

qs function

query-based event registrations

queued events

quotation marks

quoting, 2nd

R

range operator, 2nd

rank

-ReadCount parameter, 2nd, 3rd

read-evaluate-print loop

reading files

 binary files

 Get-Content cmdlet

 writing files

Read mode, variable breakpoints

ReadOnly option, 2nd

Really Simple Syndication.

 See RSS.

real-time events

 asynchronous

 actions

 eventing cmdlets

 handling with scriptblocks

 registrations

 subscriptions

 asynchronous .NET

 binding event action

 creating timer object

 enabling events

 managing event subscriptions

 setting timer event parameters

 writing timer event handler

 automatic variables in event handler

 CIM

 basics of

 class-based registration

 dynamic modules

 engine events

 event handler state

 eventing infrastructure

 forwarding

 handling remote eventlog events

 serialization issues with remote events

 foundations of event handling

 generating in functions

 generating in scripts

 queued

 remoting

 handling remote eventlog events

 serialization issues with remote events

 synchronous

 delegation

 in GUIs

 non-GUI synchronous events

 Wait-Event cmdlet

reboots, workflows and

Receive-Job cmdlet, 2nd

recording errors

-Recurse parameter, 2nd

recursive directory listing

redefine functions

redirection

 error stream

 merging output and error streams

 redirecting error stream

 stream merge operator

 into variables

redirection operators, 2nd, 3rd, 4th

references, using PSVariable objects as

reference types

 array as

 hashtables as

RefreshFrequencyMins

RefreshMode property

(869)

[regex] class, 2nd

-regex flag

Regex.Replace(String, MatchEvaluator)

Register-CimIndicationEvent

Register-EngineEvent cmdlet

Register-ObjectEvent cmdlet, 2nd, 3rd

Register-PSSessionConfiguration cmdlet

Register-WmiEvent cmdlet, 2nd

registrations

 asynchronous events and

 of class-based CIM events

 of query-based CIM events

Registry hives

Registry provider

regular expressions

 alternation operator

 creating from strings

 extracting text with

 manipulating text with

 matching any character

 matching the beginning of a string

 Match method

 parsing command output using

 quantifier specifications

 using with switch statement

release notes

ReleaseNotes element

remainder modulus

Remarks section

remote computers, starting jobs on

 child jobs

 child jobs with invoke-command

 nesting jobs

.REMOTEHELPRUNSPACE tag

remote output, vs. local output

remote runspaces

 creating

 sessions

remote scripts, debugging

remote sessions

 startup directory

 using variables in

RemoteSigned policy, 2nd, 3rd

remoting

 applying

 basic remoting examples

 multimachine monitoring

 commands with built-in

 configuration elements

 configuration startup script

 custom services

 access controls and endpoints

 constrained execution environments

 constraining sessions

 enabling, 2nd

 handling remote eventlog events

 implicit

 in Linux OS

 performance issues

 persistent connections

 running commands

 executables

 files and scripts

 local variables

 processor architecture

 profiles and remoting

 reading and writing to console

 remote output vs. local output

 remote session startup directory

 serialization issues with remote events

 sessions and persistent connections

 additional session attributes

 copying files

 interactive sessions

 managing sessions

 New-PSSession cmdlet

 subsystem

 workgroup environments, steps for

remoting EventLog access

Remove-CimInstance

remove command

RemoveEmptyEntries

Remove-Event cmdlet, 2nd

Remove-Item command, 2nd, 3rd

Remove-Job cmdlet, 2nd

remove() method

Remove-Module cmdlet, 2nd, 3rd, 4th

Remove-PSBreakPoint cmdlet

Remove-PSSession cmdlet, 2nd

removing items, hash tables

Rename-Item cmdlet

renaming functions

rendering objects

replacement strings, in event log entries

Replace() method

-replace operator, 2nd, 3rd, 4th

(870)

-Reply parameter

repository

RequiredAssemblies element, 2nd, 3rd

RequiredModules element

RequiredServices property

RequireLicenseAcceptance element

Reset-Count command, 2nd, 3rd

Reset() member

resizing arrays

Resolve-Path

resource leaks, handles and garbage collection

resources

 DSC

 writing class-based

RestrictedLanguage option

RestrictedRemoteServer option

return statement, 2nd, 3rd, 4th

reverse arrays

reversed in place, arrays

Reverse member

reverse method

Reverse() method

rich error objects

right aligned

right operand

role-based configurations

RoleConfiguration

.ROLE tag

Root module term

RootSDDL security descriptor, remoting access control

RSS (Really Simple Syndication)

Ruby language

-RunAsCredential parameter

running elevated

RunspaceAvailability property

RunspaceId

runspace pools

Runspace property, 2nd

runspaces, 2nd

 creating

 debugging

 isolated execution

 managing

 out-of-process

 remote

 creating

 sessions

 reusing current

 using for concurrency

runtime

runtime dependencies, module manifests

runtime type casts

S

Salt tool

scalar arguments

scalar comparisons

 basic rules for

 type conversions and comparisons

scalar object, 2nd

scalar value, 2nd, 3rd

scaling fan-in remoting, issues

scheduled jobs

 creating

 managing

 modifying

 changing triggers

 options

scope modifier

-Scope parameter

scopes

 scoping rules

 and scripts

 dot-sourcing scripts and functions

 simple libraries

 in script modules

scoping

 rules

 variable, in functions

script authoring, control of errors

scriptblocks

 asynchronous event handling with

 construction

 defining functions at runtime

 execution, in debug actions

 invoking commands

 literals

 parameters for

 using with remoting

 using with -split operator

[scriptblock] type accelerator

(871)

script code

 building at runtime

 $ExecutionContext variable

 creating elements in function drive

 ExpandString() method

 Invoke-Expression cmdlet

 script blocks

 fragments of

script commands

scripting languages

 overview

 vs. shell, advantages

script instrumentation

 catching errors with strict mode

 applying strict mode to scripts

 catching attempts to read nonexistent properties

 catching uninitialized variable use in string expansions

 checking for functions called like methods

 static analysis of scripts

 Write* cmdlets

 Write-Debug cmdlets

 Write-Error cmdlet

 Write-Information cmdlet

 Write-Verbose cmdlet

 Write-Warning cmdlet

 writing events to event log

ScriptMethod members, adding to objects

script modules

 dynamic

 nesting binary modules in

 setting module properties from inside

 writing

 controlling member visibility with Export-ModuleMember cmdlet

 nested modules

 review of scripts

 scopes in script modules

 turning into module

ScriptProperty members, adding to objects

scripts

 adding

 adding to pipeline

 advanced functions and

 documenting

 dynamic parameters and dynamicParam keyword

 exiting scripts and exit statement

 managing scripts

 passing arguments to scripts

 running scripts from other applications

 scopes and scripts

 applying strict mode to

 debugging

 nested prompts

 remote scripts

 Set-PSDebug cmdlet

 Suspend operation

 exit code

 generating events in

 hello world file

 line number

 name of

 running from cmd.exe

 static analysis of

 suspending while in step mode

 tracing

ScriptsToProcess element, 2nd

ScriptToProcess

script versioning

SDDL (Security Descriptor Definition Language)

SDK (Software Developers Kit)

Search-Help function

searching files, with Select-String cmdlet

search tools, file

secure remoted service, creating

security descriptors, setting on configurations

select elements

Select-Object cmdlet

 defined

 selecting range of objects

 using -Property parameter

Select-String cmdlet, 2nd

semicolon character, 2nd, 3rd

Sender field

sequence keyword

serialization

 default depth, 2nd

 object fidelity

 shredding objects

<SerializationDepth> element

serialization issues with remote events

serialized objects, 2nd

serializing, remote events

ServiceName property

session output, capturing

 information captured in transcripts

 starting transcripts

(872)

-Session parameter

sessions

 configurations

 constraining

 copying files across

 existing

 and hosts

 interactive

 isolation, 2nd

 managing

 managing definitions in

 remoting

 additional attributes

 and persistent connections, 2nd

 of workflow

Set-Alias command

Set-CimInstance

Set-Content cmdlet

Set-CountIncrement

Set-DscLocalConfiguration-Manager

Set-ExecutionPolicy cmdlet

Set-Increment

setIncrement function, 2nd

Set-Location command

Set() method

Set-PSBreakPoint cmdlet

Set-PSDebug cmdlet

 stepping through statement execution

 tracing statement execution

Set-PSSessionConfiguration command

Set-SecureBootUEFI cmdlet

Set-StrictMode cmdlet, attempts to read nonexistent properties

settable property

Settings resource

Set-Variable cmdlet, 2nd, 3rd

Set-WmiInstance cmdlet, setting instance properties

shadowing existing properties

Shell.Application class

Shell.Automation class

shell environments

shell function commands

shells

 as command-line interpreter

 reasons for new model

 scripting languages vs.

-shl operator

short-circuit operators

shortcuts

ShouldProcess() method

Show-Command cmdlet

Show-ErrorDetails function

Show-EventLog cmdlet

ShowSecurityDescriptorUI parameter

shredding objects

-shr operator

shutdown command

SilentlyContinue identifier

simple matching

simplematch option

single index

single-instance objects, modules

SingleLine option

single node, push mode to

 applying configuration

 creating configuration

 MOF file contents

 removing configuration

 testing configuration application

 viewing current configuration

single-quoted, strings

single quotes, 2nd

single terminal state

singleton arrays

singletons

Skip parameter

slicing

 arrays

 multidimensional arrays

 using range operator

snap-ins

Software Developers Kit.

 See SDK.

sorting

 hash tables

 objects

Sort-Object cmdlet, 2nd

Source filter

SourceIdentifier, 2nd, 3rd, 4th

SourceInfo

-Source parameter, on Get-Eventlog

spaces

special behaviors operators

special characters, using backtick

special-purpose applications, using remoting

special-purpose endpoint

special variable

spell checking, using Microsoft Word

(873)

Spelling dialog box

spelling errors

splatting

 in proxy functions

 variables

Split() method, 2nd

-split operator

 options for

 using scriptblocks with

SplitStringOptions parameters

splitting strings, with regular expressions

square brackets

StackPanel layout control

standard classes, WMI

Start-DscConfiguration, 2nd, 3rd

Start-DSCConfiguration, 2nd

Start-Job cmdlet, 2nd

Start() method

Start-Process cmdlet, 2nd

Start-Sleep cmdlet, 2nd

StartTime property

Start-Transcript cmdlet

startup directories, remote session

startup script, remoting

statements

 adding

 adding to pipeline

 as values

 execution of

 stepping through

 tracing

 flow-control

statement termination

statically typed languages

static attributes

-Static flag

static members

 accessing

 accessing with literal

static methods

 calling

 overview

 reference operator

static reverse method

static script checks

status variables

stderr

step mode, suspending scripts in

steppable pipelines

 in proxy functions

 overview

-Step parameter

stepping mode

stepping script

Stop identifier

Stop-Job cmdlet, 2nd

Stop-Process

Stop-Transcript cmdlet

stream combiner

streaming behavior, 2nd

-Stream parameter

strict mode

 applying to scripts

 catching errors with

 catching attempts to read nonexistent properties

 catching uninitialized variable use in string expansions

 checking for functions called like methods

 In PERL

-Strict parameter, 2nd

-Strict switch

string expansions

 catching uninitialized variable use in

 overview

 suppressing

[string]::Join method

string multiplication

string operations

 casting to regular expressions

 convert array to string

 extracting fields from string

 formatting hexadecimal numbers

 padding strings

 parsing arithmetic expressions

 splitting and joining strings

 splitting into words

 splitting on Whitespace character class

 tokenizing strings

strings, 2nd

 concatenation of, 2nd

 encoding used in

(874)

 executing

 here-strings

 joining

 single and double-quoted

 subexpression expansion in

StringSplitOptions

strongly typed languages

strong naming

structural configuration

structured error handling

structured text, processing

subclassing

subdirectories

 and dir command

 overview

subexpression expansion, in strings

subexpression operator

subexpressions, 2nd, 3rd, 4th, 5th

 array

 function of

SubscriptionId property

subscriptions

 asynchronous events and

 event, managing

Substring method

subtraction operator

Success Audit type

Success property

sudo

sum3 function

Sum() method, 2nd, 3rd

SumMethod.ps1xml file

superclasses

-SupportEvent

SupportEvent switch

SupportPaging property

SupportsPaging property

SupportsShouldProcess property, 2nd

Suspended shell feature

Suspend identifier

suspending workflows

Suspend operation, suspending scripts while in step mode

swapping two variables

switch parameters

 overview

 using to define command switches

 vs. Boolean parameters

SwitchParameter type

switch statement, 2nd, 3rd

 processing files with

 using $switch loop enumerator in

 using regular expressions with

 using wildcard patterns with

switch value

synchronous events

 delegation

 in GUIs

 non-GUI

synchronous method

.SYNOPSIS tag

syntactically complete statement

syntactic analysis

syntax errors, 2nd

syntax, for programmer-style activities

synthetic member objects, 2nd, 3rd, 4th

System.Array, extending

System.Collections.ArrayList class, 2nd, 3rd

System.Collections.Generic.List

System.Collections.Hashtable, 2nd

System.Collections.IDictionary interface

System.Collections.IEnumerator interface

System.Collections.Specialized.OrderedDictionary

System.Console APIs

System.Datetime type

System.Decimal type

System.Delegate class

System.Diagnostics.EntryWrittenEventArgs

System.Diagnostics.Process class

System.Double type

System.EventHandler class

system health monitoring, remoting example

System.Int32 type

[System.IO.DirectoryInfo] object

[System.IO.FileInfo] object

System.IO.FileSystemWatcher class

System.Management.Automation.CommandInfo type

System.Management.Automation namespace

System.Management.Automation.PowerShell class

System.Management.Automation.PSCustomObject type, 2nd

System.Management.Automation.PSEventArgs

System.Management.Automation.PSObject

[System.Math] class, 2nd

System namespace

System.Object, root of object hierarchy

SystemRoot environment variable

System.String class, 2nd

(875)

 analyzing word use in documents

 SplitStringOptions parameters

 testing types

System.Text.RegularExpressions.Match class

System.Text.RegularExpressions.Regex class

System.Timers.Timer class

System.Version

System.Windows.Forms namespace, 2nd, 3rd

System.Windows.Window namespace

System.XML.XmlDocument class

System.Xml.XmlReader class

T

tab completion

.TAGNAME tag

tags, used in comments

target object

TargetObject property, 2nd

tasks, viewing life cycle of

tb function

temporary file

terabytes

Terminate() method, 2nd

terminate partial operation

terminating errors, 2nd, 3rd

 exception

 generating in script

 rethrowing

terminating PowerShell session

terminator characters

terminology

test(1) command

Test-DscConfiguration

testing CIM on Linux systems

testing modules, from repository

testmanifest.psd1

Test() method

Test-ModuleContext module

Test-ModuleManifest cmdlet, 2nd, 3rd

test-paging function

Test-Path cmdlet

Test-Script function

Test-Spelling function

text

 converting output

 processing

 processing unstructured

 XML structured, processing

TextBox controls

text manipulation, pattern matching and

 -join operator

 -match operator

 regular expressions

 -replace operator

 -split operator

 wildcard patterns and -like operator

Text property

this.MyInvocation.MyCommand.Module

this.SessionState.Module

throw statement

-Timeout parameter

timer

 creating objects

 setting event parameters

 writing event handler

TlntSvr process

Tokenize() method

tokenizer analyzer

Tokenizer API

tokenizing text

tokens, 2nd

ToolsConfig

TopCPU

top-level match

topology

TopWS

-ToSession parameter

ToString() method, 2nd, 3rd, 4th

-TotalCount parameter

ToUpper() method

Trace-Command cmdlet

trace message format

trace mode

tracing statement execution

traditional dynamic scoping

transcript file

transcript implementation

transcripts

 information captured in

 starting

transformation

transitional aliases

(876)

trap statement, 2nd

trees of files

triggers, changing

trusted certificate authority, role in remoting

TrustedHosts

try/catch/finally statement, 2nd

try keyword

try statement

try to pop GUI

two-dimensional array

type adaptations

 fallback members

 native members

 synthetic members

type aliases

type command, 2nd

type configuration files

type-constrained variables, 2nd, 3rd

type constraints

 adding to parameters

 multiplication and arrays

type-conversion operators, 2nd

type conversions

 and comparisons

 tracing mechanism

 with XML documents

TypeConverter type

type files, loaded at startup

typeless languages

typeless parameters

type library

type literal, 2nd

type management

TypeNames property, 2nd

typeof() operator

-Type parameter

type parameters

type qualifiers, multiple assignment operators with

type references, assembly manifest

type resolution

 in complied programs

 overview

types

 arrays

 as reference types

 collecting pipeline output as

 empty arrays

 indexing of

 polymorphism in

 singleton arrays

 and classes

 conversions of

 built-in

 .NET-based custom

 overview

 in parameter binding

 creating instances of

 enum, defining new at runtime

 extending

 generic

 hashtables

 as reference types

 enumerating

 modifying

 sorting

 literals

 accessing static members with

 generic types

 type aliases

 management of

 numeric

 operators for working with

 strings

 complex subexpressions in

 encoding used in

 expansion considerations for

 here-strings

 single and double-quoted

 subexpression expansion in

types files, default installed

TypesToProcess element, 2nd

type system

 adding properties to

 shadowing existing properties

U

UAC (User Access Control)

unary operators

unary plus operator

undefined command

undefined variable

(877)

Unicode characters

Unicode encoding

unified namespaces

uninitialized variables

 catching use in string expansions

 overview

-Unique parameter

Universal Execution Model

UNIX environment

unqualified operators, case insensitive by default

unraveling collections

Unregister-Event cmdlet, 2nd

Unregister-PSSessionConfiguration cmdlet

Update-Character function

Update-DatabaseTable cmdlet

Update-ModuleManifest cmdlet

Update-TypeData cmdlet, 2nd

URI (Uniform Resource Identifier)

-UseExisting parameter

User filter

user profile, in remote sessions

users, authenticating

usesCount2.psm1 module

usesCount module

usesCount.psm1 module

using assembly

using keyword

 assembly patterns

 module patterns

 modules and namespaces, interaction between

 namespace patterns

using namespace statement

using statement, 2nd

V

ValidateCount attribute

ValidateLength attribute

ValidateNotNull attribute

ValidateNotNullOrEmpty attribute

ValidatePattern attribute

ValidateRange attribute

ValidateScript attribute, 2nd

ValidateSet attribute

validation

value expressions, 2nd

ValueFromPipeline attribute

ValueFromPipelineByPropertyName property

ValueFromPipeline property

ValueFromRemainingArguments property

Value member

-Value parameter

Value parameter

Value property

values

 in registry

 returning from functions

 debugging problems in function output

 return statement

 statements as

 of variables, variable names vs.

Values property

variable breakpoints, breaking on read or write

variable checks

variable expansion, 2nd

variable interpolation

variable name notation

variable namespace

variable notation

-Variable parameter

variable reference

variables

 attribute-constrained

 automatic, in event handler

 basic

 cmdlets

 getting and setting variable options

 indirectly setting variable

 using PSVariable objects as references

 variable names vs. variable values

 creating

 declaring, 2nd

 expanding

 exporting

 indexing with

 initializing

 name syntax

 reading files with

 in remote sessions

 saving expressions in

 setting breakpoints on assignment of

 splatting

 swapping

(878)

 type-constrained

 uninitialized, catching use in string expansions

 visibility in remoting

 visibility of

 in workflows

variable scoping, in functions

 declaring variables

 modifiers

VariablesToExport element

variable syntax

variable type attribute

var variable

Verb-Noun form

-Verbose flag, 2nd

Verbose parameter, 2nd

Verb parameter

versioning

-Version parameter

Version property

virtual method

visibility of variable

Visible* parameters

Visual Basic

voidable statements

W

Wait-Event cmdlet, 2nd, 3rd

-Wait parameter

Wait-Process command

Warning type

well formed string

-WhatIf parameter

WhatIf parameter

where alias

Where() method

Where-Object cmdlet, 2nd, 3rd, 4th, 5th, 6th

while loop, 2nd, 3rd, 4th, 5th

while statement

whitespace boundaries

Whitespace character class, splitting on

Width property

wildcard characters

wildcard expressions

-wildcard option

wildcards, 2nd

 character ranges

 and -like operator

 matching a single character

 matching string of characters

 suppressing processing of

 using with switch statement

Win32_OperatingSystem class

Win32_Process class

Win32_ProcessStartTrace, 2nd

Win32_ProcessTrace, 2nd

Win32_Service class

Windows, automating with COM

Windows commands, native

Windows Console APIs, and remoting

Windows Forms application

Windows.Forms assembly

Windows Forms library

Windows Management Surface

Windows, managing through objects

Windows() method

Windows OS

 installing DSC for Linux module on machines running

 installing PowerShell 6.0

Windows Presentation Foundation.

 See WPF.

WindowsProcess resource

Windows Workflow Foundation

WinForms, 2nd

winforms assembly

winforms modules

WinRM (Windows Remote Management)

 changing configurations

 restarting service

WITHIN keyword

WmiObject

WMI (Windows Management Instrumentation)

 and CIM

 overview, 2nd

wof function

Word.Application object

words, analyzing use in documents

workflow keyword, 2nd, 3rd

workflow module

workflows

 architecture of

(879)

 benefits of using

 cmdlets

 execution options

 invoking as workflow

 sessions

 vs. activities

 jobs as

 checkpoints

 reboots and

 keywords

 Foreach -parallel

 InlineScript

 parallel

 sequence

 nested

 objects returned from

 overview

 parameters of

 reboots and

 restrictions

 running

 simple example of

 suspending

 using

 using aliases in

 variables in

workgroup environments, additional setup steps for remoting in

WPF (Windows Presentation Foundation)

 advantages of using

 frameworks for

 preconditions

WPF XAML GUI builders

WPIAForms module

WrapBinaryModule.psm1 module

Wrap parameter

wrapping objects, object adaptation

Write* cmdlets

Write-Debug cmdlets

Write-Error cmdlet

Write-EventLog cmdlet

Write-Host cmdlet, 2nd

Write-Information cmdlet

Write-InputObject

Write-Output cmdlet, 2nd, 3rd, 4th

Write-Verbose cmdlet

Write-Warning cmdlet

writing

 class-based DSC resources

 classes

 class member attributes

 enumerations

 error objects

 files, Get-Content cmdlet

WSMan-based transport

WSMan cmdlets

WSManConnectionInfo object

WSMan provider

wsmprovhost.exe, PowerShell remoting host process

X

XamlDefinition

XAML (Extensible Application Markup Language)

XAML loader

XML configuration files

XmlDocument, properties and navigation

XML DOM (Document Object Model)

XML (Extensible Markup Language)

 adding attributes to node

 adding child nodes

 bookstore inventory example

 loading XML documents

 objects, adding elements to

 rendering objects as

 saving document to file

 structured text, processing

 System.XML.XmlDocument class

 System.Xml.XmlReader class

 using as objects

 XML document structure

 XmlNode class

XML object adapter

XMLReader class, loading and saving files using

-xor operator

x parameter

XPath (XML Path Language)

 attribute syntax

 operators

 predicate expression syntax

 processing XML structured text with

 used in pipeline

xPSDesiredStateConfiguration

xWebAdministration

(880)

Z

Zsh shell, 2nd

(881)

List of Figures
Chapter 1. Welcome to PowerShell

Figure 1.1. When you run the code from the example, this window will be displayed.

Figure 1.2. Viewing the installed updates on the local (Windows Server 2012 R2) machine

Figure 1.3. The anatomy of a basic command. It begins with the name of the command,
followed by parameters. These may be switch parameters that take no arguments, regular
parameters that take arguments, or positional parameters where the matching parameter is
inferred by the argument’s position on the command line.

Figure 1.4. Flow of processing in the PowerShell interpreter, where an expression is
transformed and then executed to produce a result

Figure 1.5. Anatomy of a pipeline

Figure 1.6. How objects flow through a pipeline one at a time. A common parser constructs
each of the command objects and then starts the pipeline processor, stepping each object
through all stages of the pipeline.

Figure 1.7. Displaying output with Out-GridView

Chapter 2. Working with types

Figure 2.1. Discovering the type of an expression

Figure 2.2. String types in PowerShell

Figure 2.3. Hashtable as a reference type

Chapter 3. Operators and expressions

Figure 3.1. Broad groups of operators we’ll cover in this chapter

Figure 3.2. Arithmetic operators in PowerShell that will be covered in this section

Figure 3.3. PowerShell assignment operators

Figure 3.4. The comparison operators in PowerShell. The operators beginning with “c” are
case-sensitive; all others are case-insensitive.

Figure 3.5. The PowerShell containment operators. Those on the bottom row are case-
sensitive and the others are case-insensitive.

Figure 3.6. The pattern-matching and text-manipulation operators in PowerShell. All the
operators that use patterns (everything except -join) have case-sensitive (“c” prefix) and
case-insensitive forms.

Figure 3.7. Logical and bitwise operators available in PowerShell

(882)

Chapter 4. Advanced operators and variables

Figure 4.1. The broad groups of operators we cover in this chapter

Figure 4.2. The binary operators for working with types

Figure 4.3. Various unary operators

Figure 4.4. PowerShell operators for grouping expressions and statements

Figure 4.5. PowerShell array operators

Figure 4.6. A binary tree (arrays of arrays of arrays)

Figure 4.7. Indexing through a binary tree with the expression $a[1][0][1]

Figure 4.8. How an array slice is generated from the original array

Figure 4.9. An example of a jagged array in the variable $a. Each member of $a is also an
array but they’re all of different lengths—hence the term jagged.

Figure 4.10. A two-dimensional 6 x 4 array of numbers

Figure 4.11. Property and method operators in PowerShell

Figure 4.12. The steps performed to retrieve a calculated property from an object

Figure 4.13. The format operator lets you control the formatting of your output.

Figure 4.14. Redirection operators that are available in PowerShell

Chapter 5. Flow control in scripts

Figure 5.1. PowerShell flow-control statements

Figure 5.2. The syntax of the PowerShell conditional statement

Figure 5.3. PowerShell loop statements

Figure 5.4. The PowerShell break and continue statements, which may optionally take a
label indicating which loop statement to break to.

Figure 5.5. PowerShell switch statement syntax

Figure 5.6. Flow-control cmdlets

Chapter 6. PowerShell functions

Figure 6.1. The simplest form of a function definition in PowerShell

Figure 6.2. The syntax for defining a function with explicit parameters in PowerShell. The
parameter list is optional: you can either have empty parentheses or omit them, as you saw
in figure 6.1.

(883)

Figure 6.3. How type constraints are added to some of the parameters of a function. Type
constraints aren’t required for all parameters; in this case, $p3 is left unconstrained.

Figure 6.4. The more complex function definition syntax where initializer expressions are
provided for each variable. Note that the initializers are constrained to be expressions, but
using the subexpression notation you can put anything here.

Figure 6.5. Marking a parameter as a switch or flag by adding the [switch] type constraint to
it

Figure 6.6. The complete function definition syntax for a function in PowerShell that will
have cmdlet-like behavior

Figure 6.7. How variables are resolved across different scopes. They’re resolved first in the
local scope, then in the immediate caller’s scope, and so on until the global scope is
reached. In this case, lookup of $x resolves to 22 in the scope for function one. Lookup of
$y resolves to 2 in the global scope, resulting in the output string “x is 22 y is 2”.

Chapter 7. Advanced functions and scripts

Figure 7.1. How variables are resolved across different scopes when scripts are involved.

Figure 7.2. How the command line is processed when using the -Command parameter (top)
versus the -File parameter (bottom). With -Command, the first argument is parsed into two
tokens. With -File, the entire first argument is treated as the name of a script to run.

Figure 7.3. Attributes that apply to the entire function appear before the param statement,
and attributes for an individual parameter appear before the parameter declaration.

Figure 7.4. This figure shows how the Parameter attribute is used when declaring a variable.
The attribute must appear before that variable name and its optional initializer expression.
The figure includes all the properties that can be set on the parameter.

Figure 7.5. The validation attributes can be applied to script and function parameters to
specify additional parameter checks to perform when binding arguments.

Figure 7.6. A function that defines dynamic parameters. If the -Path parameter is set to
something that starts with HKML:, an additional parameter, dp1, will be defined for the
function.

Figure 7.7. Automatically generated help information

Chapter 8. Using and authoring modules

Figure 8.1. The syntax for the Get-Module cmdlet. This cmdlet is used to find modules,
either in your session or available to be loaded.

Figure 8.2. Flowchart of search algorithm for discovering a module

Figure 8.3. The syntax for the Import-Module cmdlet. This cmdlet is used to import
modules into the current module context or the global context if -Global is specified.

Figure 8.4. The syntax for Remove-Module. Note that this command doesn’t take

(884)

wildcards.

Figure 8.5. How the module tables are organized. The global module table holds a reference
to all loaded modules. Each module in turn has a reference to the modules it has loaded.

Figure 8.6. How the module tables are organized after Module3 is removed at the top level.
The global module table no longer has a reference to Module3, but the local module table
for Module2 still has a link to that object.

Figure 8.7. How the module tables are organized when the revised Module3 is loaded at the
top level. The global module table now has a reference to the new Module3, but the local
module table for Module2 still has a link to the original Module3.

Figure 8.8. The order of the steps when processing a module manifest. At any point prior to
the next-to-the-last step, if an error occurs, module processing will stop and an error will be
thrown.

Figure 8.9. How variables are resolved in a module context. Function one calls two, and two
calls the module function foo. Functions one and two look up variables in the default scope.
The module function foo uses the module scope chain.

Chapter 9. Module manifests and metadata

Figure 9.1. The layout of the system modules that ship with Windows. Each module is
stored in its own folder, with a .psd1 file containing the module manifest. The
PSDiagnostics folder contains the PSDiagnostics module. The BitsTransfer folder contains
the BitsTransfer module.

Figure 9.2. The steps taken when trying to load an assembly from the RequiredAssemblies
module

Figure 9.3. The ordering of the steps when processing a module manifest. If an error occurs
at any point prior to the next-to-last step, module processing will stop, and an error will be
thrown.

Figure 9.4. Searching for modules in the PowerShell gallery using tags

Chapter 10. Metaprogramming with scriptblocks and dynamic code

Figure 10.1. Defining a simple scriptblock. Note that the param statement is optional, so a
minimal scriptblock has only the braces.

Figure 10.2. A scriptblock that works like a cmdlet

Figure 10.3. Problem with function variables. Unexpected results from using the function.

Figure 10.4. Objects flow through a pipeline one at a time. A common parser constructs
each of the command objects and then starts the pipeline processor, stepping each object
through all stages of the pipeline.

Figure 10.5. Running a script that dynamically updates types

Chapter 11. PowerShell remoting

(885)

Figure 11.1. Partial syntax for the Invoke-Command cmdlet, which is the core of
PowerShell’s remoting capabilities. This cmdlet is used to execute commands and scripts on
one or more computers. It can be used synchronously or asynchronously as a job. The
VMId, VMName, and ContainerId parameters were introduced with PowerShell 5.1 and are
valid only on Windows 10 and Windows Server 2016 (or later).

Figure 11.2. Interactive remoting session to the computer W12R2SUS. Notice how the
PowerShell prompt changes to incorporate the remote machine name when you enter the
session.

Figure 11.3. Enabling PowerShell remoting on a machine

Figure 11.4. Listing 11.1 in action

Figure 11.5. The syntax for the New-PSSession cmdlet. This cmdlet is used to create
persistent connections to a remote computer.

Figure 11.6. Using a PSSession for interactive remoting

Figure 11.7. The syntax for the Import-PSSession cmdlet. This cmdlet is used to create local
proxy commands that invoke the corresponding remote command on the target computer.

Figure 11.8. Example of implicit remoting

Figure 11.9. Remoting endpoints including the newly created wpia1

Figure 11.10. This dialog box is used to enable the Execute permission on the default
remoting configuration. Use this dialog box to allow a user who isn’t a member of the
Administrators group to connect to this computer using PowerShell remoting.

Figure 11.11. New-PSSessionConfigurationFile syntax

Chapter 12. PowerShell workflows

Figure 12.1. PowerShell workflow architecture

Figure 12.2. Syntax of the parallel keyword

Figure 12.3. Alternate syntaxes of a workflow sequence block

Figure 12.4. Workflow InlineScript syntax

Figure 12.5. Foreach –parallel syntax

Figure 12.6. Remoting endpoints on a Windows Server 2012 R2 system

Figure 12.7. Syntax of the New-PSWorkflowExecutionOption cmdlet

Chapter 13. PowerShell Jobs

Figure 13.1. The user sends interactive commands to be executed by the foreground loop.
Background commands are executed in separate processes; each process has its own
command loop. For each background job the user creates, a new instance of PowerShell.exe

(886)

is run to host the command loop for that job. This means that if there are three background
jobs as shown, then four processes are running—three for the background jobs and one for
the interactive foreground job.

Figure 13.2. The relationship between the executive job and the nested jobs created when
Invoke-Command -AsJob is used to run commands on multiple remote computers. The user
calls Invoke-Command to start a job with multiple nested jobs, one for each target node in
$list.

Figure 13.3. Commands to resume a checkpointed workflow

Figure 13.4. Workflow paused while waiting for a remote machine to restart

Figure 13.5. Workflow restarting a remote computer

Chapter 14. Errors and exceptions

Figure 14.1. This diagram shows the output object and error record routing; then, the simple
pipeline A | B | C is run from a PowerShell host process like PowerShell.exe or
PowerShell_ISE.exe. Output objects go to the next command in the pipeline, and error
objects go directly to Out-Default.

Figure 14.2. Revised pipeline including the use of redirection operators

Figure 14.3. Revised pipeline including the addition of error stream merging

Figure 14.4. How the $error variable handles new errors when MaximumErrorCount has
been reached. The oldest error is dropped, and the new one is added to the end.

Figure 14.5. The flow of control in a try/catch/finally statement. When an exception occurs,
control transfers to the catch block and then the finally block.

Figure 14.6. The complete logical flow in the try/catch/finally statement

Chapter 15. Debugging

Figure 15.1. Output when using the -Debug functionality

Figure 15.2. Using the transcript cmdlets

Figure 15.3. Using the -IncludeInvocationHeader parameter in a transcript

Figure 15.4. Tracing function calls

Figure 15.5. Suspending execution and entering a nested prompt requires operations on both
the host and engine sides of the session.

Figure 15.6. Suspending execution of a script

Figure 15.7. Modify the value of a variable while the script is suspended.

Figure 15.8. Entering the command-line debugger

(887)

Figure 15.9. Debugging a PowerShell job

Figure 15.10. Using Set-PSBreakpoint in a PowerShell job

Figure 15.11. Editing and debugging a file on a remote server

Figure 15.12. Debugging a remote script

Chapter 16. Working with providers, files, and CIM

Figure 16.1. The default PowerShell providers and PSDrives

Figure 16.2. Get-Content syntax

Figure 16.3. Example Get-HexDump output

Figure 16.4. Syntax of Select-String

Figure 16.5. Format-XmlDocument displaying the test document in the ISE. Note that the
ISE looks slightly different because ISEsteroids (www.powertheshell.com/isesteroids/) is in
use.

Figure 16.6. Output of the netstat.exe legacy application

Figure 16.7. adaptation layer, COMautomation interfacesCOM (Component Object
Model)objects-ComObject parametercomponentsInterop assemblies, COM andInterop
library.NET/COM Interop libraryNew-Object command-Property parameter-Strict
parameter-Strict switchResult of processing netstat output with ConvertFrom-String

Figure 16.8. Launching Windows Explorer on C:\Temp

Figure 16.9. The Microsoft Word spell checker launched by the Test-Spelling function
shows the misspelled text that was copied from the clipboard.

Figure 16.10. CIM cmdlet support for original WMI providers and modern API

Chapter 17. Working with .NET and events

Figure 17.1. An example using the WPIAForms module. Both the code and the resulting
window are shown here.

Figure 17.2. A dialog box that front-ends the PowerShell Get-ChildItem and Select-String
cmdlets, allowing users to search with PowerShell even if they don’t know the language

Figure 17.3. The normal flow of control in a script is compared to the flow in an event-
based script.

Figure 17.4. This figure shows the hierarchy of classes representing simplified WMI event
sources. The most-derived class matches the most-specific event. Win32_ProcessStartTrace
will fire only for process starts, whereas Win32_ProcessTrace will fire for both process
starts and process stops.

Figure 17.5. The class hierarchy for the CIM instance operation event class. These events

(888)

are generated when a CIM is object is created, deleted, or modified. The base event class is
triggered for all three.

Figure 17.6. The second-hop authentication changes when credential delegation is used.
Without delegation, the second hop from server 1 to server 2 authenticates as the user that
the service is running under. With credential forwarding enabled, server 1 can use the client
credentials to authenticate to server 2 as the client user.

Figure 17.7. How asynchronous event processing is handled in PowerShell. As events
occur, they’re added to the queue asynchronously. At various stable points, the engine
checks the queue and pulls events off to execute. Once the event execution is complete,
normal processing resumes.

Chapter 18. Desired State Configuration

Figure 18.1. A common requirement of six identically configured servers. The reality is that
each will be different.

Figure 18.2. DSC model showing the initial and desired state

Figure 18.3. DSC architecture

Figure 18.4. DSC in pull mode

Figure 18.5. Testing the pull server

Chapter 19. Classes in PowerShell

Figure 19.1. Signature of a PowerShell class method

Figure 19.2. The PowerShell ISE shows using assembly name errors while editing.

Figure 19.3. An example showing the use of using namespace to simplify using forms
controls

Figure 19.4. The error message when the base class module is not imported with the using
module statement

Appendix PowerShell 6.0 for Windows, Linux, and macOS

Figure 1. PowerShell 6.0 on the left and PowerShell 5.1 on the right. The background and
text colors have been reversed from the default in the PowerShell 6.0 console for clarity.

Figure 2. Yum error message due to lock held by PackageKit

Figure 3. A list of default modules for PowerShell on Linux

Figure 4. The results of running listing 1 on PowerShell on Linux (top), PowerShell on
Windows (middle), and Windows PowerShell (bottom).

Figure 5. Remoting session from Linux to Windows

(889)

List of Tables
Chapter 1. Welcome to PowerShell

Table 1.1. Parsing mode examples

Table 1.2. Steps in the parameter binding process

Chapter 2. Working with types

Table 2.1. Classes, types, and members defined

Table 2.2. Examples of PowerShell type management

Table 2.3. Numeric literals

Table 2.4. Numeric multiplier suffixes supported in PowerShell. Suffixes marked v2+ are
available only in PowerShell v2 or later. GB, TB, and PB also support non-integer values
using the System.Double .NET type

Table 2.5. PowerShell language standard conversions

Table 2.6. Custom type conversions

Chapter 3. Operators and expressions

Table 3.1. Basic arithmetic operators in PowerShell

Table 3.2. Result of addition operations

Table 3.3. PowerShell assignment operators

Table 3.4. PowerShell comparison operators

Table 3.5. PowerShell containment operators

Table 3.6. PowerShell wildcard pattern-matching operators

Table 3.7. Special characters in PowerShell wildcard patterns

Table 3.8. PowerShell regular expression -match and -replace operators. Note the case-
sensitive and case-insensitive versions of each operator.

Table 3.9. Character sequences for doing substitutions in the replacement pattern for -
replace operator

Table 3.10. Match options for the -split operator

Table 3.11. Logical and bitwise operators

Chapter 4. Advanced operators and variables

(890)

Table 4.1. PowerShell operators for working with types

Table 4.2. PowerShell unary operators

Table 4.3. Expression and statement grouping operators

Table 4.4. Examples of using format specifiers

Chapter 5. Flow control in scripts

Table 5.1. Comparison of syntax styles for Where-Object

Chapter 6. PowerShell functions

Table 6.1. Typical classifications of parameter types found in all command shells

Table 6.2. Formal names for parameter types in PowerShell

Chapter 7. Advanced functions and scripts

Table 7.1. Properties available on the CmdletBinding attribute

Table 7.2. Parameters added to a function by the SupportsPaging property

Table 7.3. Results of using test-paging function

Table 7.4. Automatically generated help fields

Table 7.5. Tags that can be used in doc comments

Chapter 8. Using and authoring modules

Table 8.1. The roles modules play in PowerShell

Table 8.2. The cmdlets used for working with modules

Table 8.3. A glossary of module terminology

Table 8.4. Possible values of the $PSModuleAutoLoadingPreference variable

Table 8.5. PowerShellGet search targets

Chapter 9. Module manifests and metadata

Table 9.1. The manifest elements in a module manifest file that contain production-oriented
metadata

Table 9.2. Module manifest elements that contain data used in constructing the module

Table 9.3. Module types as determined by the RootModule member

Table 9.4. Module manifest elements used to list the module’s contents

Chapter 10. Metaprogramming with scriptblocks and dynamic code

(891)

Table 10.1. Member types that can be added with Add-Member

Chapter 11. PowerShell remoting

Table 11.1. Cmdlets with built-in remoting capability

Table 11.2. Additional steps needed to enable remote access to a computer in a workgroup
environment

Table 11.3. Possible types of authentication available for PowerShell remoting

Table 11.4. The cmdlets for managing the remoting endpoint configurations

Table 11.5. Remoting endpoint language options

Table 11.6. Session options for remoting endpoints

Chapter 12. PowerShell workflows

Table 12.1. Default workflow parameters

Table 12.2. PowerShell modules and corresponding activities

Table 12.3. Common activity parameters

Table 12.4. Unsupported cmdlet groups

Table 12.5. Cmdlets that can only be executed locally in workflows

Table 12.6. PowerShell language and techniques not supported in workflows

Table 12.7. Workflow common parameters

Table 12.8. Parameters unique to workflows

Table 12.9. New-PSWorkflowExecutionOption parameters

Chapter 13. PowerShell Jobs

Table 13.1. The cmdlets for working with PowerShell jobs

Table 13.2. PowerShell job types

Chapter 14. Errors and exceptions

Table 14.1. ErrorRecord properties and their descriptions

Table 14.2. The supported identifiers and numeric equivalents for ErrorActionPreference
and the -ErrorAction common parameter

Table 14.3. The PowerShell EventLog cmdlets

Table 14.4. The types of filters provided by the Get-EventLog cmdlet

(892)

Chapter 15. Debugging

Table 15.1. Cmdlet and preference variable relationships

Table 15.2. Strict mode versions

Table 15.3. Debugging tools

Table 15.4. The PowerShell debugger cmdlets

Chapter 16. Working with providers, files, and CIM

Table 16.1. PowerShell core cmdlets

Table 16.2. The CIM cmdlets and their purpose compared with the WMI cmdlets

Chapter 17. Working with .NET and events

Table 17.1. The PowerShell eventing cmdlets

Table 17.2. The automatic variables available in the event handler scriptblock

Appendix PowerShell 6.0 for Windows, Linux, and macOS

Table 1. PowerShell terminology

(893)

List of Listings
Chapter 6. PowerShell functions

Listing 6.1. The Get-Character function

Chapter 7. Advanced functions and scripts

Listing 7.1. Testing output type

Listing 7.2. Testing parameter sets

Chapter 8. Using and authoring modules

Listing 8.1. Counter.ps1 script

Listing 8.2. Counter module

Listing 8.3. Exporting variables

Listing 8.4. usesCount.psm1

Listing 8.5. usesCount2.psm1

Listing 8.6. A binary module

Listing 8.7. Wrapping a binary module in a script module—WrapBinaryModule.psm1

Chapter 9. Module manifests and metadata

Listing 9.1. testmanifest.psd1

Listing 9.2. Counter module

Listing 9.3. PSData entries from the Pester module

Chapter 10. Metaprogramming with scriptblocks and dynamic code

Listing 10.1. Scriptblock to perform string reversal

Listing 10.2. Adding a ScriptProperty

Listing 10.3. Basic closure in PowerShell

Listing 10.4. New-Point function

Listing 10.5. Wrapper for the Out-Default cmdlet

Listing 10.6. Type file for Sum() method extension

Listing 10.7. Updating type data dynamically

(894)

Listing 10.8. Creating a class using C#

Listing 10.9. The ExampleModuleScript

Chapter 11. PowerShell remoting

Listing 11.1. Parameterized monitoring script

Listing 11.2. Import-PSSession cmdletsplattingin proxy functionssteppable pipelinesin
proxy functionsDefinition of the Get-Bios proxy function

Listing 11.3. ComplexConstrainedConfiguration.ps1

Chapter 12. PowerShell workflows

Listing 12.1. Xamldefinition of hello workflow

Listing 12.2. Demonstration of workflow PowerShell processes

Listing 12.3. Using an InlineScript block

Listing 12.4. Using loops in workflows

Listing 12.5. Using variables in workflows

Chapter 13. PowerShell Jobs

Listing 13.1. Example of running multiple jobs

Listing 13.2. A function that searches a collection of folders in parallel

Listing 13.3. Automatically resuming workflow on reboot

Chapter 14. Errors and exceptions

Listing 14.1. The Show-ErrorDetails function

Chapter 16. Working with providers, files, and CIM

Listing 16.1. Get-HexDump

Listing 16.2. Creating the text XML document

Listing 16.3. The Format-XmlDocument function

Listing 16.4. Search-Help function scans help files for a pattern

Listing 16.5. Creating the bookstore inventory

Listing 16.10. Discovering ProgIds

Listing 16.11. The Test-Spelling function

Chapter 17. Working with .NET and events

(895)

Listing 17.1. Getting exported types from .NET assemblies

Listing 17.2. The WPIAForms.psm1 module

Listing 17.3. The search.xaml file declaring the file search interface

Listing 17.4. Click() methodGet-CommandString functionIsChecked propertyTextBox
controlsText propertyWPF (Windows Presentation Foundation)XAML loadersearch.ps1:
defining the file search behavior

Chapter 18. Desired State Configuration

Listing 18.1. A simple push configuration

Listing 18.2. MOF file created by listing 18.1

Listing 18.3. Removing a configuration

Listing 18.4. Parameterizing the computer name

Listing 18.5. Using configuration metadata

Listing 18.6. Role-based configurations

Listing 18.7. Creating a pull server

Listing 18.8. Configuration to be pulled

Listing 18.9. Changing the LCM settings

Listing 18.10. Configuring LCM to use the pull server

Listing 18.11. Configuration to create environmental variable

Listing 18.12. Configuration to create the registry key

Listing 18.13. Control configuration

Listing 18.14. Modifying the LCM to use partial configurations in pull mode

Chapter 19. Classes in PowerShell

Listing 19.1. A static method in a PowerShell class

Listing 19.2. Static and instance methods

Listing 19.3. Static and Instance methods with properties

Listing 19.4. Using method overloads

Listing 19.5. Using hidden methods

Listing 19.6. Using a non-default constructor

(896)

Listing 19.7. The base class

Listing 19.8. The derived class

Listing 19.9. Overriding the base class

Listing 19.10. Inheriting from a .NET class

Listing 19.11. apartmentpets2 class Inheriting from the apartmentpets class

Listing 19.12. Class-based DSC resource

Listing 19.13. Configuration using a class-based resource

Chapter 20. The PowerShell and runspace APIs

Listing 20.1. A fancy file list command

Listing 20.2. Concurrent execution example

Listing 20.3. Foreach in parallel

Appendix PowerShell 6.0 for Windows, Linux, and macOS

Listing 1. Cross-platform scripting

Listing 2. DSC for a Linux configuration file

(897)

	Dedication
	About this Book
	Who should read this book?
	Roadmap
	Code conventions
	Source code downloads
	Book forum
	About the authors
	About the title
	Chapter 1. Welcome to PowerShell
	1.1. What is PowerShell?
	1.2. PowerShell example code
	1.3. Core concepts
	1.4. Parsing the PowerShell language
	1.5. How the pipeline works
	1.6. Formatting and output
	1.7. Summary
	Chapter 2. Working with types
	2.1. Type management in the wild, wild West
	2.2. Basic types and literals
	2.3. Collections: dictionaries and hashtables
	2.4. Collections: arrays and sequences
	2.5. Type literals
	2.6. Type conversions
	2.7. Summary
	Chapter 3. Operators and expressions
	3.1. Arithmetic operators
	3.2. Assignment operators
	3.3. Comparison operators
	3.4. Pattern matching and text manipulation
	3.5. Logical and bitwise operators
	3.6. Where() and ForEach() methods
	3.7. Summary
	Chapter 4. Advanced operators and variables
	4.1. Operators for working with types
	4.2. Unary operators
	4.3. Grouping and subexpressions
	4.4. Array operators
	4.5. Property and method operators
	4.6. Format operator
	4.7. Redirection and redirection operators
	4.8. Working with variables
	4.9. Summary
	Chapter 5. Flow control in scripts
	5.1. Conditional statement
	5.2. Looping statements
	5.3. Labels, break, and continue
	5.4. switch statement
	5.5. Flow control using cmdlets
	5.6. Statements as values
	5.7. A word about performance
	5.8. Summary
	Chapter 6. PowerShell functions
	6.1. Fundamentals of PowerShell functions
	6.2. Declaring formal parameters for a function
	6.3. Returning values from functions
	6.4. Using simple functions in a pipeline
	6.5. Managing function definitions in a session
	6.6. Variable scoping in functions
	6.7. Summary
	Chapter 7. Advanced functions and scripts
	7.1. PowerShell scripts
	7.2. Writing advanced functions and scripts
	7.3. Dynamic parameters and dynamicParam
	7.4. Cmdlet default parameter values
	7.5. Documenting functions and scripts
	7.6. Summary
	Chapter 8. Using and authoring modules
	8.1. The role of a module system
	8.2. Module basics
	8.3. Working with modules
	8.4. Writing script modules
	8.5. Binary modules
	8.6. Summary
	Chapter 9. Module manifests and metadata
	9.1. Module folder structure
	9.2. Module manifest structure
	9.3. Production manifest elements
	9.4. Construction manifest elements
	9.5. Content manifest elements
	9.6. Advanced module operations
	9.7. Publishing a module to a PowerShell Gallery
	9.8. Summary
	Chapter 10. Metaprogramming with scriptblocks and dynamic code
	10.1. Scriptblock basics
	10.2. Building and manipulating objects
	10.3. Using the Select-Object cmdlet
	10.4. Dynamic modules
	10.5. Steppable pipelines
	10.6. A closer look at the type-system plumbing
	10.7. Extending the PowerShell language
	10.8. Building script code at runtime
	10.9. Compiling code with Add-Type
	10.10. Summary
	Chapter 11. PowerShell remoting
	11.1. PowerShell remoting overview
	11.2. Applying PowerShell remoting
	11.3. PowerShell remoting sessions and persistent connections
	11.4. Implicit remoting
	11.5. Considerations when running commands remotely
	11.6. Building custom remoting services
	11.7. PowerShell Direct
	11.8. Summary
	Chapter 12. PowerShell workflows
	12.1. Workflow overview
	12.2. Workflow keywords
	12.3. Using workflows effectively
	12.4. Workflow cmdlets
	12.5. Summary
	Chapter 13. PowerShell Jobs
	13.1. Background jobs in PowerShell
	13.2. Workflows as jobs
	13.3. Scheduled jobs
	13.4. Summary
	Chapter 14. Errors and exceptions
	14.1. Error handling
	14.2. Dealing with errors that terminate execution
	14.3. PowerShell and the event log
	14.4. Summary
	Chapter 15. Debugging
	15.1. Script instrumentation
	15.2. Capturing session output
	15.3. PowerShell script debugging features
	15.4. Command-line debugging
	15.5. Beyond scripts
	15.6. Summary
	Chapter 16. Working with providers, files, and CIM
	16.1. PowerShell providers
	16.2. Files, text, and XML
	16.3. Accessing COM objects
	16.4. Using CIM
	16.5. Summary
	Chapter 17. Working with .NET and events
	17.1. .NET and PowerShell
	17.2. Real-time events
	17.3. Summary
	Chapter 18. Desired State Configuration
	18.1. DSC model and architecture
	18.2. Push mode to a single node
	18.3. Pushing to multiple nodes
	18.4. DSC in pull mode
	18.5. Configuring the Local Configuration Manager
	18.6. Partial configurations
	18.7. Summary
	Chapter 19. Classes in PowerShell
	19.1. Writing classes in PowerShell
	19.2. Methods in PowerShell classes
	19.3. Extending existing classes
	19.4. Classes, modules, using, and namespaces
	19.5. Writing class-based DSC resources
	19.6. Summary
	Chapter 20. The PowerShell and runspace APIs
	20.1. PowerShell API basics
	20.2. Runspaces and the PowerShell API
	20.3. Runspace pools
	20.4. Out-of-process runspaces
	20.5. Remote runspaces
	20.6. Managing runspaces
	20.7. Summary
	The PowerShell open source project
	PowerShell on Linux and macOS
	PowerShell remoting and Linux
	DSC and Linux
	Summary

